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The neuroprotective mechanisms and 
effects of sulforaphane
Eric A Klomparens1, Yuchuan Ding1,2

Abstract:
Sulforaphane (SFN) is a phytochemical found in cruciferous vegetables. It has been shown to have 
many protective effects against many diseases, including multiple types of cancer. SFN is a potent 
activator of the nuclear factor erythroid 2‑related factor 2 (Nrf2) antioxidant response element (ARE) 
genetic pathway. Upregulation of Nrf2‑ARE increases the availability of multiple antioxidants. 
A substantial amount of preclinical research regarding the ability of SFN to protect the nervous 
system from many diseases and toxins has been done, but only a few small human trials have 
been completed. Preclinical data suggest that SFN protects the nervous system through multiple 
mechanisms and may help reduce the risk of many diseases and reduce the burden of symptoms 
in existing conditions. This review focuses on the literature regarding the protective effects of SFN 
on the nervous system. A discussion of neuroprotective mechanisms is followed by a discussion of 
the protective effects elicited by SFN administration in a multitude of neurological diseases and toxin 
exposures. SFN is a promising neuroprotective phytochemical which needs further human trials to 
evaluate its efficacy in preventing and decreasing the burden of many neurological diseases.
Keywords:
Antioxidant, autism spectrum disorder, broccoli sprouts, epilepsy, isothiocyanate, neurodegenerative 
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Introduction

Sulforaphane (SFN) is a phytochemical 
whose precursor glucoraphanin is 

f o u n d  i n  c r u c i f e r o u s  v e g e t a b l e s , 
with the highest concentrations in 
broccoli sprouts.[1] SFN belongs to the 
group of plant‑derived compounds 
called isothiocyanates.  It  is known 
for a being a powerful inducer of the 
nuclear factor erythroid 2‑related factor 
2 (Nrf2)‑antioxidant response element (ARE) 
pathway which plays a major role in 
upregulating cellular defenses to oxidative 
stress.[2] SFN has been studied intensely 
regarding its ability to decrease the risk 
of various cancers and reduce the damage 
associated with varying forms of oxidative 
stress.[3]

More recently, a variety of preclinical 
research regarding the role of SFN in 
neuroprotection has been conducted with 
very promising results. Only a few human 
trials regarding the protective effects of 
SFN in the nervous system have been done; 
however, SFN has very strong antioxidant 
and anti‑inflammatory properties which 
allow it to dramatically reduce cytotoxicity 
in the nervous system, with apparently 
very little toxicity of its own within the 
therapeutic range. [4] Animal studies 
suggest that SFN supplementation could 
be disease‑modifying for many common, 
debilitating central nervous system (CNS) 
diseases including Alzheimer’s disease, 
Parkinson’s disease, epilepsy, stroke, and 
others.

To fully assess the research that has been 
completed regarding the neuroprotective 
effects of SFN, a literature search was 
done using MEDLINE for relevant articles 
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published as of January 2019. The literature search 
included the following keywords: SFN, neuroprotection, 
neurodegeneration, nervous system, neuron, brain, 
neurogenesis, and Nrf2. Resulting articles were 
reviewed for relevance to the topic of neuroprotection. 
The dates of included publications range from 2004 to 
2018. This review focuses on the research that has been 
completed regarding the neuroprotective properties of 
SFN in various disease states and toxin exposures. The 
mechanisms underlying SFN’s protective properties will 
be discussed first, followed by the effects seen in various 
disease models.

Mechanisms of Neuroprotection

SFN is a well‑known powerful inducer of the Nrf2‑ARE 
pathway, which has been coined the “guardian of 
redox homeostasis.”[5,6] The activation of the Nrf2‑ARE 
pathway leads to upregulation of many downstream 
products involved in protection against oxidative stress, 
including NAD(P)H quinone oxidoreductase 1, heme 
oxygenase 1, glutathione (GSH) peroxidase 1,[7] and 
gamma‑glutamylcysteine synthetase, an important 
rate‑limiting enzyme which controls the rate of GSH 
synthesis.[8] The adequate availability of reduced GSH 
is vital to avoid the damage induced by free radicals.[8] 
SFN increases GSH release by up to 2.4‑fold in cultured 
astrocytes[8] and has been shown to reduce oxidative 
stress in multiple disease states in cultured cells and 
animal models.[9‑14] A brief study in humans revealed 
that SFN increases the amount of GSH in the brain after 
7 days of administration, which provides evidence that 
the antioxidant pathways activated by SFN are present 
in humans.[15] The Nrf2 pathway is vital for many of 
SFN’s protective effects, as evidenced by a lack of 
neuroprotection from multiple toxins when SFN is given 
with an inhibitor of gamma‑glutamylcysteine synthetase[16] 
or in Nrf2‑knockout mice.[17,18] Nrf2‑ARE plays a vital role 
in the protective effect of SFN against many diseases, 
including Parkinson’s disease, neuropathy, Friedrich’s 
ataxia, stroke, and Alzheimer’s disease.[19‑23]

