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Abstract

The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant
pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as
the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza,
if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the
impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant
strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these
two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values
(e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes
and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic
homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heteroge-
neous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.
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Introduction

Rapid antigenic evolution in the influenza virus increases the

likelihood of emergence of novel strains, against which little to no

immunity may exist in the host population [1–4]. In this scenario,

if vaccines are not yet available or non-pharmaceutical interven-

tions have limited impact on disease containment, antiviral

treatment plays a crucial role in the control of the disease [3,5–

7]. A critical constraint in the deployment of antivirals agents (e.g.,

M2 inhibitors and neuraminidase inhibitors [8]) is the evolution of

highly transmissible drug-resistant mutants [9]. Resistance de-

creases the effectiveness of chemotherapy in infected patients,

prolonging recovery or leading to outright treatment failure [10].

Epidemics of untreatable strains have the potential to cause major

morbidity and mortality [11–14], with significant economic costs

for both the individual and for society writ large [15].

Consequently, public health policy has a growing need to

understand the key factors that lead to the rise and spread of

resistance, and to devise strategies that amplify the effectiveness of

existing drugs, while halting the spread of resistance [16–19].

In addition to important precautionary measures, such as

improvement of hospital counter-infection methods and regulation

of antiviral use, mathematical models can be used to explore

plausible competition scenarios between sensitive and resistant

strains and the impact of treatment strategies on these dynamics

[17,19–22]. Previous models of the development of resistance of

influenza to antiviral agents have focused on efforts to minimize

the fraction of drug-resistant infections during an epidemic

outbreak [5–7,17] and to give recommendations that inform

policy [8,15,18,23–25]. However, the study of the long-term

(endemic) dynamics of drug-resistance has received less attention

[26].

The present work assesses the effectiveness of treatment at

minimizing the total number of infections while halting the spread

of drug-resistance, both from an endemic and a single-epidemic

perspective. We focus our attention on two points: i) the relative

transmissibility of the drug-resistant strain with respect to the wild-

type (drug-sensitive) strain, and ii) the frequency of de novo

resistance. Point i) is related to the fitness cost associated with

the evolution of drug resistance, reflected in a reduced transmis-

sibility of the drug-resistant pathogen relative to its wild-type

counterpart [8,27]. Recent evidence has demonstrated, however,

that this reduction in fitness may be limited due to compensatory

mutations which can restore fitness without loss of resistance-

conferring genes [9,28]. Point ii) represents the probability that

treatment leads to resistance within the treated host (de novo). Both

quantities are crucial in the population dynamics of drug-

resistance, specially due to their variability within different

epidemiological settings [8]. Nonetheless, their combined effect

on the effectiveness of treatment regimes during influenza

pandemics is not fully understood [5].
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We build on a previous model [17] to examine these issues in

the long-term (endemic disease prevalence) as well as in the short-

term (single-epidemic). Lipsitch et al. [17] observed that interme-

diate levels of antiviral use are indicated to reduce the attack rate

during an influenza pandemic. Complementing these results, we

find that to effectively reduce the endemic levels of the wild-type

and resistant strains, treatment regimes (i.e., treated fraction)

should be at intermediate levels if the resistant strain is highly

transmissible and de novo resistance is rare. However, if resistance

comes with a high fitness cost and de novo resistance is frequent,

then higher levels of antiviral use may be preferable. In the single

epidemic case we compare our optimal treatment regime with that

of [17], showing that their relative effectiveness also depends on

the strains’ relative transmissibility and the frequency of de novo

resistance. Moreover, we demonstrate the applicability of our

optimal treatment regimes by evidencing its effectiveness at

quelling the spread of resistance when considering the effects of

the stochasticity inherent to the transmission dynamics and the

complex contact structure in the population.

