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Abstract: Inorganic polyphosphate (polyP), a simple anionic polymer consisting of even hundreds of
orthophosphate units, is a universal molecule present in both simple and complex organisms. PolyP
controls homeostatic processes in animals, such as blood coagulation, tissue regeneration, and energy
metabolism. Furthermore, this polymer is a potent regulator of inflammation and influences host
immune response in bacterial and viral infections. Disturbed polyP systems have been related to
several pathological conditions, including neurodegeneration, cardiovascular disorders, and cancer,
but we lack a full understanding of polyP biogenesis and mechanistic insights into the pathways
through which polyP may act. This review summarizes recent studies that describe the role of polyP
in cell homeostasis and show how disturbances in polyP levels may lead to disease. Based on the
collected findings, we highlight the possible usage of this polymer as a promising therapeutic tool in
multiple pathologies.
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1. Introduction

Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate units cova-
lently linked by high-energy phosphoanhydride bonds, as in adenosine triphosphate (ATP).
As an anionic polymer, it carries a negative charge at physiological pH [1]. PolyP is a highly
conserved molecule, present in organisms across all living systems, including archaea,
bacteria, fungi, plants, and animals [2].

Despite being structurally very simple, the length of the polymer varies across organ-
isms, which often serves as a distinguishing feature. Bacteria produce long-chain polyP that
comprises up to 1000 phosphate residues or more, often in the form of large granules called
acidocalcisomes. Eukaryotic cells synthesize shorter polyP chains ranging from around
80 Pi units in human platelets to 200 Pi residues in yeast [3]. The enzymes responsible for
polyP synthesis in higher eukaryotes have not been fully identified yet [4], as the synthesis
of this polymer has been extensively studied mostly in bacteria. Key prokaryotic enzymes
involved in polyP metabolism include polyphosphate kinase (PPK), which catalyzes the
synthesis of polyP using ATP as a phosphate donor, and exopolyphosphatase (PPX), respon-
sible for polyP degradation to free Pi [5]. Some bacteria, such as Escherichia coli possess one
PPK enzyme, others possess two homologs: PPK1 and PPK2 (e.g., Pseudomonas aeruginosa,
Francisella tularensis); and some can have neither [6,7]. Interestingly, homologs of PPK have
not been found in higher eukaryotes [8].

The physiological role of polyP in bacterial cells has for years been linked to stress
response, phosphate storage, and, more recently, protein folding [9–11]. Bacteria elevate
polyP synthesis in response to environmental stress conditions, such as amino acid starva-
tion or oxidative stress [12,13]. It has been shown that under stress conditions polyP plays
a crucial role in the regulation of bacterial DNA replication [14]. Gross and Konieczny
observed inducible proteolysis of replication initiator protein DnaA by Lon protease in
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the presence of polyP in a process termed PolyP-induced DnaA proteolysis (PDAP). In
mutant Escherichia coli cells that lack PPK enzymes (E. coli ∆ppk) and are therefore not able
to synthesize polyP, DnaA protein levels remained stable after stress induction [15].

In addition to its principal role in the regulation of stress response, bacterial polyP
has been linked to a variety of other functions. Pathogenic bacteria mutants unable to
synthesize polyP were defective in motility [16], biofilm formation [17], cell signaling, and
production of virulence factors [18], which suggests polyP’s importance for proper cellular
functioning and metabolism.

PolyP’s role in eukaryotic cells is not as well described as in prokaryotes. Nonetheless,
there is an increasing amount of research that focuses on elucidating how this ancient
molecule shapes eukaryotic cell metabolism, both in homeostatic and pathogenic conditions.
Thus, this review highlights open questions and presents polyP as a potent regulator of
cellular metabolism, not only in healthy cells but also during infections, tumorigenesis,
neurodegeneration, and other pathologies.