Besides its promotion of antioxidant defenses, SFN also 
significantly lessens inflammatory responses to pathologic 
states, thus reducing the amount of damage done due to 
the body’s immune response.[24] SFN reduces damage to 
neurons mediated by microglia by promoting polarization 
of microglia from the M1 to the anti‑inflammatory 
M2 type,[25,26] thus down regulating the mRNA and 
proteins levels of multiple inflammatory mediators, 
including tumor necrosis factor‑α, interleukin (IL)‑1 β, 
IL‑6, cyclooxygenase 2, and inducible nitric oxide 
synthetase.[5,11,24,27,28] Furthermore, SFN decreases the 
activation of multiple mitogen‑activated protein kinases 
and other inflammatory mediators, including nuclear 
factor κB, RIPK3, and MLKL, resulting in reduced 

neuronal apoptosis and necrosis.[24] Interestingly, when 
the immune system is needed such as when cancer is 
present, however, SFN inhibits the ability of glioblastoma 
multiforme to create a supportive immunosuppressed 
environment by disallowing the transformation of 
monocytes into myeloid‑derived suppressor cells.[29] SFN 
also reduces cleavage of caspase‑1 and caspase‑3,[12,30‑33] 
increases the production of the anti‑inflammatory 
cytokines IL‑4 and IL‑10,[25,34] and reduces the amount 
of gliosis, apoptosis, and necrosis in response to 
toxins.[11,17,23,27,31,35,36] The reduction of neuroinflammation 
plays a prominent role in protecting against many toxins, 
as well as neuronal damage associated with Alzheimer’s 
disease, Parkinson’s disease, epileptic seizures, cerebral 
infarction, hepatic encephalopathy, Huntington’s 
disease, and spinal cord injury.[9‑11,17,25,26,30,37,38] Oxidative 
stress and inflammation are major causes of cellular 
damage in a vast array of neurological diseases, and so 
by reducing both of these factors, SFN has major promise 
for helping protect against this damage.

Autophagy, a process used by cells to degrade damaged 
organelles and harmful proteins,[19] is also upregulated 
by SFN in neurons.[19,23,39,40] One study found that 
the promotion of autophagy by SFN is partially 
dependent on the Nrf2‑ARE pathway, as indicated by 
Nrf2‑knockout mice expressing fewer autophagy genes 
as well as the rescue of this expression by infection with 
an Nrf2‑expressing lentivirus.[19] However, a separate 
study found that Nrf2 knockdown did not influence 
autophagy.[40] SFN produces oxidative stress itself, 
which is necessary for the upregulation of autophagy, 
evidenced by a lack of this upregulation when neurons 
are co‑treated with SFN and the potent antioxidant 
N‑acetyl‑l‑cysteine.[40] The upregulation of autophagy 
by SFN plays a role in its neuroprotection in many 
neurodegenerative diseases by increasing the breakdown 
of the harmful proteins that characterize these diseases, 
including Alzheimer’s disease,[19] Parkinson’s disease,[23] 
and prion diseases.[39]

SFN also protects mitochondrial function in neurons.[22,41‑44] 
Neurons, which are highly metabolically active and rely 
on oxidative phosphorylation to keep up with energy 
demands, depend on healthy mitochondria.[43] The 
Nrf2‑ARE pathway activates multiple genes which 
promote mitochondrial biogenesis, protect the function 
of mitochondrial complex I, II, and IV, and inhibit the 
decrease in adenosine triphosphate (ATP) generation 
caused by toxins.[42] The upregulation of antioxidant 
defenses by the Nrf2‑ARE pathway also works to 
protect the mitochondria from damage.[43] Mitochondrial 
protection plays a role in reducing damage due to epileptic 
seizures,[44] chemotherapy‑induced neuropathy,[5] 
models of Huntington’s disease,[42] neurodegenerative 
diseases,[43] and carbon monoxide exposure.[41]
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Neurogenesis, the production of new neurons 
from neural stem cells, is critically important for 
learning and memory, and it is dysregulated in many 
neurodegenerative diseases.[3] SFN increases neuronal 
expression of brain‑derived neurotrophic factor, which 
promotes neuron generation[3] and upregulates Wnt 
signaling in neural stem cells, which then increases stem 
cell proliferation and their differentiation into neurons.[45]