Methods

Model Formulation
We extend a version of the model in [17] to include

demography (see Figure 1). Susceptible hosts, S, enter the

population at a per-capita rate m and die at rate equal to m,

keeping the total population size, N , constant. Susceptible

individuals can be infected by pathogens either sensitive or

resistant to the available antiviral (this model does not include

superinfection with both strains). A fraction r of patients infected

with the wild-type strain are treated, and a fraction c of those

treated develop resistance de novo. Therefore, individuals infected

with the wild-type strain are either untreated (Iu), effectively

treated (It), or resistant to treatment (Ir). Infection with a resistant

strain is either developed de novo or acquired from another

resistant-infected individual. Susceptible individuals become

infected at a rate proportional to the densities of susceptible and

infected individuals, and to the transmission rates of each class,

bu, bt, and br, respectively. Untreated, treated, and resistant

infected individuals recover at per-capita rates cu,ct, and cr,

respectively. We assume no disease-induced mortality, and that the

pathogen induces sterilizing immunity [21,29].

The relative transmissibility of the resistant strain is defined as

w~br=bu§0. Successfully treated individuals: 1) are not more

infectious: bt~mbu, where m[½0,1� is the reduction in viral

shedding [16,30,31], and 2) recover faster: ct~cuzt, where tw0
is the increase in recovery rate [8,16,32].

The ordinary differential equation (ODE) model describing

these dynamics is

dS

dt
~m{(hwzhrzm)S ð1Þ

dIt

dt
~hwSr(1{c){(cuztzm)It ð2Þ

dIu

dt
~hwS(1{r){(cuzm)Iu ð3Þ

dIr

dt
~hrSzhwSrc{(crzm)Ir ð4Þ

dR

dt
~(cuzt)ItzcuIuzcrIr{mR ð5Þ

with forces of infection hw~buIuzmbuIt and hr~wbuIr. Note, we

are modeling densities (i.e., N~1). In what follows, let sx be the

total per-capita rate out of class Ix, i.e., st~cuztzm, su~cuzm,

and sr~crzm.

Reproduction numbers. The basic reproduction number,

R0, is the average number of secondary cases produced by a

typical infected individual in a completely susceptible population.

We find R0 for each strain using the Next Generation Operator

(NGO) method [33]. The non-zero eigenvalues of the NGO

matrix

Rw
0 ~bu

mr(1{c)

st

z
(1{r)

su

� �
, ð6Þ

Rr
0~bu

w

sr

, ð7Þ

are the reproduction number of the wild-type and resistant strains,

respectively. Detailed derivations can be found in the Supporting

Information (Text S1).

Results

Fixed Points and Bifurcation Analysis
The system (1)–(5) has three fixed points (FPs): 1) a disease free

equilibrium (DFE); a FP where only the resistant strain persists

(RFP); and a coexistence FP in which both strains coexist (CFP).

Conceptually, these FPs represent: 1) eradication of both resistant

and wild-type strain, eradication of the wild-type strain when

treatment and/or relative transmissibility are high enough to allow

persistence of the resistant strain; and coexistence of both strains

due to low treatment and/or low fitness of the resistant strain,

where typically the resistant strain persists at low levels. The FPs

are:

Figure 1. Compartmental Model for Eqs. (1)–(5).
doi:10.1371/journal.pone.0059529.g001
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DFE:

fS1,I1
t ,I1

u ,I1
r g~f1,0,0,0g ð8Þ

RFP:

fS2,I2
t ,I2

u ,I2
r g~

1

Rr
0

,0,0,
m

wbu

(Rr
0{1)

� �
ð9Þ

CFP:

fS3,I3
t ,I3

u ,I3
r g~

1

Rw
0

,
1{cð Þrm

s
jY,

1{rð Þm
su

jY,cr
m

s
Y

� �
ð10Þ

where

j : ~1{
Rr

0

Rw
0

and Y : ~
Rw

0 {1

Rw
0 {(1{cr)Rr

0

: ð11Þ

The recovered class fraction in each case is given by

R�~1{S�{I�t {I�u {I�r . Comparing the susceptible steady states

in (9) and (10) suggests that for the RFP, prevalent infections are

attributable to the resistant strain, whereas for the CFP, the

reproduction number of the wild-type strain determines how

prevalent the disease is.

To be biologically significant (BS) the steady states have to lie in

the set

D~f(S,It,Iu,Ir,R) [ ½0,1�5DSzItzIuzIrzR~1g:

The RFP is BS if Rr
0§1. For the CFP, Rw

0 §1 must hold so that

S3
ƒ1. This also implies that the numerator of Y in (11) is positive.

