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Abstract: In recent years, the static and dynamic response of micro/nanobeams made of hyperelas-
ticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect
that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover,
the influence of the size effect and large rotation for such a beam that is important for the large
deformation was not addressed. This paper attempts to explore the free and forced vibrations of
a micro/nanobeam made of a hyperelastic material incorporating strain-stiffening, size effect, and
moderate rotation. The beam is modelled based on the Euler–Bernoulli beam theory, and strains
are obtained via an extended von Kármán theory. Boundary conditions and governing equations
are derived by way of Hamilton’s principle. The multiple scales method is applied to obtain the
frequency response equation, and Hamilton’s technique is utilized to obtain the free undamped
nonlinear frequency. The influence of important system parameters such as the stiffening parame-
ter, damping coefficient, length of the beam, length-scale parameter, and forcing amplitude on the
frequency response, force response, and nonlinear frequency is analyzed. Results show that the
hyperelastic microbeam shows a nonlinear hardening behavior, which this type of nonlinearity gets
stronger by increasing the strain-stiffening effect. Conversely, as the strain-stiffening effect is de-
creased, the nonlinear frequency is decreased accordingly. The evidence from this study suggests that
incorporating strain-stiffening in hyperelastic beams could improve their vibrational performance.
The model proposed in this paper is mathematically simple and can be utilized for other kinds of
micro/nanobeams with different boundary conditions.

Keywords: hyperelastic micro/nanobeam; extended modified couple stress theory; strain-stiffening
effect; nonlinear frequency response

1. Introduction

For many decades, vibration analysis of mechanical structures was a major topic
among scientists [1–10]. Over recent decades, a surge of interest in studying hyperelastic
materials was shown. The main characteristic of hyperelastic materials is that their strain-
stress diagram is nonlinear and may undergo large deformations [11–13]. Hyperelastic
materials play a vital role in soft systems and structures, e.g., soft robotics [14], human
organs [15,16], soft actuators [17,18], soft sensors [19,20], and soft energy harvesters [19–22].
Data from previous studies show that various mechanical structures such as beams, plates,
membranes, and shells were made of hyperelastic materials [23–35]. It was reported that
hyperelastic beams are an appropriate candidate to fabricate systems with high perfor-
mance. For this reason, this paper focuses on beams made of hyperelastic materials. In light
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of the applications and properties of hyperelastic beams, it is becoming extremely difficult
to ignore their investigation in different situations.

There are numerous published works that investigate dependent and time-independent
responses of hyperelastic beams. For example, the nonlinear postbuckling of a hypere-
lastic beam-like structure was investigated by Lubbers et al. [36]. They employed the
neo-Hookean hyperelastic model in conjunction with empirical tests and the finite ele-
ment technique in their study. Wang and coworkers [37] studied nonlinear vibration of
hyperelastic beams utilizing time history diagrams and frequency responses, who em-
ployed a compressible neo-Hookean constitutive law. He and coworkers [38] developed
the Euler–Bernoulli beam model in a new finite strain framework to model a neo-Hookean
hyperelastic beam. Xu and Liu [39] proposed an improved method to dynamically explore
the response of a beam-like hyperelastic structure, where a Yeoh model was utilized to
capture the material nonlinearity. Nonlinear dynamic characteristics of a soft hyperelas-
tic beam were investigated by Wang et al. [40], employing a compressible neo-Hookean
model and variational approach. Wang and Zhu [41] studied the nonlinear oscillation of a
harmonically excited hyperelastic beam. They utilized the frequency-amplitude response,
time histories, and a compressible neo-Hookean model in their investigation. The fi-
nite bending of a beam made of hyperelastic materials was analyzed by Bacciocchi and
Tarantino [42]. They utilized a compressible Mooney-Rivlin hyperelastic material model
to physical nonlinearity of the beam. Dadgar–Rad and Sahraee [43], by considering the
incompressibility condition, investigated the large deformation response of a beam made
of hyperelastic materials, where a neo-Hookean model was employed as the hyperelastic
constitutive model. Bacciocchi and Tarantino [44] conducted a finite anticlastic bending
analysis of hyperelastic beams using two hyperelastic models, namely Mooney–Rivlin and
Saint Venant–Kirchhoff. Lanzoni and coworker [45] studied the nonuniform bending of a
beam made of the hyperelastic beam, taking the Mooney–Rivlin into account. The large
deformation response of hyperelastic beams was explored by Dadgar–Rad and Firouzi [46].
They incorporated Fung’s quasilinear viscoelasticity theory and Mooney-Rivlin model.

