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The Role of Macrophages in the Pathogenesis of ALI/ARDS
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Despite development in the understanding of the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS), the underlying mechanism still needs to be elucidated. Apart from leukocytes and endothelial cells, macrophages are
also essential for the process of the inflammatory response in ALI/ARDS. Notably, macrophages play a dual role of
proinflammation and anti-inflammation based on the microenvironment in different pathological stages. In the acute phase of
ALI/ARDS, resident alveolar macrophages, typically expressing the alternatively activated phenotype (M2), shift into the
classically activated phenotype (M1) and release various potent proinflammatory mediators. In the later phase, the M1
phenotype of activated resident and recruited macrophages shifts back to the M2 phenotype for eliminating apoptotic cells and
participating in fibrosis. In this review, we summarize the main subsets of macrophages and the associated signaling pathways in
three different pathological phases of ALI/ARDS. According to the current literature, regulating the function of macrophages
and monocytes might be a promising therapeutic strategy against ALI/ARDS.

1. Introduction

Acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) is a devastating respiratory disorder, which leads to
mortality in patients in intensive care units [1]. It is charac-
terized by clinically significant hypoxemia, diffuse bilateral
pulmonary infiltration, pulmonary edema, a decrease in pul-
monary compliance, and a decrease in the functional residual
capacity [2]. Pathological changes include increased vascular
permeability caused by alveolar-capillary membrane dys-
function, with flooding of protein-rich fluid, alveolar hemor-
rhage, and fibrin deposition [3]. ALI/ARDS develops by
excessive and uncontrolled systemic inflammatory responses
to direct or indirect lung injury. Currently, there is increasing
evidence suggesting that macrophages, including resident
alveolar macrophages (AMs) and recruited macrophages
from the blood, are key factors in the pathogenesis of ALI/
ARDS [4, 5]. The role of macrophages during development
of the inflammatory response is subtle. In general, they exert
a proinflammatory effect in the early stage and exhibit an
anti-inflammatory effect in the late stage. These effects may
be attributed to the phenotypic transformation, which is in

part regulated by the suppressor of cytokine signaling
(SOCS) 1/SOCS3 and interferon regulatory factor (IRF) 4/
IRF5 [6–9]. In this review, we summarize the main subsets
of macrophages involved in ALI/ARDS and the recent
advances in the phenotypic and functional alterations. The
identification of the cellular and molecular mechanisms asso-
ciated with the role of macrophages in ALI/ARDS will pro-
vide a basis for some potential treatment strategies.

2. Main Macrophages Involved in ALI/ARDS

Classified by the responses to environmental stimuli, there
are two polarization states of macrophages: the classically
activated phenotype (M1) and the alternatively activated
phenotype (M2) [10].

There are two main types of macrophages in the alveolus.
The first type is the long-lived resident AMs, which are
located at the air-tissue interface, with an approximate
density of seven per alveolus [11]. As a predominant cell
type in the alveolar airspaces, they act as a uniform, quies-
cent, and immunosuppressive population in the normal state
[12, 13]. The M2 phenotype is the main form of these
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resident AMs. The second type is the recruited AMs.
When a stimulus occurs, such as in ALI/ARDS, peripheral
blood monocytes are recruited into the alveolar lumen,
where they differentiate into macrophages with the M1
phenotype [11, 14].

To further investigate the role of AMs in the pathogenesis
of ALI/ARDS, clodronate-loaded liposomes have been used
to eliminate AMs specifically in blockage experiments [15,
16]. Other studies have shown that the depletion of AMs sig-
nificantly reduced pulmonary edema and ventilator-induced
lung injury in rats [17, 18], which was partially attributed to
the decreased recruitment of neutrophils in the lungs.
Besides, depletion of AMs also has been found [19] to miti-
gate lung injury significantly at 4 h after lipopolysaccharide
(LPS) administration in mice by attenuating neutrophilic
alveolitis and reducing proinflammatory cytokines.