For I3
r to be non-negative, the denominator of Y must be positive,

i.e., Rw
0 w(1{cr)Rr

0, which implies Rw
0 =Rr

0w1{cr. For I3
t and I3

u

to be non-negative Rw
0 =Rr

0§1w1{rc must hold. Therefore, the

CFP is BS if

Rw
0 §1 and Rw

0 §Rr
0: ð12Þ

Thus, the two strains coexist if the wild-type strain is

transmissible enough to be able to spread, and also more

transmissible than the resistant strain.

Stability of fixed points. For the stability analysis of the FPs

we study the eigenvalues of the matrix in the linearized system

around the FPs: equilibria that have eigenvalues with negative real

part are stable, whereas equilibria that have eigenvalues with

positive real part are unstable [34]. We present here the results of

the analysis; detailed analytic derivations can be found in the Text

S1.

As expected, the DFE is globally stable if Rw
0 v1 and Rr

0v1.

The RFP is locally stable if Rr
0wRw

0 . While determining the

stability of the CFP is not analytically tractable, (12) states that the

CFP is BS if Rw
0 §1 and Rw

0 §Rr
0. Thus, the conditions in (12)

imply that neither the DFE nor the RFP are stable. We then

conjecture that the CFP is BS and globally stable if (12) holds.

Epidemiological arguments and numerical integrations support

this hypothesis.

Bifurcation analysis. Depending on Rr
0 and Rw

0 , the system

has one, two, or three BS FPs. Figure 2 features all four stability

regions described above in the (w,r) and the (Rw
0 ,Rr

0) parameter

space. The boundary of these regions can be found by solving

Rw
0 (r�)~Rr

0,Rw
0 (r1)~1, and Rr

0(w1)~1, yielding

w1~
sr

bu

, r1~
(bu{su)st

bust{mbu(1{c)su

, ð13Þ

and

r�(w)~
(sr{wsu)st

sr½st{m(1{c)su�
: ð14Þ

The boundaries are shown in Figure 2, where r� is the red-

dashed line, r1 is the dashed and horizontal line, and w1
is the

dashed and vertical line. The intersection of these curves (black

dot) represents the overall disease threshold: any increase in w or

decrease in r away from this intersection would result in an

epidemic. Moreover, Eq. (13) shows that, for appropriate

parameter values, increasing t or decreasing m, decreases the r-

coordinate (r1) of the overall disease threshold point. Thus,

increasing the recovery rate or decreasing the transmission rate of

those treated, represents an epidemiological trade-off: it jointly

expands the ‘‘DFE’’ and the ‘‘Resistance’’ stability regions, making

it more likely for the system to either stay disease-free or give rise

to prevalent resistance (see Figure S4, S5, S6, S7, S8 in Text S1 for

details).

Optimal Treatment Regimes
The main goal of this work is to derive treatment regimes (i.e.,

treated fractions) that minimize the wild-type infections while

restraining the spread of resistance. From the CFP in (10), it is

clear that for very low treatment levels, the wild-type strain is

prevalent in the population, and the resistant strain prevalence

stays at minimal levels [10], i.e., Rw
0 (r~0)wRr

0. Additionally,

treatment will reduce the viral shedding (mbuvbu) and increase

Figure 2. Stability regions in the (r, w) and (Rw
0 ,Rr

0) parameter
space. Coexistence 2FP (CFP stable, DFE unstable); Coexistence 3FP
(CFP stable, DFE unstable, RFP unstable); Resistance (DFE unstable, RFP
stable). When the system crosses any of the region boundaries it
experiences a transcritical bifurcation.
doi:10.1371/journal.pone.0059529.g002
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the recovery rate by t, implying that LRw
0 =Lrv0. Thus, treating a

larger proportion of the population will reduce the number of

wild-type infected. However, it will also increase the number of de

novo resistant cases, as well as the pool of susceptibles for the

resistant strain to spread in.