Neuroprotection in Disease and Toxin 
Exposure

Table 1 provides a tabular view of the major evidence 
for the neuroprotective effects of SFN, categorized by 
disease.

Neurodegenerative Diseases

SFN has many potential benefits in preventing and 
modifying the course and symptom burden of multiple 
neurodegenerative diseases. In the brains of transgenic 
mouse models of Alzheimer’s disease, SFN reduces 
the amount of amyloid beta (Aβ) and phosphorylated 
tau proteins as well as their aggregation.[9,46] It also 
reduces memory deficits in mouse models.[9,46] The 
degradation of abnormal protein aggregates is likely 
promoted by the pro‑autophagy pathways activated 
by SFN.[19] The oxidative stress that the aggregated 
proteins cause in Alzheimer’s disease is also reduced 
with SFN supplementation.[9,46,47] SFN in a toxin‑induced 
Alzheimer’s mouse model led to sparing of cholinergic 
neuron loss in the hippocampus and medial septal 
region of the brain.[48] SFN also protects cultured neural 
cells from the toxicity of methylglyoxal, a precursor 
of advanced glycation end products (AGEs) which 
is associated with Alzheimer’s disease.[12] Neural cell 
death due to Aβ exposure is also reduced with SFN 
supplementation by the activation of proteasomes.[49] 
Similarly, SFN may also prevent or slow the process of 
normal brain aging and memory problems.[50] Memory is 
protected by SFN when animals are exposed to various 
toxins, including streptozocin,[31] MG132 (an inhibitor of 
proteasomes),[50] and scopolamine.[51]

Parkinson’s  disease also benefi ts  from SFN 
administration. In mouse models of Parkinson’s disease 
induced by various neurotoxins, including rotenone,[23] 
6‑hydroxydopamine,[32,36,52] 5‑S‑cysteinyl dopamine,[53] 
and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine,[17] SFN 
administration protects neurons and reduces neuronal 
cell death of nigrostriatal dopaminergic neurons.[23,32,52] 
SFN also reduces motor deficits in toxin‑induced animal 
models.[23,32] Brain slice culture of rat nigrostriatal area 
also shows protection from toxin‑induced Parkinson’s 
damage.[54] This protection is thought to be dependent on 
Nrf2 activation, with antioxidation and autophagy both 

participating in reducing damage.[23,32,55] SFN may also 
protect cells from damage in prion diseases by activating 
autophagy to degrade the misfolded proteins.[39] 
Furthermore, in animal models of Huntington’s disease, 
SFN reduces striatal damage, decreases neuron death, 
and improves mitochondrial function.[27,42] SFN has a 
protective role in many neurodegenerative diseases 
that do not have any known cures, which makes it a 
quintessential agent for nervous system health. Research 
in humans is lacking, however, so its ability to decrease 
the risk of neurodegenerative diseases is unknown.

Stroke and Injury

Hypoxic‑ischemic injury, hemorrhage, and traumatic 
spinal cord injury also cause great amounts of damage to 
the nervous system, including the primary event as well as 
the secondary damage due to the resulting inflammatory 
reaction and oxidative stress from reperfusion.[30] In 
hypoxic‑ischemic injury such as infarction, SFN pre‑ and 
co‑treatment reduces infarct volume and improves the 
neurological function in animals with induced infarcts.[30] 
Protection is also seen in cultured neurons exposed to 
ischemia.[33,56] The same appears to be true for immature, 
developing nervous systems in the hypoxic conditions 
resulting from chronic placental insufficiency as well 
as infarct, with SFN administration reducing the loss of 
white matter, improving neurological function,[57] and 
decreasing delayed neuronal cell death.[56] Reduction 
in multiple inflammatory markers and immune 
cell activation is also seen with SFN use in ischemic 
injury.[30,57,58] In the setting of intracerebral hemorrhage, 
SFN also improves neurological function[20] and decreases 
the amount of damage due to free hemoglobin by 
inducing haptoglobin production in the brain.[56,59]