2. Polyphosphate as a Regulator of Homeostasis in Eukaryotic Cells

PolyP in higher eukaryotes, specifically in mammals, is present in a broad range of
tissues. In rodents, it has been found in the brain, heart, kidneys, liver, and lungs [19].
PolyP has been also found in the lysosomes of human fibroblasts, the nucleoli of human
myeloma cells, mitochondria, plasma membranes, microsomes, and cytoplasm compart-
ments of various cell types, as well as in the extracellular space, where it can be released by
activated platelets and astrocytes [19–23]. PolyP amounts in mammalian cells oscillate in
a micromolar range and are considerably lower than those observed in bacteria [24]. The
highest concentration of mammalian polyP was described for platelets, where it reaches
around 1 mM [25]. High levels were also observed in bone tissue (several hundred µM
polyP in osteoblasts) [26].

In the past century, most research has focused on identifying polyP in various mam-
malian cells, but the role it may serve was only discussed speculatively [20,27,28]. These
speculations covered its function as a regulator of lysosomal transmembrane potential,
phosphate storage, or as an energy source. The first indications of the substantial regulatory
role of polyP in eukaryotic homeostasis have been described by Ruiz and colleagues [25].
They found that granules of human platelets, which are similar to bacterial acidocalcisomes,
are rich in polyP that is released upon thrombin stimulation. Smith et al. described how
the polyP of platelets exerts an procoagulant effect and triggers a clotting cascade in the
presence of factor XII (FXII), and presented polyP as an activator of the contact pathway
of blood clotting [29]. The contact pathway (reviewed by Yi Wu [30]) consists of several
plasma proteins activated by negatively charged surfaces or anions (like polyP). PolyP
binds and activates FXII, triggering the contact pathway, which leads to blood coagulation
and proinflammatory response through the production of the bioactive peptide bradykinin.
Furthermore, polyP may be incorporated into fibrin and stabilize fibrin clot structure, mak-
ing it more resistant to fibrinolysis [31]. Procoagulant effects of polyP are also pronounced;
it has the ability to inhibit anticoagulant factors such as tissue factor pathway inhibitor
(TFPI) released by endothelial cells [32].

In addition to its procoagulant and proinflammatory functions, polyP released from
platelets and platelet-rich plasma have been linked with cell proliferation and tissue regen-
eration. Müller and colleagues showed that polyP promotes the growth and viability of
bone marrow-derived mesenchymal stem cells and upregulates the expression of transcrip-
tion factors responsible for osteogenesis and chondrogenesis, showing the involvement of
polyP in bone and cartilage formation/homeostasis [33]. They also showed that calcium–
polyP microparticles are taken up by cells via clathrin-dependent endocytosis; thus, polyP
in the form of such microparticles can be manufactured and utilized in treatments of
osteoarticular pathologies.

Interestingly, polyP can act also as a mediator of signal transmission in the mammalian
brain. Astrocytes activated via polyP, similarly to Ca2+ activation, release endogenous
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polyP which is further cleared from the extracellular space by neuronal uptake, suggesting
that polyP acts as a glio- and neurotransmitter [23,34]. PolyP mediates communication
between astrocytes by binding to purinergic receptors P2Y1 in the brainstem [23]. P2Y
receptors are G protein-coupled receptors, widely distributed within the cells of the hu-
man body [35]. They are activated by extracellular nucleotides and mediate a myriad of
signaling cascades involved in cell development, proliferation, and also immune regu-
lation and inflammation [36,37]. PolyP binding to astroglial P2Y1 results in an increase
in central sympathetic activity, stimulates breathing, and raises arterial blood pressure
in vivo in rats [23]. Furthermore, several studies have demonstrated polyP as a medi-
ator of proteostasis (reviewed by Xie and Jakob [38]), suggesting a substantial role of
polyP in neurodegenerative disorders. Protein aggregation and production of insoluble
fibers called amyloid fibrils are the foundation of neuro-diseases such as Alzheimer’s
or Parkinson’s diseases. The intermediates preceding mature fibril formation, such as
oligomers and protofibrils, accumulate in the extracellular space (and synapses) and alter
cell communication, mitochondrial function, eventually triggering apoptosis [39]. PolyP
has been shown to act neuroprotectively and abrogate the neurotoxic activity of improperly
aggregated amyloid β-peptides/proteins and Tau protein which are responsible for the
onset of Alzheimer’s disease [40]. Furthermore, polyP levels have been shown to shrink
significantly in the brain with aging [41], when neurodegenerative disorders are most to
likely to occur. Figure 1 collects and presents the activity of polyP in different tissues of the
human body.