Results from earlier studies demonstrate that few researchers addressed the modelling
of hyperelastic beams with the strain-stiffening effect. Furthermore, previous studies have
notably investigated a beam-like hyperelastic structure on a large scale and have not con-
sidered the hyperelastic beams in micro/nanoscales. However, fabrication of such beams
in smaller scales was feasible, and hence analyzing hyperelastic micro/nanobeam and
proposing more sophisticated theories should be developed for such structures. A chal-
lenging problem that arises in this domain is accurate modelling for hyperelasticity in
micro/nanoscales. More specifically, in nanoscale, it is necessary to capture the size effect.
Because hyperelastic materials may undergo large deformation and large rotation, these
conditions should be considered on micro/nanoscale. One of the problems that it investi-
gates in hyperelasticity is the strain-stiffening effect. This effect may improve or limit the
performance of hyperelastic micro/nanobeams. Therefore, incorporating strain-stiffening
with simple mathematical modelling in micro/nanoscale is essential. Specifically, to our
knowledge, no study has considered large deformation, strain-stiffening, and moderate
rotation for hyperelastic micro/nanobeams.

This paper aims to propose a sophisticated model for a micro/nanobeam made of
hyperelastic materials that incorporate the small-scale and strain-stiffening effects of nonlin-
ear elasticity. The nonlinear equations of motion are derived via Hamilton’s principle and
an extended von-Kármán theory. The frequency-amplitude plot and nonlinear resonance
plot are presented by considering different system parameters. The results are discussed
in detail, and influential parameters on free and forced vibrations of the hyperelastic
micro/nanobeam are identified.

2. Governing Equations

The schematic view of the hyperelastic micro/nanobeam is illustrated in Figure 1,
where the length, width, and height of the beam are denoted by L, b, and d, respectively.
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A clamped-clamped boundary condition is assumed to the beam, and a harmonic transverse
mechanical load is applied to it. It is considered that the length of the beam is much greater
than the depth. In addition, the shear deformation and rotary inertia are neglected. Thus,
we use the Euler–Bernoulli (E-B) beam theory to define the displacement field.

The displacement field for the beam is established according to the Euler–Bernoulli
beam equation, namely,

ux = −z ∂w(x,t)
∂x

uy = 0

uz = w(x, t)

(1)

where w(x, t) stands for the transverse displacement of any point on the neutral axis.
The strain-displacement relations originated for the Euler–Bernoulli beam theory are mod-
elled based on an extended von Kármán equation, in which large deformation, moderate
rotation, and transverse strain are included, namely [47,48]
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ε1 = 1
2

(
∂w
∂x

)2
− z ∂2w

∂x2

ε3 = 1
2

(
∂w
∂x

)2 (2)

Other components of the extended von Kármán equation are equal to zero.
The strain energy of the hyperelastic micro/nanobeam is decomposed into two parts,

i.e., the potential due to the hyperelasticity and the potential due to small-scale effects.
For hyperelastic materials, a strain energy function is used to obtain the strain energy

of the system. Numerous hyperelastic strain energy functions can capture the strain
stiffening, for instance, the standard Gent, the Arruda–Boyce, and modified versions of
the Standard Gent model [49–51]. In this work, for simplicity, a standard Gent model is
considered, in which the strain-stiffening effect is incorporated, namely [52,53]

Ψ1 =
µ

2

[
(I1 − 3) +

1
2 Jm

(I1 − 3)2 + . . . +
1

(n + 1)Jn
m
(I1 − 3)n+1

]
(3)

where µ is the shear modulus; I1 denotes the first invariant of the deformation tensor; Jm is
a dimensionless parameter that is called the stiffening parameter.