These observations intuitively suggest that an effective treat-

ment strategy should minimize Rw
0 by increasing r, while keeping

Rw
0 §Rr

0. Formally,

r�~ arg min
r

Rw
0 (r), s:t: Rw

0 §Rr
0: ð15Þ

Since Rr
0 does not depend on r (Eq. (7)), and assuming

Rw
0 (r~0)wRr

0, (15) can be solved by reducing Rw
0 until

Rw
0 (r)~Rr

0. This equality yields r� as in (14), a linearly decreasing

function of the relative transmissibility, w (see Figure 2).

However, (15) is inadequate since it does not consider the fitness

advantage that development of de novo resistant cases give to the

resistant strain. As R0 is the expected number of new cases

produced by a typical infected person in a susceptible population,

this quantity can be considered a measure of the fitness of a

pathogen at the population level. Additionally, in our model, c is

directly related to the within-host fitness of the resistant pathogen.

The overall fitness of the resistant strain is the added contributions

of the fitness at the population and the within-host level. To estimate

this overall fitness, assume, for the sake of clarity,

si~s, Vi[fu,t,rg. Let also In
r and In

w~In
u zIn

t be the number of

resistant and wild-type cases in the nth ‘‘epidemic generation’’

(with duration approximately 1=s) in a predominantly susceptible

population. Defining Fr~Inz1
r =In

r and Fw~Inz1
w =In

w as the

overall fitness of the resistant and wild-type strains, respectively,

we obtain (see Text S1 for details):

Fw~Rw
0 H(r�{r) and Fr~Rr

0z
rc

1{rc
Rw

0 H(r�{r), ð16Þ

where H(x) is the Heaviside step function (H(x)~1 if x§0, and

H(x)~0 otherwise), i.e., if rwr�, the wild-type strain goes extinct.

It is then clear that Fr has an additional contribution from the de

novo cases. More importantly, from the sole comparison of the

reproduction numbers we cannot infer properly which strain will

dominate, nor can we devise effective treatment regimes.

A more appropriate way to optimize the treatment regime is

attained by focussing on the fixed points (FPs). The system has two

FPs where the disease is endemic (RFP and CFP). On the one

hand, if the CFP is stable, the optimal treatment regime, re, is

defined as the fraction treated that yields the minimum number of

wild-type infected, while the resistant is kept at lower endemic

levels than the wild-type. Formally,

re~ arg min
r

(I3
w), s:t: I3

w§I3
r ð17Þ

where I3
w:I3

u zI3
t . The regime re can then be found by solving

for r in I3
w~I3

r (see Eq. (19)).

On the other hand, if the RFP is stable, then treatment will have

no effect on the prevalence of the resistant strain since I2
r is not a

function of r. Two scenarios are then possible: (A) I3
r (re)vI2

r , or

(B) I3
r (re)§I2

r . An assessment of these two scenarios yields our

definition of overall optimal treatment regime ropt: if (A) is true,

ropt will minimize the endemic levels of the wild-type strain, while

keeping the resistant strain at comparatively low levels; if (B)

holds, ropt will transition the system to the RFP stability region.

Hence, in case (A) it is best to maintain the system within the CFP

limits, whereas in (B) the RFP will be preferred. The latter can be

achieved by increasing r beyond r�. Formally,

ropt~
re if I3

r (re)vI2
r (A)

r�,1 if I3
r (re)§I2

r (B)

(
,

We now show that conditions (A) and (B) can be expressed in

terms of our two key parameters: relative transmissibility, w, and

the frequency of de novo resistance, c. To find re we solve for r in

I3
w~I3

r , or,

Rw
0 ~Rr

0zRw
0

sustcr

(1{c)rsusrz(1{r)stsr

� �
: ð18Þ

Within the CFP limits, (19) indicates when the overall fitness of

both strains are equal (notice the similarity of the left hand side

and the right hand side of (19) with, respectively, Fw and Fr in (16),

when si~s,Vi[fu,t,rg). The explicit expression for re is given in

the Text S1. Noteworthy, re is the only value of r in (0,r�) for

which I3
w~I3

r . This claim is justified as follows: I3
w(r) is a

monotonically decreasing function of r in (0,r�), with

I3
w(0)wI3

r (0) and Iw
r (r�)vI3

r (r�). Additionally, I3
r (r) is either

increasing or concave in (0,r�) (see Figure 3). In both cases, I3
w and

I3
r intersect at only one point (green dots in Figure 3). See Text S1

and Figure S10 for analytic details.

