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A B S T R A C T

The outbreak of COVID-19 caused by 2019–nCov/SARS-CoV-2 has become a pandemic with an urgent need for
understanding the mechanisms and identifying a treatment. Viral infections including SARS-CoV are associated
with increased levels of reactive oxygen species, disturbances of Ca++ caused by unfolded protein response
(UPR) mediated by endoplasmic reticulum (ER) stress and is due to the exploitation of virus's own protein i.e.,
viroporins into the host cells. Several clinical trials are on-going including testing Remdesivir (anti-viral),
Chloroquine and Hydroxychloroquine derivatives (anti-malarial drugs) etc. Unfortunately, each drug has spe-
cific limitations. Herein, we review the viral protein involvement to activate ER stress transducers (IRE-1, PERK,
ATF-6) and their downstream signals; and evaluate combination therapies for COVID-19 mediated ER stress
alterations. Melatonin is an immunoregulator, anti-pyretic, antioxidant, anti-inflammatory and ER stress mod-
ulator during viral infections. It enhances protective mechanisms for respiratory tract disorders.
Andrographolide, isolated from Andrographis paniculata, has versatile biological activities including im-
munomodulation and determining SARS-CoV-2 binding site. Considering the properties of both compounds in
terms of anti-inflammatory, antioxidant, anti-pyrogenic, anti-viral and ER stress modulation and computational
approaches revealing andrographolide docks with the SARS-CoV2 binding site, we predict that this combination
therapy may have potential utility against COVID-19.

1. Introduction

Viral diseases continue to emerge and represent a serious issue to
public health [1], Coronavirus is part of a family of enveloped viruses
with positive sense non-segmented single-stranded RNA genomes.
There are two human α-corona viruses, HCoV-229E and HCoV-NL63
and two β-corona viruses, HCoV-OC43 and HCoV-HKU1. Among these,
HCoV-NL63 and HCoV-HKU1 have been identified as SARS-CoV and
account for the recent outbreaks. These viruses are endemic in the
human populations, causing 15–30% of respiratory tract infections each
year [2]. In December 2019, a novel strain of the 2019-nCov/SARS-
CoV-2, a β-coronavirus, emerged in Wuhan, Hubei province, China.
This etiologic agent of this new lung disease, COVID-19 caused by
SARS-CoV-2, poses a global health emergency affecting millions of lives
worldwide [3,4]. Recent studies demonstrated the crystal structure of
CR3022, a neutralizing antibody isolated from a convalescent SARS
patient. This antibody targets a highly conserved epitope, distal from
the receptor-binding site, that enables cross-reactive binding between

SARS-CoV-2 and SARS-CoV [5] . On March 11, the COVID-19 outbreak
was characterized as a pandemic by the WHO [6]. As of April 2020, this
pandemic has taken the lives of ~250 k people and infected 3.5 M
individuals worldwide. In the US, ~1.2 M laboratory confirmed in-
fectious were reported including> 65 k deaths. There is an urgent need
for the development of an effective mechanism to treat and prevent
2019–nCov/SARS-CoV-2 outbreaks. In this review article, we provide
an indication of future research in order to understand the molecular
mechanism related to COVID-19 and possible drug targets to regulate
the impact of this viral infection.

2. COVID-19 and its pathogenesis

According to the Centers for Disease Control and Prevention (CDC),
people with COVID- 19 have had a wide range of symptoms ranging
from mild to severe illness and which may appear within 2–14 days
after exposure to the virus. The high risk of fatality due to COVID-19 is
a consequence of age-associated conditions, such as cardiovascular,
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pulmonary, and diabetic disorders as well as immune-compromised
conditions [7,8]. From the perspective of cell biology, COVID-19 can be
divided into three phases that correspond to different clinical stages of
the disease. The stages are as follows: i) Asymptomatic state (initial
1–2 days of infection). In this stage the inhaled virus binds to the re-
ceptor of angiotensin converting enzyme 2; (ACE2) on epithelial cells in
the nasal cavity and replicates. ii) Upper airway and conducting airway
response (next few days). The virus propagates and migrates down the
respiratory tract along the conducting airways, and a more robust in-
nate immune response is triggered. For about 80% of the infected pa-
tients, the disease will be mild and mostly restricted to the upper and
conducting airways. iii) Hypoxia, ground glass infiltrates and progres-
sion to ARDS (Acute Respiratory Distress Syndrome). Unfortunately,
about 20% of the infected patients will progress to stage 3 disease and
will develop pulmonary infiltrates and some of these will develop se-
vere disease. The pathological results of SARS and COVID-19 are diffuse
alveolar damage with fibrin rich hyaline membranes and a few multi-
nucleated giant cells [9,10].