For simplicity, the second-order expansion of the standard Gent model is utilized,
such that

Ψ1 =
µ

2

[
(I1 − 3) +

1
2 Jm

(I1 − 3)2
]

(4)

The first principal invariant of the right Cauchy–Green deformation tensor in terms of
the extended von Kármán strains is formulated as [54]

I1 = 2(ε1 + ε2 + ε3) + 3 (5)
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Substituting Equation (2) into Equation (5), the first principal invariant is reformulated as

I1 = 2

[(
∂w
∂x

)2
− z

∂2w
∂x2

]
+ 3 (6)

Substituting Equation (6) into Equation (4), the Gent strain energy function as a
function of transverse displacement is obtained below

Ψ1 =
∫ L

0

[
µA
(

∂w
∂x

)2
+

µA
Jm

(
∂w
∂x

)4
+

µ

Jm
I
(

∂2w
∂x2

)2]
dx (7)

It is mentioned that Equation (7) was obtained by considering the following relations

I =
∫

A z2 dydz = b d3

12

A =
∫

A dydz = bd

0 =
∫

A z dydz

(8)

In Equation (8), A is the cross-section area, and I represents the second moment of
the cross-section.

The potential of the small-scale effect is considered through the use of an extended
modified couple stress theory, such that [47]

Ψ2 =
1
2

(
2µA`2

) ∫ L

0

(
∂2w
∂x2

)2

dx (9)

where ` is a length-scale parameter.
Comparing Equation (9) with previous studies, for the moderate rotation, a coeffi-

cient 2 appears in the equation in comparison to the small rotation [55].
Finally, the total strain energy of the hyperelastic micro/nanobeam is written as

Us = Ψ1 + Ψ2 (10)

The moving beam generates the kinetic energy in the system, which is formulated as

Uk =
1
2

ρA
∫ L

0

(
∂w
∂t

)2
dt (11)

where ρ stands for the mass-density of the hyperelastic beam.
The transverse applied periodic loading does the work of the following form

WF =
∫ L

0
F cos(ωt)w dx (12)

in which F is the amplitude and ω indicates the excitation frequency.
The work generated from the viscous damping is expressed as

WD = −cD

∫ L

0

∂w
∂t

w dx (13)

where cD is the viscous damping coefficient.
To derive boundary conditions and governing equation, Hamilton’s principle is uti-

lized, namely

δ
∫ t2

t1

[Uk −US]dt + δ
∫ t2

t1

[δWF + δWD]dt = 0 (14)
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Substituting Equations (10)–(13) into Equation (14), we obtain the following equations

ρA ∂2w
∂t2 + CD

∂w
∂t + 2µI

Jm
∂4w
∂x4 + 2µA`2 ∂4w

∂x4 − 2µA ∂2w
∂x2 −

12µA
Jm

(
∂w
∂x

)2
∂2w
∂x2 = F cos(ωt) (15)

and boundary conditions for the double-clamped micro/nanobeam

w(0) = 0, w(L) = 0,
dw(0)

dx
= 0,

dw(L)
dx

= 0 (16)

The above equations are made dimensionless to simplify and generalize the vibration
analysis of the micro/nanobeam. The following nondimensional quantities are introduced,
such that

x̂ = x
L , ŵ = w

L , t̂ = t
√

µI
ρAL4 , ĉ = cL4

µI

√
µI

ρAL4 , Ω = ω

√
ρAL4

µI

η1 = 2µA`2

µI , η2 = − 2µAL2

µI , β = − 12µAL2

µI Jm
, F̂ = FL3

µI

(17)

Utilizing the above equations, the dimensionless partial differential equation gov-
erning the transverse vibration of the beams is obtained as (the hat notation is omitted
for convenience).