It is easy to show that I3
r (r�)~I2

r (gray dots in Figure 3).

However, also I3
r (rr)~I2

r , where

rr~
Rr

0{1

Rr
0c

: ð19Þ

Then, if 0vrrvr�, the term rr represents the treatment

regime within the region of coexistence (CFP) for which the

resistant strain is as prevalent as in the resistant-only stability

region (RFP) (red dot in Figure 3). Additionally, it can be deduced

from (20) that

rrvr�[Rr
0v(1{r�c){1: ð20Þ

In the Text S1 we show that when (21) holds, I3
r (r) is concave

for r[(0,r�). The concavity of I3
r (r) means, biologically, that the

resistant strain prevalence is sustained largely by de novo resistant

cases. Put differently, Rr
0 is not large enough for the resistant strain

to self-sustain high levels of prevalence in the absence of treated

wild-type infected.

Recalling that I3
r (rr)~I2

r and I3
r (r�)~I2

r , if Ir
r (r) is concave for

r[(0,r�) and rrvrevr�, then I3
r (re)wI2

r (condition (B)),
indicating that the RFP is preferred over the CFP (solid curves

in Figure 3). Furthermore, condition rrvrevr� reduces to

rrvre given that I3
w(r)~I3

r (r) for r[(0,r�). If instead rrwre,

then condition (A) applies and keeping the system in the CFP

while applying a treatment regime re will be the best option

(dashed curves in Figure 3). These observations along with

expression (20) allow to restate conditions (A) and (B), and

therefore the optimal treatment, in terms of w and c as

Resistant Strain Traits and Effective Treatment
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ropt~
re

r�,1ð �

� if
Rr

0{1

Rr
0c

wre

if
Rr

0{1

Rr
0c

vre

(A)

(B)

In case (A), which corresponds to a high w and low c scenario,

the CFP is stable with the wild-type and the resistant strains kept at

low levels. In case (B) (i.e., low w and high c), shifting the stability

to the RFP is preferable since only the resistant strain will persist at

low levels (see Figure 3). In other words, if the resistant strain

features high relative transmissibility and resistance is rare, the best

treatment regime would be at intermediate levels (re); whereas if

the opposite holds true, treating a larger fraction (wr�) of the

infected population is preferred.

Recalling re and r� are found from (19) and Rw
0 ~Rr

0,

respectively, and noticing that as c?0z expression (19) reduces

to Rw
0 ~Rr

0, we conclude that re?r� as c?0z. For this reason,

when c is small v*10{2
� �

r�&rezE, with 0vE%re, becomes a

good treatment strategy if (A) holds. Moreover, as c?0z, it is

expected that (A) holds, at least in the epidemiologically

interesting cases where Rr
0 will likely be greater than

(1{cre){1
*> 1 (i.e., the resistant strain can emerge and spread

in the population). In conclusion, when c is small, then r~r�{E is

a good treatment regime to minimize both the wild-type and the

resistant strains (green bands in Figure 4).

Despite the large uncertainties in the frequency of patients that

develop de novo resistance [8], c can be assumed to be relatively

small. Figure 4 evidences how, for c~0:002 (as in [17]), r~r�{E
is the optimal treatment fraction: it diminishes the prevalence of

the sensitive strain as much as possible, while hindering the

emergence of the resistant strain. For low levels of treatment the

CFP is stable: the wild-type strain prevails and the resistant strain

Ir
2

Iw
3

Ir
3

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.00002

0.00004

0.00006

0.00008

0.0001

Treatment Fraction

In
fe
ct
ed

Pr
ev
al
en

ce

Figure 3. The two possible monotonicity behaviors of I3
r (r). In black, I3

r (r) is concave for Rr
0(w)v(1{r�c){1 (solid lines) (w~0:42), and

monotonically increasing for Rr
0(w)§(1{r�c){1 (dashed lines) (w~0:55). Red lines are the corresponding I3

w(r) curves. The x-values of the green and
gray dots represent re and r� , respectively, while the x-value of the red dot represents rr. As w (or Rr