SFN is also protective in spinal cord injury in multiple animal 
models, including traumatic, contusive, and compressive 
cord injury models.[38,60,61] Reductions in contusion volume, 
increased viable axons caudal to the lesion, and decreased 
neuronal cell death result from SFN administration.[38,60,61] 
Improvements in motor function and coordination are 
also seen with SFN use in spinal cord‑injured animals.[38,60] 
The same is true in traumatic brain injury in mice and rats, 
with SFN administration leading to decreased neuronal cell 
death, decreased contusion volume, and improvements in 
neurological function.[18]

Epilepsy

Epileptic seizures damage neurons by inducing oxidative 
stress in seizure locations.[10] In animal models, SFN 
administration, when combined with the anti‑oxidant 
N‑acetylcysteine, reduces the frequency of seizures, 
improves cognitive function, and decreases hippocampal 
cell death.[10] Low‑dose SFN alone also potentiates the 
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Contd...

Table 1: Summary of major findings related to the neuroprotective effects of sulforaphane in various neurologic 
disease states
Topic Article Model Effect
Neurodegeneration
AD Hou et al., 2018; Lee et al., 

2018
Mouse transgenic AD Reduced amount of Aβ and phosphorylated 

tau and their aggregation in the brain; reduced 
memory deficits

Zhang et al., 2014 Mouse aluminum and 
D‑galactose‑induced AD

Reduced cholinergic neuron loss in hippocampus 
and septum

Angeloni et al., 2015 Cultured neurons with methylglyoxal Reduced cell death
Park et al., 2009 Cultured neurons with Aβ Reduced cell death

Memory Wang et al., 2016 Rat streptozotocin‑induced DM Reduced apoptosis of hippocampal neurons; 
reduced memory impairment

Sunkaria et al., 2018 Mouse MG132 exposure Protection against loss of spatial memory and 
memory consolidation

Lee S et al., 2014 Mouse scopolamine exposure Protection against memory loss; increased level 
of ACh in hippocampus

PD Zhou et al., 2016 Mouse rotenone‑induced PD Improved locomotor activity; reduced 
dopaminergic neuron loss in brain

Morroni et al., 2013 Mouse 6‑hydroxydopamine‑induced 
PD

Improved motor coordination; reduced neuron 
apoptosis

Morroni et al., 2018; Deng 
et al., 2012

Mouse 6‑hydroxydopamine‑induced 
PD

Reduced dopaminergic neuron loss

Vauzour et al., 2010 Cultured cortical neurons with 
5‑S‑cysteinyl‑dopamine

Reduced neuron loss

Jazwa et al., 2011 Mouse MPTP‑induced PD Reduced loss of nigral dopaminergic neurons
Siebert et al., 2009 Nigrostriatal culture of rat brain 

exposed to 6‑hydroxydopamine
Reduced neuron loss

Prion diseases Lee JH et al., 2014 Human neuroblastoma cells 
exposed to PrP

Reduced cell death

HD Luis‑García et al., 2017 Rat quinolinic‑acid‑induced HD Reduced mitochondrial dysfunction
Jang et al., 2016 Mouse 3‑NP‑induced HD Improved neurological behavior; reduced animal 

death; reduced neuron loss
Stroke and injury Yu et al., 2017 Rat 60 min occlusive injury Improved neurological function scores; reduced 

infarct volume
Wu et al., 2012 Cultured rat cortical neurons 1 h 

glucose‑oxygen deprivation
Reduced cell death and injury

Soane et al., 2010 Cultured primary mouse immature 
hippocampal neurons exposed to 
oxygen‑glucose deprivation

Reduced delayed neuronal death

Soane et al., 2010 Cultured primary mouse immature 
hippocampal neurons exposed to 
hemin

Reduced neuron loss

Black et al., 2015 Rat surgically‑induced IUGR Improved neurocognitive function in offspring; 
protection against loss of white matter and 
hippocampal neurons in offspring