3. Endoplasmic reticulum stress and corona virus

In eukaryotic cells, one of the largest organelles, the endoplasmic
reticulum (ER) is the site of synthesis and folding of membrane, se-
cretory proteins, lipids, sterols, and storage of free calcium [11]. Al-
terations of protein folding in the ER due to physiological stress such as
disturbances in redox, Ca++levels, glycosylation or other environ-
mental elements cause accumulation of misfolded proteins leading to
ER stress. The increased levels of reactive oxygen species (ROS) trig-
gered by ER stress activate not only proinflammatory signals but also
inflammasome formation, suggesting that ER stress exerts immunogenic
effects [12] and can be activated by excessive lipids or pro-in-
flammatory cytokines [13]. As a result, a series of signal transduction
cascades or an unfolded protein response (UPR) occurs. The hallmark of
the UPR is the expression of ER-resident chaperones, such as im-
munoglobulin heavy chain binding protein (BiP/GRP78) and glucose-
regulated protein 94 (GRP94). In addition, PERK, IRE-1, and ATF-6
serve as proximal sensors which regulate components that upregulate
the capacity of the ER to fold newly synthesized proteins and degrade
misfolded/unfolded proteins [14]. In addition, UPR is associated with
several major cellular activities including apoptosis, angiogenesis, au-
tophagy, the mitogen-activated protein (MAP) kinase pathways, innate
immunity, and pro-inflammatory response.

Accumulating evidence suggests that ER stress and sustained UPR
signaling are major contributors to the pathogenesis of several diseases,
including inflammatory disorders and viral infections [15] and can
increase the severity of these events [16]. Viruses may interact with the
host UPR to maintain an environment favorable for establishment of
persistent infection [17]. The mechanism is the imbalance of calcium
concentration by the expression of viroporins, small virally encoded
hydrophobic proteins that oligomerize in the membrane of host cells.
This leads to the formation of hydrophilic pores, and consequent de-
pletion of ER membrane due to the release of virions [18] which cause
ER stress in the host cells by generating large amounts of unfolded or
misfolded proteins [19].

It is well documented that the replication of corona virus occurs in
the cytoplasm and is strongly associated with ER and its transducers. In
brief, cells infected with SARS-CoV or cells overexpressing the SARS-
CoVS2 subunit showed increased levels of GRP94 (ER stress associated
gene) and GRP78 gene expression. Like GRP, a significant phosphor-
ylation of PKR and PERK has been observed in SARS-CoV infected cells
[20]. However, SARS-CoV is resistant to the antiviral activity of PKR in
vitro and PERK and responsible for eIF2 phosphorylation induced by
SARS-CoV. Therefore, studies on the UPR stress mediated ER are de-
cisive in elucidating the complicated issue of coronavirus host inter-
action. However, activation of ATF4 and CHOP promoter activities by
the accessory protein 3a of SARS-CoV leads to the activation of PERK

[21]. In terms of IRE-1 and its downstream effects, coronavirus infected
cells induce significant splicing of XBP1 mRNA but not at the protein
level. This may be due to the sustained translation attenuation by this
virus-induced eIF2 phosphorylation which blocks the translation of
XBP1 protein [22,23] In case of severe acute respiratory syndrome,
coronavirus (SARS-CoV) accessory viral protein binds to ATF6 domain
thus inducing proteolysis of ATF6. The cleaved DNA binding and
transcription activation domains of ATF6 then move from ER to the
nucleus [24]. These findings suggest that viruses may exploit their own
protein (s) to directly modulate UPR responses. Therefore, UPR in-
duction may modulate host anti-viral response and constitute a major
aspect of corona-virus-host interaction.

4. Impact of melatonin on viral infections

Melatonin exhibits a circadian rhythm in the blood and orchestrates
many physiologic changes [25,26]. It is involved in regulation of im-
mune function, the tumor microenvironment, and acts as an antioxidant
agent [27,28] and anti-pyretic agent [29]. A decreased level of mela-
tonin often occurs in the elderly and in conditions associated with high
susceptibility to severe viral infection which has a significant impact on
the mitochondrial metabolism and immune cells phenotype. Therefore,
the interactions of pineal melatonin with mitochondrial metabolism
provide an important point of impact for viral infections [30,31].
Though melatonin is not a viricidal, it likely has an indirect impact on
viral actions due to its anti-inflammation, antioxidation, and immune
enhancing features [32].