Figure 1. Polyphosphate (polyP) regulates a variety of processes in different tissues in the human
organism. In bone tissue, polyP stimulates osteogenesis and chondrogenesis, and promotes the
growth and differentiation of bone marrow-derived mesenchymal stem cells (MSCs). In the brainstem,
it can be taken up by activated astrocytes and act as a mediator of signal transmission. In the
cardiovascular system, polyP can be released within extracellular vehicles by activated platelets,
where it activates the contact pathway of blood clotting, stabilizes fibrin clot structure, and mediates
proinflammatory responses by activating endothelial cells (ECs).
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PolyP in Mitochondrial Homeostasis and Cell Energetics

It is well known that mitochondrial dysfunction might be another critical factor and
common feature in neurodegeneration [42]. Recently, Angelova and colleagues showed
that approximately 40% of cellular polyP in astrocytes resides in mitochondria [43], where
it regulates mitochondrial activity and calcium handling [44]. PolyP in mitochondria acts
as a buffering system and prevents the formation of calcium phosphate insoluble precipi-
tates, thus maintaining mitochondrial calcium homeostasis and sustaining high levels of
calcium in the bioavailable form [45,46]. Disrupted calcium homeostasis and a decline in
mitochondrial function are hallmarks of aging and, in addition to neurodegeneration, have
also been associated with coronary heart disease and diabetes [47]. On the other hand,
Abramov et al. showed that a depletion of mitochondrial polyP by expression of yeast PPX
in several cell lines (including hepatic carcinoma cells, human embryonic kidney cells, and
mouse myoblasts) reduces calcium-dependent mitochondrial permeability transition, a
key mechanism underlying necrotic and apoptotic cell death [48,49]. Mitochondrial pores
are formed upon stressing stimuli and calcium mishandling and also contribute to the
process of neurodegeneration in Parkinson’s, Alzheimer’s, and Huntington’s diseases [50].
Similar results were shown in cardiomyocytes, where polyP depletion also leads to the
inhibition of mPTPore (mitochondrial permeability pore) formation. Reduction of polyP
in cardiac cells may be cardioprotective, as the formation of mPTPore and dysfunction of
mitochondria lead to pathologies in cardiac tissue and irreversible cardiac cell injuries [51].
However, research on cardiac myocytes demonstrated a dual role of polyP, which is directly
linked to its chain length. While polyP of 14 phosphates activated mPTPore formation,
longer polyP molecules (130 phosphates) suppressed mPTP activity [52]. Seidlmayer et al.
hypothesized that such competing actions of polyP may stem from polyP’s chaperone
activity and ability to bind proteins involved in mPTPore opening. The authors concluded
that mitochondrial polyP chain lengths depend on the metabolic state of these organelles,
hence the polyP role in mitochondria should be considered in relation to the function of
polyP in cell bioenergetics.