∂2w
∂t2 + c

∂w
∂t

+
1
Jm

∂4w
∂x4 + η1

∂4w
∂x4 + η2

∂2w
∂x2 + β

(
∂w
∂x

)2 ∂2w
∂x2 = F cos(Ωt) (18)

Subsequently, the boundary conditions become

w(0) = 0, w(1) = 0,
dw(0)

dx
= 0,

dw(1)
dx

= 0 (19)

The system is continuous, and therefore there are infinite modes of vibration. In this
paper, the first mode is considered only, with the aid of the separation of variable technique
and the Galerkin method. Based on the separation of variable technique, we assume the
transverse response is approximated as

w(x, t) = W(x)q(t) (20)

in which q(t) is the time-dependent coordinate of vibration; W(x) stands for the mode
shape of a double-clamped beam that is given below [56]

W(x) =

√
2
3
[1− cos(2 π x)] (21)

The function expressed in Equation (21) satisfies conditions in Equation (19).
According to the Galerkin method, Equation (20) is substituted in Equation (18), and

the resulting equation is multiplied by Equation (21), and integration over [0 1] is taken,
which results in

..
q + c

.
q + ω2

0q + αq3 = f cos(Ωt) (22)

In which

ω0 =

( ∫ 1
0

{
η1W ′′′′W+ 1

Jm W ′′′′W+η2W ′′W
}

dx∫ 1
0 W2dx

) 1
2

α =
∫ 1

0 (βW ′W ′W ′′W)dx∫ 1
0 W2dx

f =
∫ 1

0 (FW)dx∫ 1
0 W2dx

(23)

In Equation (23), ω0 indicates dimensionless linear natural frequency.
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3. Solution Method

This section is divided into two parts. In the first one, the forced vibration is solved
using the Multiple Scales Method (MSM) [57], and in the second one, the free vibration is
solved using Hamilton Approach (HA).

3.1. Forced Vibration Solution

To implement the MSM, the forced vibration equation, Equation (22), is converted to a
perturbated form by introducing the following parameters

c = 2ε cd, α = εα1, f = ε f1 (24)

where ε is a dimensionless quantity that measures the strength of the nonlinearity of the
beam and is called the gauge parameter.

Substituting Equation (24) into Equation (22), we obtain

..
q + 2ε cd

.
q + ω2

0q + εα1q3 = ε f1 cos(Ωt) (25)

In line with the MSM, the original time is replaced with new time scales as
Tn = εn t; n = 1, 2, . . . and therefore, the ODE is converted to a PDE.

New differential operators based on new time scales are Dn = ∂/∂Tn, and original
time first and second derivatives in terms of these operators are expressed as

d
dt = D0 + ε D1 + ε2 D2 + . . .

d2

dt2 = D0
2 + 2 ε D0D1 + ε2(D2

1 + 2 D0D2
)
+ . . .

(26)

The governing equation includes a nonlinear cubic term. Therefore, a first-order
perturbation approximation is accurate enough, such that

q = q0 + ε q1 (27)

qn, n = 0, 1 are independent of the gauge parameter ε. For this reason, we can equal
the coefficient of each power of ε to zero.

Combining Equations (25)–(27), and equating coefficients of ε0 and ε1 to zero, the
following PDEs are attained

Coefficients of ε0

D2
0q0 + ω2

0q0 = 0 (28)

Coefficients of ε1

D2
0q1 + ω2

0q1 = −2D0D1q0 − 2D0q0 − α1q0
3 + f1 cos(Ωt) (29)

The solution of Equation (28) takes the following form

q0 = A(T1)ei ω0T0 + A(T1)e−i ω0T0 (30)

in which A(T1) is a complex-valued function and A(T1) is its complex conjugate.
Substituting Equation (30) into Equation (29), the following equation is obtained as

D2
0q1 + ω2

0q1 =

[
−3α1 A2 A− 2icd Aω0 − 2iω0

dA
dT1

]
ei ω0T0 + f1 cos(Ωt) + CC + NST (31)

In the above equation, the terms inside the box bracket shows secular terms, CC stands
for complex conjugates of previous terms, and NST is an abbreviation for terms with higher
degrees of ei ω0T0 (nonsecular terms).