Machado-Aranda et al. [20] have shown that neutro-
phils were significantly recruited to the bronchoalveolar
lavage fluid from 5h after contusion-induced lung injury
in the AM-depleted group, which resulted in a worsened
pulmonary compliance, an increased lung permeability,
and aggressively elevated proinflammatory cytokine levels.
In a study by Broug-Holub et al. [21], substantial neutro-
phil recruitment and decreased bacterial clearance were
found in the lungs of AM-depleted mice at 48 h after
infection withKlebsiella pneumoniae. In addition, Narasaraju
et al. [22] have shown that influenza infection led to excessive
recruitment of neutrophils, extensive alveolar damage, and
increased viral load in the AM-depleted group at 5 days
after infection.

According to these results from various experimental
models, AM depletion shows a protective effect against
ALI/ARDS at an early stage, while it exacerbates lung injury
at a later stage. Neutrophils are the first leukocytes recruited
to the sites of inflammation in response to chemokines such
as macrophage inflammatory protein-2 (MIP-2) and inter-
leukin- (IL-) 8 released by activated AMs [23–26]. The accu-
mulation of neutrophils is an important factor leading to
tissue damage due to the overwhelming release of cytotoxic
and proinflammatory mediators [27]. At an early stage, AM
depletion may alleviate neutrophil-induced alveolitis by
reducing inflammatory responses. At a later stage, circulating
monocytes migrate into the interstitium or alveolar spaces in
response to monocyte chemoattractant protein-1 (MCP-1)
for pathogen clearance and phagocytosis of infected particles
or other inflammatory debris (Figure 1(a)) [13, 28]. Macro-
phage phagocytosis of neutrophils and other apoptotic cells
is an important step in the process of inflammatory response
regulation. At this stage, the number of recruited AMs is
increased, and the depletion of AMs may result in decreased
phagocytic macrophages and control of inflammation. On
the other hand, intraperitoneal administration of MCP-1 sig-
nificantly increased the total number of macrophages as well
as the number of phagocytizing neutrophils [29]. The
increased chemokine ligand 2 (CCL-2 or MCP-1) expression
in turn enhances CC chemokine receptor 2 (CCR2) expres-
sion in circulating monocytes and interstitial macrophages
[30]. The interaction of CCL-2 with CCR2 plays an impor-
tant role in the process of reepithelialization after lung injury

[31]. In mice subjected to intratracheal LPS treatment, CCR2
deficiency aggravated the apoptosis of alveolar epithelial cells
and permeability injury [32]. Therefore, these two types of
AMs act at an early or a late stage in the process of ALI/
ARDS: the resident AMs release cytokines for recruiting neu-
trophils or monocytes to promote and sustain inflammation,
and the recruited AMs mainly function to clear pathogens
and limit inflammatory responses.

Similarly, the role of circulating monocytes has been
investigated in LPS-induced lung injury models. Herold
et al. [32] have reported that depletion of circulating mono-
cytes (the precursors of exudate macrophages) seems to
aggravate LPS-induced lung injury. In contrast, Dhaliwal
et al. [33] have found that depletion of the pool of peripheral
blood monocytes might alleviate lung injury and might be a
therapeutic target for ALI/ARDS. These controversial results
may be due to the different times of monocyte depletion. In
the study by Herold et al., depletion of circulating monocytes
was performed at 12h before LPS challenge [32]. Mean-
while, in the study by Dhaliwal et al., the process was initi-
ated by the use of clodronate at 6 h after intratracheal LPS
administration [33]. Taken together, AMs and peripheral
blood monocytes exert distinctly exclusive functions at dif-
ferent stages of ALI/ARDS [34, 35]. The modulation of mac-
rophages and monocytes may be a potential way to treat
ALI/ARDS. However, the mechanism of cellular interactions
between macrophages and several anti-inflammatory cells
remains unclear [36].