Mitochondria are the key energy producers in cells. Interestingly, Pavlov and col-
leagues described that mitochondrial polyP play an important role in mammalian energet-
ics [53,54]. They observed dynamic changes in polyP levels in astrocytes that were directly
triggered by inhibition or activation of mitochondrial respiration. Inhibition of glycolysis
by the addition of iodoacetic acid, which blocked the supply of substrates for mitochondrial
respiratory complexes, reduced polyP abundance in mitochondria, suggesting that polyP
levels may depend on the activity of the respiratory chain. Confirming this observation,
in another study, Nakamura and colleagues observed that degradation of polyP enhances
lactic acid fermentation in mice expressing the polyP-degrading PPX enzyme [55]. Their
model proposes that elongation of polyP and a subsequent reduction in free intracellular
Pi concentration sustains mitochondrial respiration and suppresses anaerobic lactic acid
production. In a recently published study, Abramov and his group showed that ATP
synthase, the mitochondrial inner membrane enzyme responsible for the formation of ATP,
is involved in polyP synthesis similarly to the synthesis of ATP [56]. Using isolated rat brain
mitochondria, they showed that polyP production is blocked in the presence of oligomycin,
an ATP synthase inhibitor. Moreover, application of ATP before or after oligomycin did not
affect polyP concentration, which excludes the possibility of ATP being an intermediate
product of polyP synthesis. ATP synthase can also function in the opposite direction, as a
proton pump hydrolyzing ATP. The authors observed that in the absence of ATP polyP can
by hydrolyzed by ATP synthase, proving that polyP can be utilized by eukaryotic cells as a
direct source of energy.

However, polyP is not only synthesized in mitochondria. Significant amounts of this
polymer can be found in other structures, including the secretory granules of platelets or
lysosomes of other cell types (e.g., fibroblasts and glial cells) [20,25,43]. These observations
suggest that other enzymes, not only the mitochondrial ones, should also be involved
in polyP biogenesis. Reusch et al. proposed that a plasma membrane calcium pump
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(Ca2+-ATPase) from erythrocytes functions as a polyphosphate kinase due to its ATP/ADP-
polyphosphate transferase activities [57]. Some authors have also suggested that multiple
enzyme complexes may be involved in the process of polyP formation and that polyP
may be a byproduct of several enzymatic reactions [54]. Clarifying the issue of polyP
synthesis in eukaryotic cells or finding enzymes responsible for polyP production in other
intracellular locations is important to allow for further advances in polyP studies.

PolyP may not only act as a direct energy source but also as a phosphate store. For
instance, in bacteria, both ATP and polyP are important phosphoryl donors for NAD
kinase, which utilizes this polymer to yield NADP+ from NAD+; however, eukaryotic NAD
kinases use only ATP, suggesting another purpose of polyP in mammalian phosphate-
metabolism [58,59]. Indeed, recently, an interesting concept has emerged, in which polyP
is proposed as both an energy and phosphate source in the extracellular space. Purines
and their derivatives, ATP, ADP, and adenosine are important signaling molecules that
act through purinergic receptors. Nucleotides can be released from cells by microvesicles,
membrane channels, and transporters, or dying cells, and the extracellular adenosine is gen-
erated via adenine nucleotide hydrolysis by plasma membrane nucleotidases [60]. Müller
et al. hypothesized that polyP may also participate in extracellular nucleotide generation.
They found increases in extracellular ATP and ADP levels after polyP treatment of human
sarcoma osteogenic (Saos-2) cells [61]. Moreover, they underlined that incubation of Saos-2
cells with polyP leads to translocation of alkaline phosphatase (ALP) and adenylate kinase
(AK) to the cell membrane and further release of these enzymes outside of the cell in matrix
vehicles. Both of these enzymes are involved in the interconversion and dephosphorylation
of extracellular nucleotides. The increase in the ATP pool after polyP stimulation can both
be utilized in purinergic signaling or as an energy reservoir, especially in tissues that consist
of a large extracellular matrix in which only a few cells are embedded (e.g., bone and
cartilage) [53]. It would be interesting to further investigate how polyP influences the extra-
cellular purinergic system or whether it acts through purinergic receptors in other tissues. It
is well known that disruption to purinergic signaling contributes to the pathophysiologies
of multiple disorders in the immune system, vasculature, heart, kidneys, lungs, and the
brain [62]. Nevertheless, polyP influence has not been investigated in the context of Hunt-
ington’s disease, a multi-system disorder which comprises both malfunction of purinergic
signaling and mitochondrial dysfunction [63]— crucial polyP-associated metabolic events.