Yin et al., 2015 Rat induced basal ganglia 
hemorrhage

Improved neurological function

Zhao et al., 2009 Mouse and rat induced ICH Reduced neuron damage
Mao et al., 2011 Mouse compressive SCI Improved locomotor function; reduced neuron loss
Wang et al., 2012 Rat mechanical SCI Reduced contusion volume; improved motor 

coordination
Benedict et al., 2012 Rat contusive SCI Improved locomotor function; increased 5‑HT axons
Hong et al., 2010 Mouse and rat TBI Improved neurological function; reduced 

contusion size; reduced neuron loss
Epilepsy Pauletti et al., 2017 Rat electrically‑induced epilepsy, 

co‑treatment with N‑acetylcysteine
Reduced frequency of seizures; reduced 
hippocampal neuron loss; improved cognitive 
function

Socała et al., 2017 Mouse electrically‑induced seizure Potentiation of anti‑convulsant effect of 
carbamazepine; at high concentrations, caused 
reduced seizure threshold

Carrasco‑Pozo et al., 2015 Mouse epilepsy and SE models Increased ATP production; anticonvulsant effect
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anti‑seizure effects of carbamazepine, thus increasing the 
seizure threshold.[62] SFN also raises the seizure threshold 
to protect against seizure occurrence.[44] High‑dose 
SFN, however, can decrease the seizure threshold.[62] 
The administration of SFN in status epilepticus reduces 
lipid peroxidation in the hippocampus by protecting 
mitochondrial function and thus allowing the generation 

of more ATP in the energy‑starved state induced by 
prolonged seizure.[44]

Diabetes and Neuropathy

AGEs are well‑known neurotoxins that form due 
to high glucose concentrations as seen in diabetes 

Table 1: Contd...
Topic Article Model Effect
Diabetes and 
neuropathy

Negi et al., 2011 Cultured peripheral neurons Improved conduction velocity and blood flow
Negi et al., 2011 Rat streptozocin‑induced DM Improved pain behavior
Yang et al., 2018 Mouse oxaliplatin‑induced 

neuropathy
Improved pain sensation; improved mitochondrial 
function in DRG

Di et al., 2016 Rat nitroglycerin‑induced 
hyperalgesia

Reduced tactile threshold

Wang et al., 2016 Rat streptozocin‑induced DM Reduced apoptosis of hippocampal neurons; 
reduced memory impairment

Ren et al., 2018 Mouse streptozocin‑and high 
fat diet‑induced DM‑associated 
retinopathy

Improved ONL thickness; reduced retinal cell 
apoptosis

Psychosis Shirai et al., 2015 Mouse PCP‑induced model of 
schizophrenia

Improved cognitive function

Mas et al., 2012 Human dopaminergic 
neuroblastoma cells exposed to 
antipsychotic medications and 
dopamine

Reduced cell death

Shiina et al., 2015 Human patients with schizophrenia Improved accuracy component of one card 
learning task

GBM Kumar et al., 2017 Cultured human monocytes in 
glioma‑conditioned media

Increased mature dendritic cell development; 
reduced harmful monocyte transformation

Friedrich’s ataxia Petrillo et al., 2017 Cultured frataxin‑deficient motor 
neurons

Increased neurite number and amount of 
extension

Hepatic 
encephalopathy

Hernandez‑Rabaza et al., 
2016

Rat ammonia‑induced 
encephalopathy

Improved learning; improved motor coordination

Hernandez‑Rabaza et al., 
2016

Rat ammonia‑induced 
encephalopathy

Improved spatial learning

Herpes encephalitis Schachtele et al., 2012 Mouse HSV encephalitis Reduced neuronal damage; reduced 
neuroinflammation

ASD Singh et al., 2014 Human men with ASD Improved measures of aberrant behavior, social 
responsiveness, social interaction, and verbal 
communication

Bent et al., 2018 Human children with ASD Improved measures of social responsiveness
Toxins Bi et al., 2017 Rat carbon monoxide exposure Improved mitochondrial function; reduced 

hippocampal neuron damage
Innamorato et al., 2008 Mouse LPS exposure Reduced inflammatory markers in brain
Townsend et al., 2017 Mouse LPS exposure Reduced inflammatory markers in hippocampus
Dwivedi et al., 2016 Rat okadaic acid exposure Improved memory; reduced neuron apoptosis in 

cortex and hippocampus
Wang et al., 2013 Zebrafish larvae cadmium exposure Reduced olfactory tissue damage
Ishihara et al., 2012 Cultured rat hippocampus exposed 