3. Phenotype and Functional Alternation of
Macrophages in the Pathogenesis of ALI/
ARDS

3.1. Exudative Phase of ALI/ARDS. In healthy lungs, resident
AMs are highly plastic for immune responses, with relatively
high expression levels of pathogen-associated molecular pat-
tern and danger-associated molecular pattern receptors [37].
Upon stimulation in ALI/ARDS, resident AMs immediately
shift to the predominant M1 phenotype in response to
infection-induced activation of toll-like receptors (TLRs) or
other recognition receptors [38]. These AMs act as the first
line of defense against pathogenic microorganisms and lung
injury, such as bacteria, endotoxins, viruses, and ventilator-
induced lung injury [22, 39, 40], releasing various potent
proinflammatory and deleterious mediators including IL-
1β, IL-6, and IL-18 [41, 42]. With these inflammatory fac-
tors, the neutrophils are recruited from the intravascular
space, across the endothelium and epithelium, and finally
into the lungs and alveolar space. It is widely known that
excessive accumulation of proinflammatory cytokines and
neutrophils is involved in the pathophysiology of tissue dam-
age in inflammatory diseases [43]. Therefore, M1 macro-
phages serve as a promoter in the process of lung tissue
damage in ALI/ARDS. However, a protective effect associ-
ated with M1 macrophages also has been detected. Recent
studies have found that these macrophages generate a high
level of amphiregulin [44, 45], a ligand of epithelial growth
factor receptor, which has been found to protect the epithelial
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barrier and inhibit the gene expression of proinflammatory
cytokines in LPS-induced ALI and ventilator-induced lung
injury models [44, 45].

The shift of macrophage phenotypes is regulated by
several signaling pathways (Figure 1(a)). M1 macrophages
can be activated through the classical JAK/STAT1 pathway
[46–48]. In detail, interferon-γ (IFN-γ) binds to the recep-
tors on the cell surface, activating Janus kinase 1 (JAK1),
JAK2, and signal transducer and activator of transcription 1
(STAT1) [46]. In addition, STAT expression is negatively
regulated, in part, via SOCS [49]. Under normal conditions,
the expression levels of SOCS1 and SOCS3 are very low,
but they are rapidly activated by IFN-γ or LPS [6]. Specif-
ically, SOCS1 and SOCS3 negatively regulate the JAK/
STAT pathway through binding with the key phosphory-
lated tyrosine residues of JAKs and/or cytokine receptors
[50, 51]. Besides, other possible mechanisms accounting
for SOCS proteins inhibiting JAK/STAT signaling also

have been identified [52, 53]. In mouse macrophage cells,
the downregulation of SOCS1 expression by SOCS1 short
hairpin (sh) RNA transfection significantly increased the
mRNA levels of JAK1 and STAT1 as well as promoted the
polarization of macrophages to the M1 phenotype [54].
In addition, Qin et al. [55] have revealed that myeloid-
specific SOCS3-deficient mice exhibit enhanced activities of
STAT1/3 and increased plasma levels of proinflammatory
cytokines and chemokines. Therefore, both SOCS1 and
SOCS3 inhibit the polarization of macrophages into the M1
phenotype, decreasing proinflammatory chemoattractants.
Additionally, M1 macrophages have shown an impaired pro-
inflammatory effect and an enhanced anti-inflammatory
effect in the absence of SOCS3 in a nephrotoxic nephritis
model [7], thus indicating an essential role of SOCS3 in
the development of M1 macrophages. However, whether
similar mechanisms exist in ALI/ARDS models remains
to be further investigated.
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Figure 1: The molecular mechanism of SOCS- and IRF-regulated cytokine signaling in macrophages during ALI/ARDS. (a) Normal resident
AMs are activated and shift into the M1 phenotype upon certain stimulation during the exudative phase of ALI/ARDS. Proinflammatory
cytokines such as IFN-γ, TNF-α, and IL-β are excreted by M1 macrophages into the site of inflammation. The JAK–STAT1 pathway is
activated by IFN-γ, and SOCS1 and SOCS3 are induced. SOCS1 and SOCS3 inhibit the signaling pathway by different mechanisms. IRF5
promotes M1 polarization by directly binding to IL-12 and IL-23 promoters. Leukocytes migrate into the cellular airspace by the
activation of chemokines such as KC, MIP-2, and IL-8. Monocytes from the circulation are also recruited by chemokines such as MCP-1
and shift into the M1 phenotype. Crosstalk between SOCS3 and IRF5 may exist. (b) Macrophages shift from the M1 phenotype to the M2
phenotype during the later phase of ALI/ARDS. This process is regulated by several factors, including IL-4, IL-10, IL-13, STAT6, and
IRF4. IL-4 or IL-13 activates the JAK–STAT6 pathway, and SOCS1 is induced. SOCS1 feedback inhibits the IL-4/IL-13 signaling. IRF4
inhibits IRF5 activation by a competing interaction with the adaptor MyD88. Recruited macrophages play an important role in
eliminating apoptotic cells, debris, and pathogens. AMs: alveolar macrophages; IFN-γ: interferon-γ; JAK: Janus kinase; IL: interleukin;
STAT: signal transducer and activator of transcription; IRF: interferon regulator factor; SOCS: suppressors of cytokine signaling; KC:
keratinocyte-derived chemokine; MIP: macrophage inflammatory protein; MCP: monocyte chemoattractant protein; TNF-α: tumor
necrosis factor α; TLR: toll-like receptor; MyD88: myeloid differentiation factor 88.
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The transcription factor IRF5 is another major regulator
of proinflammatory M1macrophage polarization. It is gener-
ally involved in the process of the downstream TLR-myeloid
differentiation factor 88 signaling pathway, inducing proin-
flammatory cytokines and repressing transcription of anti-
inflammatory cytokines such as IL-10 [56]. In a study by
Qin et al. [57], IRF5 expression was increased in the absence
of SOCS3, which promoted M1 macrophage polarization.
Thomas et al. [8] also have shown that IRF5 deficiency
led to a lower proportion of M1 macrophage subsets in
mice and a lower expression of M1-specific cytokines in
human M1 macrophages [8]. Overall, STAT1, SOCS1/
SOCS3, and IRF5 are involved in the polarization of M1
macrophages, with substantial crosstalk among these signal-
ing pathways [57–60].