Several well-documented studies have shown that melatonin has a
protective role in infections induced by encephalitis virus due to its
activity in the central nervous system, associated with its capability to
regulate immune function [33]. Another study also confirmed its pro-
tective mechanism in bronchiolitis, a severe inflammatory lower re-
spiratory tract disorder mediated by RSV (Respiratory syncytial virus)
infection [34]. It is suggested that respiratory disorders induced by
many other human pathogens may result from an exuberant generation
of reactive oxygen species by inflammatory cells in response to infec-
tion [35]. A recent review article documented melatogenergic
pathway's role in viral infections, emphasizing influenza and COVID-19
infections. Therefore, melatonin has the potential to be a therapeutic
target of COVID-19 infection due to its anti-inflammation, anti-oxida-
tion, and immune enhancing properties [36].

5. Viral infection, melatonin and ER stress

Melatonin modulates ER stress and activates UPR response during
viral infections. Due to its antioxidant properties, it regulates ER stress
and controls autophagic and apoptotic processes. An earlier study
showed that melatonin reduces macrophage inflammation by control-
ling the ER stress associated signaling pathways [37]. During RHDV
(rabbit hemorrhagic disease virus) infection, melatonin induced a de-
crease in the autophagy associated with this infection and inhibited
RHDV RNA replication. The molecular mechanism involved an inter-
play of RHDV-induced autophagy with oxidative stress, ER stress and
apoptosis [38]. A recent study illustrated that melatonin treatment at-
tenuated viral myocarditis via sustaining cardiomyocyte viability, re-
pressing mitochondrial dysfunction and inhibiting ER stress [39]. The
rationale for using melatonin in viral diseases is supported by its cap-
ability to modulate UPR during viral infection due to its immune en-
hancing actions, anti-inflammatory and antioxidant properties.

6. Impact of andrographolide and viral infections

Andrographolide is a lactone (bicyclic diterpenoid) derived from
Andrographis paniculata [40]. Like melatonin, it has several biological
activities including anti-carcinogenic [41–44], anti-inflammatory
[45,46], immunomodulator [47], antioxidant [48–50], anti-pyrogenic
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[51] and anti-viral properties [52–57]. Andrographolide induces ER
stress leading to cancer cell death due to apoptosis through the in-
duction of ROS [48], which can inhibit virus-induced carcinogenesis.
Additional inhibitory effects of andrographolide include that of cell
migration, invasion, matrix metalloproteinase expression, anti-angio-
genesis, autophagy, and dysregulation of signaling pathway has been
reported for inflammatory disorders including cancer [41,50,58,59].
Upregulation of CTLs and NK cell activity has been found after andro-
grapholide treatment [47] which demonstrates its antiviral properties.
Oral administration of the leaves of A. paniculata is effective in the
treatment of upper respiratory tract infections, liver toxicity and a
variety of other ailments [60]. Moreover, several clinical trials de-
monstrate its positive effects on infectious disease, autoimmune dis-
orders and it has a potential effect against viral defenses [44,50,52].
Moreover, it exerts anti-viral activity towards a number of different
viruses including HIV, hepatitis B, herpes simplex, influenza, hepatitis
C, chikungunya virus (CHIKV), Epstein-Barr virus (EBV), human pa-
pillomavirus (HPV) dengue virus (DENV) and others [51,56,57,61–72].
Recent studies showed that andrographolide is a potential inhibitor of
the main protease of SARS-CoV-2 through in silico studies, such as
molecular docking, target analysis, toxicity prediction and ADME pre-
diction (absorption, distribution, metabolism, and excretion) [57]. The
molecular mechanisms of the antiviral properties of andrographolide
are as follows: 1). Enhanced H1N1 virus-I, induced cell death through
the inhibition of viral-induced activation of the retinoic acid-inducible
gene I (RIG-I)-like receptors (RLRs) signaling pathway [53] and di-
minished lung virus titer through its immune-modulatory activity [51]
2). Alteration of ER stress mediated UPR pathway on virus replication
pathway [55,73]. 3) Induction of heme oxygenase 1 (HO-1) expression
[74,75]. 4) Involvement of multiple pathway including NFkβ and JAK-
STAT. 5). Inhibition of protease activity. 6). Reduction of antigen ex-
pression. 7). Inhibition of glycoprotein expression. 8). Suppresses lytic
protein expression [56].