0) increases, the red dot moves rightward,
surpassing the green dot (rr~re), and eventually surpassing the gray dot as well (rr~r�). At this point, the system displays a transcritical bifurcation
between the CFP and the RFP. Other parameters: cr~cu~0:2, t~0, bu~0:5, m~0:34, c~0:2. A large value of c was used to magnify the difference
between the two cases.
doi:10.1371/journal.pone.0059529.g003
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(I3
r ) remains at low levels. As soon as rwr�&re, the resistant

strain out-competes the wild-type strain. Expectedly, as treatment

further reduces the infectious period (i.e. larger t, dashed lines),

increasing treatment reduces the wild-type strain prevalence more

effectively. In this case, the optimal levels of treatment are lower. A

similar behavior is obtained when, instead of increasing t, we

reduce m (reduction of viral shedding due to treatment).

Frequency of de novo resistance and endemic levels of

resistance. We have shown how the frequency of de novo

resistance, c, plays a crucial role in devising effective treatment

strategies. In addition, we find that smaller values of c lead to more

abrupt transitions from wild-type to resistant strains. In other

words, the smaller the probability of developing de novo resistance,

the faster the RFP gains stability when the system is close to the

threshold Rw
0 ~Rr

0 (Figure 5). Thus, for small c, the system

becomes more sensitive to variations in r, t, m, and w near this

threshold. This represents a potentially dangerous scenario: if the

likelihood of de novo resistance is small, a policy-maker might

underestimate the prospects of resistance emergence and, conse-

quently, increase treatment levels to eradicate the wild-type strain.

However, if treatment is increased above r�, an abrupt transition

may occur to a state where only resistant strains persist.

Mathematically, this ‘‘abrupt transition’’ can be justified as

follows: if c%1, then Rw
0 {(1{cr)Rr

0&Rw
0 {Rr

0; hence, when

Rr
0&Rw

0 , there is a ‘‘singularity’’ for Iw
3 and Ir

3 in the CFP (10).

Biologically, it is clear from (16) that lim c?0z Fr~Rr
0 and

lim c?0z Fw~Rw
0 . That is, as c?0z, the reproduction numbers

become the overall fitnesses of the strains, and Rw
0 ~Rr

0 represents

the condition for which both strains are equally fit. Thus, the

resistant strain outcompetes the wild-type strain as Rr
0 surpasses

Rw
0 .

The Single Epidemic Case
Frequently, public health programs and interventions are

designed to prevent the emergence of drug resistance within a

single epidemic. To address this issue, we model a closed

population (i.e., m~0 in model (1)–(5)), and examine again the

role of i) the relative transmissibility (w) and ii) the frequency of de

novo resistance (c) on the effectiveness of treatment regimes. In this
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Figure 4. Effectiveness of r� for c~0:002 and Rr
0w(1{r�c){1. Prevalences I2

r and I3
r are depicted in black and I3

w in red, for two different
treatment recovery benefits (t~0:1, solid; t~0:8, dashed). The RFP is unstable for rvr� (blue dashed line). Strain dominance transition at re&r�

(vertical dashed lines). Optimal treatment regimes (r�{E) in green bands. Parameters: m~4:6|10{5, cu~cr~0:2, bu~0:5, m~0:34, w~0:6 (see also
Figure S9).
doi:10.1371/journal.pone.0059529.g004
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assessment we focus on the final epidemic size (FS), defined as the

proportion of the population infected during the epidemic. As in

[17], we introduce the following correction to our numerical

integrations: if Ir(t)v1 then Ir(t)~0. This prevents spurious

results induced by the transmission of ‘‘non-cases’’ (since Ir(0)~0,

initially Ir(t) can only increase due to de novo resistant cases; given

that Ir(t) is continuous in the ODE framework, the condition

above avoids that a fraction of a de novo resistant case can cause a

direct resistant infection). Throughout this section the following

parameters are fixed: N~5|105, m~0:34, cr~cu~0:2, t~0:1,

Ir(0)~It(0)~0 and Iu(0)~1.