By equating secular terms to zero, the frequency-amplitude relation can be obtained.
However, the external loading can also give rise to secure terms. This fact is considered
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in two states, i.e., the primary resonance and the secondary resonance. In this paper, the
primary resonance is analyzed, which states that

Ω = ω0 + ε σ (32)

Writing the trigonometric function in Equation (31) and using Equation (32), we obtain

3α1 A2 A + 2icd Aω0 + 2iω0
dA
dT1
− 1

2
f1eiσT1 = 0 (33)

The complex-valued function A is written as

A =
1
2

aeiθ , A =
1
2

ae−iθ (34)

in which a and θ are the amplitude and phase, which are functions of T1.
Substituting Equation (34) into Equation (33) and then separating the resulting equa-

tion into real and imaginary parts yields
Imaginary parts:

da
dT1

= −acd +
1

2ω0
f1 sin(σT1 − θ) (35)

Real parts:

a
dθ

dT1
=

3
8ω0

α1a3 − 1
2ω0

f1 cos(σT1 − θ) (36)

Equations (35) and (36) are converted to an autonomous equation by introducing
γ = (σT1 − θ), which results in

da
dT1

= −acd +
1

2ω0
f1 sin(γ) (37)

a
dγ

dT1
= σa− 3

8ω0
α1a3 +

1
2ω0

f1 cos(γ) (38)

A bounded response is acquired while da
dT1

= a dγ
dT1

= 0, whereby one can obtain

acd =
1

2ω0
f1 sin(γ) (39)

σa− 3
8ω0

α1a3 = − 1
2ω0

f1 cos(γ) (40)

After some mathematical manipulation and using the fact sin2(γ) + cos2(γ) = 1, we
obtain the frequency-amplitude response as

[cda]2 +
[

σa− 3
8ω0

α1a3
]2

=

[
1

2ω0
f1

]2
(41)

3.2. Free Vibration Solution

In this subsection, the nonlinear frequency of the micro/nanobeam with neglecting
the external force and damping is obtained via Hamilton’s approach. The initial conditions
for the vibration of the hyperelastic beam are expressed as

q(0) = a0,
.
q(0) = 0 (42)
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where a0 stands for the maximum amplitude of the vibration. Based on Hamilton’s
principle, the nonlinear frequency is derived as [58]

ωnl =

√
ω2

0 +
49
70

αa2
0 (43)

4. Result and Discussion

The effects of several parameters such as the stiffening parameter, the length scale
parameter, and forcing amplitude and damping on the frequency response and nonlinear
frequency of the system are analyzed. The material and geometrical parameters of the
hyperelastic microbeam are given in Table 1.

Table 1. Material and geometrical parameters.

Parameters Value

Length L = 30 µm
Width b = 10 µm
Height d = 0.65 µm

Young’s modulus E = 3 GPa
Shear modulus µ = E/3 = 1 GPa

4.1. Frequency Response

Figure 2 depicts the influence of the gauge parameter ε on the frequency response
under the following parameter f1 = 0.5, ` = 0, cd = 0.004, and Jm = 100. As the gauge
parameter ε is decreased, the nonlinearity of the system increases. Mathematically speaking,
with the decrease of ε, the value of nonlinear terms in the equation of motion becomes
higher in comparison to the value of linear terms. Depending on the accuracy, an arbitrary
value for ε can be adopted, which in this paper it is chosen as ε = 1.
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Illustrated in Figure 3 is the influence of the damping coefficient cd on the frequency
response of the system while considering the following parameters ` = 0, and Jm = 100.
From the figure, it is concluded that increasing the damping coefficient decreases the
response amplitude of the hyperelastic micro/nanobeam. The damping in hyperelastic
materials mainly originates from the viscosity of matter. In the remaining part of the
numerical simulation, as a test case, the damping coefficient is taken as cd = 0.004.
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Figure 4 represents the impact of the length scale parameter ` on the nonlinear resonant
vibration of the hyperelastic beam. As seen, increasing the size effect, the response ampli-
tude decreases, and the hardening nonlinearity becomes weaker. This result is in agreement
with that shown in the literature for linear materials. Obtaining the accurate small-length
scall parameter in the experimental test is a crucial task for engineers. Finding an exact
value for the length scale parameter for the hyperelastic beam in the experimental test
should be carried out to improve the performance of hyperelastic microbeams.
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Figure 4. Influence of length scale parameter (`) on frequency response of system. Systems parame-
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The influence of the stiffening parameter Jm on the frequency-amplitude plot is shown
in Figure 5. It is concluded that as the stiffening parameter is decreased, the hardening
nonlinearity gets stronger. When the stiffening parameter is equal to Jm = ∞, i.e., the
conversion of the Gent model to the neo-Hookean model, the system’s response is linear.
It is noted that if the stiffening parameter is smaller, the strain-stiffening effect is stronger.
As reported by Amabili, a stiffening parameter in a range Jm = 30− 100 stands for rubber
materials, and values less than them stand for biological tissues [12].
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The influence of the amplitude of the external loading f1 on the resonant characteristics
of the hyperelastic micro/nanobeam is analyzed in Figure 6. Increasing f1 the response
amplitude increases, and the frequency response becomes wider. Moreover, the forcing
amplitude cannot alter the nonlinear nature of the system and only quantitatively alter the
resonant behaviour.
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Figure 6. Influence of forcing amplitude ( f1) on frequency response of system. Systems parameters:
` = 0; Jm = 100; cd = 0.004.