The collected findings highlight polyP as a multifunctional molecule that plays a
key role in maintaining proper cellular homeostasis; thus, deteriorations in its intra- or
extracellular levels may lead to the development of multiple pathologies. PolyP functions
in mitochondrial homeostasis and energetics are presented in Figure 2.
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Figure 2. PolyP plays several roles in mitochondria and cell bioenergetics. The polymer is synthe-
sized in mitochondria by ATP synthase, where it maintains calcium homeostasis and protects against
the formation of calcium phosphate precipitates. It also regulates the processes of mitochondrial
permeability transition and formation of mitochondrial permeability pores (mPTPores), thus main-
taining mitochondrial fitness. PolyP is also involved in the purinergic system and the generation of
extracellular nucleotides.

3. Regulatory Role of PolyP in Infection and Inflammation

During infection, bacterial cells must withstand various environmental stresses, includ-
ing changes in temperature, pH, or exposure to different components of the innate immune
system, e.g., antimicrobial peptides [64]. Interestingly, it has been found that factors such as
oxidative stress and nutrient limitations may upregulate bacterial polyP synthesis [13,65].
Moreover, Roewe et al. have recently demonstrated that the severity of sepsis induced by
E. coli infection varies depending on whether bacteria can or cannot synthesize polyP [66].
Mice infected with a wild-type E. coli strain capable of polyP synthesis displayed poor
survival rates. Survival improved in mice infected with an E. coli PPK-deficient strain and
those treated with PPX, an enzyme that degrades polyP. Furthermore, polyP effects appear
to be chain length-dependent. When authors injected bacteria together with chemically
synthesized long-chain polyP (which resembles bacterial polyP) into the peritoneal cavities
of mice, accelerated mortality was observed, while no significant difference in mortality
was found with co-injection of short-chain polyP and bacteria. The difference in the course
of sepsis was a result of a weakened myeloid cell response, in particular, an impaired
macrophage phagocytosis of bacteria co-injected with long-chain polyP.

Macrophages are the key components in host defense against bacterial infection. One
of the classification systems groups these cells into two subpopulations: M1 and M2
macrophages. Polarization to the M1 phenotype, the Classically Activated Macrophages, can
be driven by LPS and stimulates host defense response to infection. These macrophages are
characterized by high antigen presentation, high expression of proinflammatory cytokines,
and higher production of reactive nitrogen or oxygen intermediates [67]. Roewe’s study
showed that long-chain polyP can be internalized by macrophages and misdirect their
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polarization towards the M2 phenotype, the Alternatively Activated Macrophages that play
a role in wound-healing and display immunosuppressive features [68]. Macrophages
incubated with long-chain polyP showed lower transcription levels of M1 phenotype-
associated genes, such as iNOS, the transcript of which encodes inducible nitric oxide
synthase, which exerts a cytotoxic effect on microorganisms during infection [69], or
CXCL10, encoding a macrophage-attracting chemokine. Long-chain polyP, but not the
short-chain, induced CD206 protein expression, the marker of the M2 phenotype. Moreover,
long-chain polyP suppressed the transcript levels of MHC-inducing transcription factors
and subsequently reduced MHCII and costimulatory proteins CD80 and CD86 expression,
influencing macrophages’ antigen-presenting capacities (this effect, again, was not observed
with short-chain polyP). In fact, long-chain polyP modulated the expression of more
than 1800 genes regulated by LPS/TLR4 signaling and suppressed the expression of
hundreds of interferon-regulated genes in macrophages. In conclusion, the production of
polyP may be an evasion strategy for bacteria, allowing them to escape from host innate
immune responses.