3.2. Rehabilitation Phase of ALI/ARDS. After pathogenic
factors are eliminated, resident and recruited macrophages
shift from the M1 phenotype to the anti-inflammatory M2
phenotype [5]. According to various activating conditions,
M2 macrophages are classified into four subtypes: M2a
(IL-4- or IL-13-induced), M2b (immune complexes in com-
bination with IL-1β or LPS), M2c (IL-10, transforming
growth factor (TGF)-β, or glucocorticoids), and M2d (aden-
osine A2A receptor agonists) [61–63]. M2 macrophages play
an important role in lung tissue repair by limiting the levels
of proinflammatory cytokines in the cellular space. They also
help produce anti-inflammatory cytokines such as IL-10 and
IL-1 receptor antagonist in response to T-helper 2 (Th2)
cytokines [5, 35]. Apart from the balance of pro- and anti-
inflammatory cytokines, the clearance of neutrophils from
inflammatory sites is another contributing factor for rehabil-
itation [64]. Once recruited, neutrophils exhibit apoptosis
and the apoptotic cells accumulate [65]. With a potent
phagocytic capacity, M2 macrophages remove the necrotic
cells and debris. The elimination of apoptotic cells by phago-
cytes, known as efferocytosis, can activate anti-inflammatory
signaling and terminate proinflammatory responses [66].
Phagocytosis of apoptotic neutrophils by M2 macrophages
further increases the levels of IL-10 and TGF-β1 [35, 67],
which may help to control inflammation. It also inhibits the
expression of inducible nitric oxide synthase and stimulates
the expression of arginase 1, thereby preventing reactive
nitric oxide production [5]. Besides, M2-derived cytokines,
including IL-4, IL-13, and IL-10, further enhance efferocyto-
sis, with an increased level of mannose receptor expression
[68, 69]. With this positive feedback loop, efferocytosis and
M2 polarization alleviate inflammation. However, it is still
unclear how M2 differentiation is terminated and which
mediators are involved.

In addition, recent studies have indicated that regulatory
T cells (Tregs), a subset of CD4+ lymphocytes, are involved in
the phenotypic transformation of macrophages [70, 71].
Tregs may reduce lung inflammation by diminishing the
elevation of macrophage proinflammatory cytokine levels
and enhancing the efferocytosis of apoptotic neutrophils
[72–74]. Taams et al. [74] have shown that human Tregs
inhibit LPS-induced M1 monocyte proinflammatory re-
sponses and promote the M2 phenotype. Eliminating Tregs

has resulted in sustained proinflammatory responses induced
by LPS and reduced neutrophil apoptosis [73, 74]. Future
studies investigating the possible mechanisms for Treg-
mediated neutrophil apoptosis are on the way [75].