Figure 6 shows a feature demonstrated previously [6,17,22]: the

existence of an ‘‘optimal’’ level of treatment for which the total FS

is minimized. We can readily see this minimum is a function of c:

as c increases, the dip in the combined FS curve vanishes.

Furthermore, the treatment regimes that minimize the total FS,

are not optimal in terms of avoiding the emergence of resistance.

Let rmin~ arg minrFS(r). We find that r�vrmin, where as

before r� satisfies Rw
0 (r�)~Rr

0. That is, the minimum in the FS is

reached when resistance has already significantly spread in the

population. Additionally, Figure 6 shows that for larger c

(diamond curves), r� represents a value of the treatment fraction

for which the resistant strain has already spread considerably

throughout the population. This suggests that, as in the endemic

case, the effectiveness of r� depends on the frequency of de novo

resistance: as c increases, the validity of r� becomes compromised

(notice similarity in black curves of Figures 5 and 6).

Notice also in Figure 6 that the epidemic is eradicated if r

exceeds r1 (Eq. (13)), where Rw
0 (r1)~1. That is, when the

treatment fraction is large enough to rapidly halt the spread of the

wild-type strain, the resistant strain will not emerge. This is

possible, in part, given our assumption that treatment is

implemented early in the epidemic (i.e., Iw(0) is small). In

conclusion, if c is relatively small and treatment is put in place

later in the epidemic or it cannot surpass r1(wr�), then r� will

ensure minimal spread of the resistant strain.

We now wish to contrast the effectiveness of r� and rmin as a

function of the relative transmissibility w, assuming relatively low

frequency of de novo resistance (c~0:002). Figure 7 shows the FSs

(due to resistant strain (black) and total (blue)) vs. w for r~r� and

r~rmin. A treatment regime r� would ‘‘prioritize’’ the avoidance

of resistance, while compromising the reduction of the overall
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Figure 5. Resistant strain prevalence vs. treatment fraction. Smaller c leads to more abrupt transitions from wild-type to resistant strains.
Larger c renders r� ineffective as a treatment regime.
doi:10.1371/journal.pone.0059529.g005
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epidemic; conversely, rmin will, by definition, ‘‘prioritize’’ the

minimization of the total epidemic size, while disregarding the

spread of resistance. As a result, r� is more effective than rmin at

halting the spread of resistance in the population, whereas rmin is a

better option to reduce the overall epidemic. Moreover, since

Lr�=Lwv0 (see (14)), as w increases, a treatment regime r� will

systematically diminish the spread of resistance by reducing the

treated fraction. Consequently, for higher w, r� will have minimal

effects on reducing the total epidemic size (compare the diamond

with the horizontal blue line, where no treatment is applied).

Therefore, the decision to use r� or rmin as a treatment regime will

mainly depend on how policy makers balance a larger epidemic

produced largely by the wild-type strain, with minimal resistant

cases (using r�, for which we have a better biological and

mathematical understanding), versus a smaller overall epidemic

with higher resistance incidence (using rmin).

To summarize, when the fraction of de novo resistant cases and

the relative transmissibility are rather small, r� constitutes a useful

quantity for treatment policies in a single epidemic outbreak

provided it can contain the overall epidemic while restraining the

spread of resistance in the population.

Relative transmissibility and non-pharmaceutical

interventions. It is likely that treatment alone cannot com-

pletely quell an emerging epidemic [35]. In such cases, non-

pharmaceutical interventions (e.g., social distancing, case isolation,

travel restrictions) could help to significantly mitigate the extent of

the epidemic [3,8,16]. These can affect the transmissibility of the

wild-type and the resistant strain while maintaining the relative

transmissibility of the latter (w). Here we investigate the

competition dynamics between the wild-type and the resistant

strain as a function of w, and the transmissibility of the wild-type

strain bu (which varies due to non-pharmaceutical interventions)

under different treatment regimes.