The immunosuppressive actions of long-chain polyP are surprising when compared
to the often documented proinflammatory role of short-chain polyP [70–72]. Chrysan-
thopoulou et al. recently reported that short polyP activates neutrophils and stimulates the
release of neutrophil extracellular traps (NETs), which are known extracellular structures
that can trap, neutralize, and kill bacteria [73,74]. Studies on endothelial cells such as
HUVECs demonstrated that platelet-like polyP (with a length of around 70 Pi) enhances
the barrier permeability of endothelial cells (ECs) and stimulates the expression of adhesion
molecules, such as VCAM-1, ICAM-1, and E-selectin [71]. These molecules are engaged in
leukocyte recruitment and binding to ECs and their expression is up-regulated in response
to proinflammatory stimuli, such as cytokines or endotoxins [75]. Moreover, short-chain
polyP has been shown to amplify proinflammatory responses by binding to histone H4
and high mobility group box 1 (HMGB1) proteins, which are late mediators of inflamma-
tion. PolyP together with H4 and HMBG1 activates pro-inflammatory signaling pathways
through the EC surface receptors RAGE and P2Y1 and the subsequent NF-κB pathway [70].
In a recently published follow-up study, Rezaie’s laboratory demonstrated that platelet-like
polyP together with HMGB1 can also induce von Willebrand factor (VWF) release from
endothelial cells; however, the consequences of this interaction remain undetermined [76].
On the other hand, both studies also examined the influence of long-chain polyP on signal-
ing through EC surface receptors and collected data that showed that bacterial-like polyP
amplifies proinflammatory responses even more robustly.

Interesting data also exist showing polyP influence on viral infections. Lorenz et al.
reported that polyP displays cytoprotective and antiviral activities in HIV-1 infection. This
result may be related to the binding of polyP to both cellular and viral surfaces, hence
inhibiting virus adsorption [77]. A recent study by Ferrucci and colleagues demonstrated
that platelet-like polyP impairs SARS-CoV-2 infection and replication [78]. PolyP was found
to bind to the viral RNA-dependent RNA polymerase (RdRp), a key component of the
viral replication and transcription machinery, and to induce its proteasomal degradation.
PolyP also bound to the ACE2 receptor in human epithelial cells (hECs) and decreased
its abundance in a proteasome-dependent manner. Furthermore, in SARS-CoV-2-infected
hECs, polyP treatment reduced the transcript levels of proinflammatory cytokines IFN-γ,
IL-6, IL-10, IL-12, and tumor necrosis factor-α. The authors hypothesized that polyP may
act through the inhibition of the NF-κB pathway in epithelial cells and modulation of the
inflammatory cascades.

Taken together, the detailed mechanism of polyP action on the immune system is
complex and not fully understood. Even though bacterial and platelet-derived polyP are
homogenous in composition, polymers of different lengths appear to modulate distinct
signaling pathways and act through diverse intracellular mechanisms (as presented in
Figure 3). Thus, more studies seem to be necessary to clarify the connection between polyP,
inflammation, and host response to infection.
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Figure 3. PolyP impact on the immune system is chain length-dependent. Bacterial long-chain polyP
has an anti-inflammatory effect on myeloid cells, mainly macrophages, by downregulating the expres-
sions of genes associated with antigen processing and antigen presentation, inhibiting the production
and release of proinflammatory cytokines (e.g., CXCL10), and stimulating macrophage polarization
towards the anti-inflammatory M2 phenotype. On the other hand, platelet-like short-chain polyP
has proinflammatory activity, enhancing barrier permeability, upregulating the expression of the
receptors necessary for leukocyte recruitment, and stimulating the release of neutrophil extracellular
traps (NETs).