Several signaling pathways are involved in the pheno-
typic shift from M1 to M2 macrophages (Figure 1(b)). The
alternative macrophages are activated by Th2-type cytokines,
including IL-4 and IL-13 [76]. However, the main sources of
IL-4 and IL-13 in the body are largely unknown. Produced by
various innate cells, IL-4 and IL-13 have many similar effects
on macrophages due to an identical receptor chain, IL-4Rα.
Of note, IL-4 can activate the insulin receptor substrate-2 sig-
naling pathway through the γc chain, while IL-13 cannot
[77]. Besides, IL-4 and/or IL-13 activate STAT6 and increase
the expression of STAT6-responsive genes such as arginase 1
and 15-lipoxygenase [6]. In addition to the regulatory effects
on the activation of macrophages by the classical IFN-γ-
inducible pathway, SOCS1 regulates the alternative IL-4-
inducible pathway [78]. IL-4 induces SOCS1 expression in
macrophages via STAT6 signaling, and SOCS1 feedback
inhibits IL-4 signaling to limit the expression of STAT6-
responsive genes and the alternative macrophage activation
pathway [6, 78]. In a study by Liu et al. [7], SOCS3 suppres-
sion enhanced STAT3 activity; decreased the expression of
IL-6, nitric oxide, and CD86; and increased the expression
of mannose receptor and arginase, which promote the polar-
ization of macrophages into the M2 phenotype. Their results
suggest that the expression of SOCS3 maintains the activated
phenotype M1 cells with proinflammatory properties and
inhibits the phenotype with anti-inflammatory effects [7].
Taken together, SOCS1 and SOCS3 are involved in the clas-
sical macrophage activation pathways as well as in various
alternative macrophage activation pathways. Further investi-
gations to mitigate ALI/ARDS by regulating the balance
between anti-inflammatory and proinflammatory effects of
macrophages are needed.

IRF4, another member of the IRF family, has diverse
effects in different situations. It inhibits IRF5 activation
by a competing interaction with the adaptor myeloid dif-
ferentiation factor 88 in resident peritoneal macrophages.
However, in bone marrow-derived macrophages, this type
of competition is greatly minimized due to the lack of
IRF5-dependent TLR signaling [79]. Another study has
suggested that IRF4 controls M2 macrophage polarization
by stimulating the expression of specific M2 macrophage
markers in mice [9]. From the current evidence, STAT6,
SOCS1/SOCS3, and IRF4 are all involved in the polariza-
tion of M2 macrophages [58, 59].

3.3. Fibrotic Phase of ALI/ARDS. Pulmonary fibrosis, a late
complication of ALI/ARDS, is marked by fibroblast prolifer-
ation and excessive deposition of extracellular matrix [80].
M2 phenotype cells are involved in regulating the fibrotic
responses in the lungs [81, 82]. Persistence of M2 macro-
phages at the injury sites is a hallmark of the development
of fibrosis, and the steady expression of IL-4 and IL-13 can
promote collagen deposition through TGF-β and arginase 1
pathways [83, 84]. Wakayama et al. [85] have demonstrated
that dental pulp stem cells can ameliorate bleomycin-
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induced lung injury and fibrosis by inducing anti-
inflammatory M2-like lung macrophages. Moreover, recent
studies have reported that IL-4-polarized M2 macrophages
have the potential to limit fibrosis through expressing
arginase 1 and resistin-like α (surface markers of the M2
phenotype) genes [78, 86]. In summary, macrophages are
paradoxically involved in both the generation of pulmonary
fibrosis and the later healing process [86]. They regulate
fibroblast recruitment, growth, and connective-tissue remod-
eling; in addition, they contribute to the removal of dead tis-
sue, the growth of new blood vessels, and fibrin dissolution
[61]. The regulatory mechanism for the balance of positive
and negative regulators on the profibrotic functions of mac-
rophages needs to be clarified in the future.

4. Conclusion

In this review, we summarize the current research on the role
of macrophages/monocytes in inflammation, tissue repair,
and fibrosis in ALI/ARDS. In general, macrophages/mono-
cytes exert a proinflammatory or an anti-inflammatory effect
based on the microenvironment in different stages. Limiting
excessive proinflammatory responses in the exudative phase
and excessive fibroblast proliferation in the repair phase
through the regulation of macrophage activation and polari-
zation may be a novel therapeutic target for ALI/ARDS.
However, there is still a long way to go.
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