to TBT
Reduced cell death

Chang et al., 2010 Cultured rat spinal cord exposed to 
glutamate

Reduced glutamate‑associated neuronal damage

Shavali et al., 2008 Human neuroblastoma cells 
exposed to arsenic and dopamine

Reduced cell death

Pearson et al., 2016 Cultured mouse neurons exposed to 
various neurotoxins

Reduced biochemical damage

Aβ: Amyloid β, AD: Alzheimer’s disease, ACh: Acetylcholine, ASD: Autism spectrum disorder, DM: Diabetes mellitus, GBM: Glioblastoma multiforme, HD: Huntington’s disease, 
HSV: Herpes simplex virus, ICH: Intracerebral hemorrhage, IUGR: Intrauterine growth restriction, LPS: Lipopolysaccharide, MPTP: Methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine, 
ONL: Outer nuclear layer, PCP: Phencyclidine, PD: Parkinson’s disease, PrP: Prion protein, SCI: Spinal cord injury, SE: Status epilepticus, TBI: Traumatic brain injury, 
TBT: Tributyltin, 3‑NP: 3‑nitropropionic acid, DRG: Dorsal root ganglion, ATP: Adenosine triphosphate, 5‑HT: 5‑hydroxytryptamine (serotonin)
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mellitus (DM) and can cause peripheral neuropathy, 
cognitive dysfunction, and retinal damage.[12,28,63] In 
cultured peripheral neurons, SFN improves multiple 
parameters of AGE‑induced neuronal damage, 
including the normalization of conduction velocity 
and blood flow.[28] In animal models of DM‑induced 
neuropathy, pain behavior is lessened with SFN 
administration.[28] Protection from neuropathy due 
to other causes, such as the chemotherapeutic drug 
oxaliplatin‑ and nitroglycerin‑induced trigeminal 
nerve pain, is also conferred by SFN.[22,64] In the 
CNS, SFN prevents AGE formation[65] and prevents 
memory dysfunction in DM animal models.[31] Retinal 
degeneration due to AGEs is also reduced with SFN 
administration.[63] Multiple mechanisms are at play in 
protection from AGE‑induced damage, including the 
induction of thioredoxin,[63] increased generation of 
GSH,[12] decreased cleavage of caspase‑3,[31] and induction 
of the detoxifying glyoxalase‑1[12] which decreases AGE 
formation.[65]

Psychosis

The role of SFN in psychotic disorders is multifaceted 
and not yet fully elucidated. Both pre‑ and post‑exposure 
administration of SFN in animals exposed to 
phencyclidine, a psychosis‑inducing agent, reduces 
damage to the prefrontal cortex and improves cognitive 
dysfunction.[66] The Nrf2 gene also has a genetic association 
with cognitive impairments in schizophrenic patients, 
thus implying that the Nrf2 pathway and SFN may 
play a key role in psychosis in humans.[66] Furthermore, 
treatment with antipsychotic drugs including haloperidol, 
risperidone, and paliperidone causes neuronal damage 
due to the formation of oxidative stress.[14] SFN reduces 
this oxidative stress in dopaminergic neurons and thus 
may prevent some of the untoward effects associated 
with the treatment of psychotic disorders.[14] A small 
study of seven human patients with schizophrenia 
found that 8 weeks of SFN administration resulted in 
significant improvement in one of the three components 
of a test assessing working memory, but the study size 
may have limited its power to find other significant 
improvements.[1]

Other Diseases

As if the above protective effects are not enough, 
SFN also protects against neuronal damage in a 
variety of other diseases. Damage due to oxidative 
stress is reduced in models of Friedreich’s ataxia, 
with SFN leading to an increased number of neurites, 
indicating increased plasticity.[21] As briefly discussed 
previously, SFN may have a role in upsetting the 
immunosuppressed environment that protects 
glioblastoma multiforme.[29] In hepatic encephalopathy 

in animals, SFN lowers the inflammatory response to 
hyperammonemia and normalizes cognitive function 
and coordination.[25,26] SFN administration also reduces 
neuronal damage induced by oxidative stress in mice 
with herpes encephalitis.[7] Research regarding SFN use 
in autism spectrum disorder (ASD) is one area where 
some human studies have been done. A randomized 
controlled trial in human men with ASD revealed that 
18 weeks of SFN administration improves multiple types 
of behavior, including reducing aberrant behaviors by 
34%, increasing social responsiveness by 17%, as well as 
improving social interaction and verbal communication 
behaviors.[67] A small study in children with ASD had 
similar results, with 12 weeks of SFN administration 
resulting in significantly improved social responsiveness, 
although this study found only a nonsignificant 
improvement in aberrant behavior.[68] With such a wide 
array of disease protection, SFN may be utilized in many 
ways to help reduce nervous system disease burden.