4. PolyP in Cancer

The first clues indicating polyP as an interesting factor in cancer biology came from
Arthur Kornberg’s and Richard A. Roth’s laboratories in 2003. They found that polyphos-
phates of various chain lengths regulate the activity of mTOR, an important kinase involved
in cell proliferation [79]. mTOR (mammalian target of rapamycin) signaling is commonly
activated in tumors and plays a regulatory role in tumorigenesis and cancer development.
It controls the pentose phosphate pathway responsible for the formation of pyrimidine
and purine rings in nucleotides, which are of high demand in cancer cells [80,81]. Roth
et al. demonstrated that polyP stimulates the activity of mTOR to phosphorylate its sub-
strate protein PHAS-I that regulates translation initiation and cell proliferation. This effect
was abrogated in engineered MCF-7 cells, a human breast cancer cell line expressing the
polyP-degrading PPX enzyme. Importantly, engineered cells were defective in growth and
showed reduced response to amino acid- or insulin-stimulated PHAS-I phosphorylation.
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PolyP levels have been found elevated in several primary tumor types, including
human bronchioloalveolar adenocarcinoma, invasive ductal adenocarcinoma, small in-
testine adenocarcinoma, prostate adenocarcinoma, and medulloblastoma [82]. Levels of
polyP in human myeloma cells (MCs) (polyP of approximately 75–80 Pi in length) are up to
20 times higher than in other human peripheral blood mononuclear cells. In MCs, polyP
concentrates in the nucleoli where it colocalizes with and inhibits the transcriptional activity
of RNA polymerase I [21]. Another study observed that nucleolar polyP levels in cancer
cells rise in response to cisplatin, one of the most widely used drugs in solid cancer treat-
ment. In these cancer cells, polyP has pro-apoptotic activity, increasing cisplatin-induced
cytotoxicity and subsequent stimulation of caspase-mediated apoptosis [83,84]. Anti-tumor
activity of polyP has also been described by Han and colleagues [85]. They found that
polyP shows anti-angiogenic activity and blocks melanoma cell metastasis. A mouse exper-
imental lung cancer model treated with intravenously delivered polyP had a significantly
reduced number of lung metastases, and this observation was attributed to the suppression
of tumor-induced neovascularization. PolyP blocks the interaction between bFGF (basic
fibroblast growth factor) and its surface receptor, which, in turn, inhibits bFGF-induced
endothelial cell capillary-like tube formation, thus preventing angiogenesis [85].

On the other hand, there are data indicating an important role for polyP in cancer-
associated thrombosis (CAT). CAT can lead to venous thromboembolism, a condition that
includes deep vein thrombosis and pulmonary embolism, which increases early mortality
in cancer patients [86,87]. It has been shown that polyP is a critical factor in prostate can-
cer (PC)-associated thrombosis [88]. Healthy prostate epithelial cells release extracellular
vesicles called prostasomes into the prostatic duct lumen. In cancer, during metastasis
formation, the transition from epithelial to invasive polarity allows PC cells to release
prostasomes to blood [89]. PC cells produce prostasomes that expose long-chain polyP
(from 200 to more than 1000 Pi) on their surface and this polyP triggers thrombin formation
in a factor XII-dependent manner, which contributes to CAT. The authors suggested that
interference with the polyP/FXII coagulation pathway may be safely utilized in antithrom-
botic therapies [90].

In a recently published study, Boyineni and colleagues convincingly demonstrated that
polyP may also act as a source of phosphate energy for cancer cells [82]. It is well known
that cancer cells derive energy mainly from glucose and aerobic glycolysis (the Warburg
effect). Boyineni et al. observed that polyP levels in brain cancer stem cells (also known
as brain tumor-initiating cells—BTICs) significantly decrease under glucose deprivation
conditions. In analogy with the previously mentioned Roth et al. study, here also the
authors engineered cancer cells to express the PPX enzyme, which severely impaired lung
cancer and BITC viability. When compared to healthy radial glial cells, the duration of ATP
consumption in BITCs was much longer, but shortened in cancer cells depleted of polyP,
indirectly suggesting that polyP is indeed utilized as a source of energy.