We analyze the influence of the strain-stiffening parameter on the force-response in
Figure 7. The system parameters are ` = 0; σ = 0.05; cd = 0.004. We can see that by
increasing the value of the strain-stiffening parameter, a higher value of forcing amplitude
is required to cause the jump phenomenon. Moreover, by increasing the strain-stiffening
parameter, the system becomes stable and for the neo-Hookean model.

We show the influence of the length-scale parameter on the force-response in Figure 8.
With the inclusion of the effect of size, the jump phenomenon arises for higher values of
forcing amplitude.
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4.2. Nonlinear Frequency

The previous section demonstrates the results for the forced vibration of the Gent
hyperelastic beam. Herein, the nonlinear frequency of the system given in Equation (42)
is evaluated.

Illustrated in Figure 9 is the nonlinear frequency versus the maximum amplitude
when ` = 0, and Jm = 100. It is found that by increasing the maximum amplitude a0 the
nonlinear frequency increases.

As depicted in Figure 10, the nonlinear frequency for variations of the length of the
beam is presented. As the length is increased, the dimensionless nonlinear frequency
increases accordingly.

The nonlinear frequency versus the stiffening parameter Jm is presented in Figure 11.
Increasing Jm, the nonlinear frequency decreases.

As depicted in Figure 12, the nonlinear frequency versus the length scale parameter is
presented. As the size effect is increased, the nonlinear frequency increases accordingly.
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5. Discussion on the Strain-Stiffening

Rubber-like materials can be deformed by stretching. In the beginning, we can stretch
rubbers easily, but if the stretch is large enough, the stretching process becomes difficult.
This is due to the strain-stiffening effect in rubber-like materials. The strain-stiffening is
a nonlinear behavior that is seen even in soft biological materials such as liver and brain
tissue [59]. We can use this property in hyperelastic materials so as to evade damage.
The strain-stiffening can also be connected to the molecular-statistical point of view in
nonlinear elasticity. The stiffening parameters Jm in the Gent model relates to the number
of rigid links in a single chain N using Jm = 3(N − 1). N is also called the classical number
of Kuhn segments [60]. The results of Figures 5, 7 and 11, can also be interpreted based
on molecular-statistical point of view. We see that altering Jm, the number of segments
changes accordingly. Therefore, this change affects the frequency/force response of the
hyperelastic microbeam. Taken together, the results of this paper can help researchers who
would like to analyze the hyperelastic microbeam via molecular-statistical hyperelastic
models such as generalized neo-Hookean model.

6. Conclusions

In this paper, nonlinear, free, and forced oscillations of a hyperelastic micro/nanobeam
were investigated with the inclusion of the small-scale effect, strain-stiffening effect, and
moderate rotation. A developed Euler–Bernoulli beam theory was utilized to model the
beam, and the energies and works that appeared in the system were formulated. The equa-
tion of motion was derived using Hamilton’s principle and the Galerkin decomposition
method. Frequency-amplitude curves and the nonlinear natural frequency diagrams were
illustrated by analytically solving the equation of motion. This paper concludes that:

• Increasing the strain-stiffening effect leads to increasing hardening nonlinearity.
• For the neo-Hookean model with Jm = ∞, the nonlinearity vanishes, and the response

is transformed into a linear type.
• As the stiffening parameter Jm is increased, the nonlinear natural frequency decreases.
• The length of the micro/nanobeam, the damping, and size effects were identified as

influential parameters in the system.
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