Toxins

Many neurotoxins exist with a variety of unique 
mechanisms of toxicity. The neuroprotection conferred 
by SFN appears to be quite broad, as evidenced by the 
reduction of neuronal damage in the setting of various 
toxin exposures. These include all the toxins used to 
induce models of disease mentioned above, as well 
as carbon monoxide,[41] lipopolysaccharide found in 
Gram‑negative bacteria,[5,37] the memory‑impairing 
chemical okadaic acid,[11] scopolamine,[51] cadmium,[69] 
the pesticide tributyltin,[13] the excitotoxicity‑inducing 
agent threohydroxyaspartate,[70] arsenic,[35] and multiple 
fungicides associated with genetic changes seen in 
autism, aging, and neurodegeneration.[71] This broad 
scope of protection makes SFN a very useful tool to 
prevent or reduce neurotoxicity due to environmental 
or pharmaceutical toxin exposure.

Limitations and next steps
Several limitations are present in the currently 
available research. Nearly all SFN research regarding 
neuroprotection has been conducted with cultured 
neurons or animal models, apart from small trials 
regarding schizophrenia and ASD. While the results 
of this preclinical data are powerful, SFN use in 
humans with the diseases discussed will be crucial in 
understanding how well this animal research translates 
to human neurobiology. Without long‑term prospective 
human cohort studies or controlled trials, it is difficult 
to assess whether the neuroprotection conferred by 
SFN will prevent the incidence of disease and burden 
of symptoms in preexisting disease. Another limitation 
is regarding the combination of SFN and antioxidants. 
Some researchers suggest that the concomitant use 
of SFN with antioxidants such as N‑acetyl‑l‑cysteine 
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reduces some the protective effects of SFN, specifically 
regarding the induction of autophagy.[40] However, 
other research suggests that the combination can be 
more beneficial than either alone.[10] This concept needs 
to be more fully elucidated to determine whether SFN 
with or without antioxidants will be most beneficial in 
each disease.

Further, only a few of the studies discussed mention 
possible neurotoxic effects of SFN, such as lowering the 
seizure threshold.[62] Some researchers have concluded 
that SFN is a goitrogen because it can reduce uptake 
of iodine into the thyroid, but a human safety trial 
did not show reductions in thyroid function after SFN 
administration.[4] Determining ideal dosages to maximize 
protection without causing detrimental effects will also 
be an important aspect of human trials.

Future research needs to address SFN use in humans 
with neurological diseases and disorders. This includes 
randomized controlled trials and longitudinal studies to 
assess the practical efficacy of SFN in neuroprotection. 
Research assessing the role of SFN as part of a multimodal 
treatment plan will also be important since SFN appears 
to have differential effects based on the concurrent 
treatments. Other research could look for even more 
efficacious Nrf2 activators or attempt to create them, like 
a melatonin‑SFN hybrid molecule which may provide 
even further neuroprotection.[72] There are currently 
multiple clinical trials ongoing regarding the effects of 

SFN supplementation in patients with schizophrenia 
and patients with ASD.[73] Hopefully, more researchers 
find SFN to be a worthy compound to assess in other 
diseases as well.

Conclusion and Perspective

SFN is a powerful antioxidant and anti‑inflammatory 
phytochemical with great promise in its ability to 
protect the nervous system from many diseases and 
toxins and reduce the symptomatic burden of multiple 
pervasive diseases [Figure 1]. Research regarding 
long‑term use in humans and disease outcomes will 
be important to determine its clinical utility. SFN, 
found naturally in high concentrations in broccoli 
sprouts, is a powerful example of how important food 
is to our health, and we must remember that while 
simple things like broccoli do not seem as powerful 
as human‑made pharmaceuticals, they can truly be 
as or more important. The area of phytochemical use 
in prevention and damage reduction of neurological 
diseases is blossoming and may well be an important 
next step in reducing the risk of the many diseases we 
have assumed inevitable or incurable.
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