Cytokine storm stimulated by influenza virus infection is thought to
be an important event in the infection of highly pathogenic influenza
virus including corona virus. It has been reported that SC75741, an
inhibitor of NF-kβ signaling pathway, which plays a pivotal role in
cytokine expression, has a promising anti-influenza capacity in vivo and
in vitro. One study demonstrated that delayed treatment of andro-
grapholide (initiated at 4 days post infection) protects mice infected
with a lethal dose of influenza combined with CL-385319, a potent

influenza entry inhibitor which has been proved to suppress H5N1 re-
plication in vitro [54]. With potent antiviral activity and potentially
defined mechanism of action, andrographolide may warrant further
evaluation as a possible therapy for COVID-19.

7. Present and future treatment aspects of corona virus

Current antiviral drugs only have a single target. Moreover, these
drugs focus on antagonism of the invasion and replication of the virus,
not virus recognition and activation of the immune system. Moreover,
high mutation rates of influenza virus limit the application of the classic
anti-influenza agents targeting viral particles.

Several attempts and collaborative studies are underway to discover
and develop full-human neutralizing antibodies targeting SARS-CoV-2
to potentially prevent or treat CoVID-19 [76–80]. Antimalarial drugs
such as Chloroquine and Hydroxychloroquine derivatives are being
used in emergency cases; however, they are not suitable for patients
with conditions such as diabetes, hypertension and cardiac issues [81].
Social isolation is currently the best way to manage the spread of
COVID-19 in the absence of an effective treatment. It is revealed that
Remdesivir, a drug thought to be one of the best prospects for treating
COVID-19, has severe side effects, leading to its discontinuation in trial.
Therefore, a novel combination therapy drug with immunomodulators
might be a promising therapeutic approach for COVID-19.

A recent study screened a medicinal plant database containing
32,297,216 potential anti-viral phytochemicals and selected the top
nine with the potential to inhibit SARS-CoV-2 11 3CLpro 217 activity
and hence virus replication [82]. The current review reveals that an-
drographolide has a broad spectrum of anti-viral properties. The in-
tegrity of the vascular endothelial barrier is crucial in the im-
munoregulation within alveoli.

Our previous study demonstrated that andrographolide suppressed
angiogenic signaling and Akt activation and a recent publication re-
ported that melatonin inhibits VEGF (aggravates edema and the ex-
travasation of the immune cells from blood vessels) expression in vas-
cular endothelial cells [32,83]. In the ICU, deep sedation is associated
with increased long-term mortality, and the application of melatonin
reduces sedation use and the frequency of pain, agitation, and anxiety.

The rationale of combination therapeutic approach for the treat-
ment of COVID-19 is as follows: 1) Andrographolide is a plant derived
biocomponent and melatonin is a natural peptide hormone. 2) Both

Fig. 1. Schematic representation of the modulation of the UPR arms on SARS-CoV-2 infection illustrating the potential benefits of melatonin and andrographolide as
an adjuvant use of melatonin and andrographolide. We postulated that genetic material transmitted from SARS-CoV-2 causes elevation of ER stress master regulator
(GRP-78) and ER stress transducers IRE-1, PERK and ATF-6. The combined anti-inflammatory, anti-oxidative, anti-pyrogenic and immunomodulatory properties of
andrographolide and melatonin could provide a useful adjuvant therapy for COVID-19 by altering ER stress signals.
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andrographolide and melatonin have significant antiviral properties. 3)
Both compounds have anti-inflammatory, antioxidative and im-
munomodulatory actions (Fig. 1). 4) Melatonin has a protective role in
infectious disease including many virus-related conditions [30]. 5) Both
compounds impact the UPR signaling pathways by inhibiting the ER
stress transducers (Fig. 1). 6) Melatonin has favorable safety profile
even at remarkably high doses. 7) Both drugs are readily available at a
low cost. However, previous reports of adverse reactions to andro-
grapholide in a phase I clinical trial [71] suggests that a combination
therapy of andrographolide and melatonin could unveil a potentially
useful treatment for COVID-19. Melatonin has been shown to protect
against the toxicity of a variety of drugs and toxins. This may increase
the efficacy of the combined therapy.
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