In summary, the role of polyP in cancer progression and tumorigenesis is still unclear.
Elevated levels of polyP in cancer cells remain in contrast to findings indicating that this
polymer has anti-tumor activity (Figure 4). Such data again suggest multiple regulatory
mechanisms that polyP may be involved in. Thus, more studies are needed to clarify polyP
joint interactions in cancerous cells and to generate mechanistic insights.
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Figure 4. PolyP plays a dual role in cancer. On the one hand, it can act pro-tumorigenically by
stimulating mTOR signaling or being utilized as a direct source of energy. Moreover, prostasomes of
prostate cancer expose polyP on the surface, leading to cancer-associated thrombosis (CAT). On the
other hand, polyP has been shown to block RNA polymerase I activity, reduce metastatic spread, and
inhibit angiogenesis. PolyP also induces death in cisplatin-treated cancer cells.

5. Perspectives and Conclusions

As presented in this review, numerous signaling pathways might be modulated by
polyP; however, we still lack full understanding of the broad effects of polyP on signaling
cascades. PolyP has been attributed multiple functions in eukaryotic cells, and, besides
activating different signaling pathways, this flexibility may also be linked to its binding
properties. PolyP can interact with specific proteins, most probably through ionic inter-
actions [38]. Thus, identifying PolyP-associated proteins, the so-called polyP-ome, may
not only shed light on the regulatory pathways with which polyP is involved but also
give hints about novel polyP roles that have not been described so far. Nevertheless, the
establishment of dedicated high-throughput analytical methods encounters many technical
problems. To date, only several studies have aimed to identify the polyP-ome (using pro-
tein microarrays and labeled polyP) and successfully found some novel polyP-associated
interactions [91,92] (the latter being a preprint). Furthermore, in addition to its ability to
bind proteins, polyP has been recently reported to be involved in polyphosphorylation [93].
Polyphosphorylation is a non-enzymatic, post-translational modification, in which polyP
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chains are covalently attached to lysine residues of proteins [94]. This might be yet another
important mechanism utilized by polyP to mediate various effects on cellular homeostasis.

Methods of polyP quantification also possess limitations (reviewed in depth by
Christ et al. [95]). Briefly, simple PAGE separation or dyes for polyP identification (e.g.,
polyP can be imaged using DAPI and measuring emission wavelengths at 560 nm) are
not accurate enough to assess precise chain length. On the other hand, more sophisticated
and powerful methods such as NMR or mass spectrometry allow for precise chain length
determination but are more complex and cannot reveal polyP localization in the cell. Novel,
enzymatic approaches (coupled with colorimetric Pi detection using either malachite green
or ascorbic acid) offer sensitivity in determining polyP concentration but work in a very
narrow range of polyP chain length or require careful sample preparation to avoid contam-
ination, which can markedly distort the results [96,97]. To date, there is no one universal
method for polyP quantification which would be well-suited for diversified applications.

Besides the complications in the investigation of polyP in basic scientific research,
polyP seems to be a molecule with a promising therapeutic potential. PolyP may reduce the
neurotoxicity caused by amyloid protofibrils or protect from Ca2+-induced mitochondrial
dysfunction and thus slow down the process of neurodegeneration [98]. Based on these
findings, this polymer might be an important agent during the onset of neurodegenera-
tive disorders, such as Alzheimer’s, Parkinson’s, or Huntington’s diseases. Potentially,
as presented earlier, polyP could also be utilized in therapies for tissue regeneration [99],
cardiovascular disorders [52], infections [100], or even cancer [101]. A growing body of lit-
erature is elucidating polyP’s involvement in various pathologies but many open questions
remain. Further research is needed to clarify the molecular mechanisms through which
polyP regulates cell metabolism and take advantage of polyP as a beneficial therapeutic.
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