The total FS is comprised by the resistant-strain cases (FSres)

plus the wild-type cases (FSw). To determine the dominant strain,

we compare FSres and FSw. Figure 8 shows numerical results of

FSres{FSw in the (bu=cu,w) parameter space (cu fixed). For

instance, if FSres{FSww0 (gray-black region), the resistant strain

is accountable for more cases than the wild-type strain. The wild-

type dominated region is in red.

The resistant strain can only spread in the bu region for which

the wild-type strain significantly spreads: notice in each graph, a

vertical light-red region where only the wild-type strain minimally

spreads, and to its right we see regions of coexistence. The value of

bu defining the split of these two regions, b1
u, is such that

Rw
0 (b1

u,r)~1; if buvb1
u(r), the wild-type strain will only generate

few infections and consequently the resistant strain will mainly be

in rare de novo resistant cases. A similar consideration was

presented in Figure 6.

In general, for lower w the resistant strain cannot spread, while

the wild-type strain produces an increasingly larger number of

infections as bu increases. As treatment (r) increases, the resistant-

dominated region shifts to higher values of bu, while expanding the

range of w for which it can significantly spread (darker areas).

These observations suggest that if the wild-type strain features

relatively low transmission, the best strategy to contain both strains

is to treat ‘‘hard and early’’. However, if the transmissibility is

higher and the fitness cost of resistance is low, then this strategy

can have devastating consequences as the resistant strain can infect

a large fraction of the population. This demonstrates the

importance of effective non-pharmaceutical interventions that

could reduce bu.

For larger values of w an interesting process occurs. Starting

from low bu the wild-type dominates. As bu increases – crossing

the ‘‘vertical’’ null isocline where both FSs are equal – the resistant

strain begins to prevail, until crossing the ‘‘slant’’ null isocline

where the wild-type strain starts to regain its dominance. A

possible explanation for this dominance shift is that as the wild-

type strain becomes more transmissible, it depletes the pool of

susceptibles too quickly, leaving the resistant strain with few

individuals to infect once it emerges. However, for even larger w
and high r, increasing bu also increases the FS of the resistant

strain. In this scenario, the relative transmissibility is so high that

even if the wild-type strain can spread rapidly, the resistant strain

will eventually ‘‘catch up’’ and outcompete it.

Figure 6. Final epidemic size of both strains vs. r. (c~0:002 as
asterisks and c~0:02 as diamonds) Vertical dashed lines represent
r�(c); higher c, lower r� . Note that r� is effective in halting the spread
of resistance but not in reducing the total FS. Also, for larger c, r� loses
its effectiveness in avoiding the spread of resistance. Other parameters:
bu~0:6, w~0:5.
doi:10.1371/journal.pone.0059529.g006

Figure 7. Final Sizes vs. relative transmissibility for r~r� and
r~rmin. The figure shows the effectiveness of r� and rmin vs. the
relative transmissibility. For any value of w, r� is more effective than rmin

at avoiding the spread of resistance in the population (black diamond
vs. black dashed curves). However, rmin is more efficacious at reducing
the overall epidemic (blue dashed vs. blue diamond). Solid line
corresponds to r~0. Other parameters: bu~0:6, c~0:002:
doi:10.1371/journal.pone.0059529.g007
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Thus, when trying to predict the outcome of the competition

dynamics between wild-type and resistant strains, knowing the

relative transmissibility of the latter is not sufficient. One must also

know the actual value of its transmissibility. In the endemic case,

however, when treatment is fixed, the relative transmissibility

completely determined which strain ultimately dominated

(Figure 2). These considerations complement observations made

in [17].

The Impact of Contact Structure
Two strong simplifications made in our model were to ignore

the complex contact structure of human populations and the

stochastic nature of the transmission and de novo resistance

dynamics. While these assumptions allowed us to obtain closed-

form solutions for effective treatment regimes, the social network

underlying the epidemic process is known to have non-trivial

effects on transmission dynamics [21,22,36,37]. In this section we

use a model equivalent to (1)–(5) that features contact structure

[38] and stochasticity [39]. We again assume c~0:002, and utilize

Monte-Carlo (MC) simulations to assess the effectiveness of r� (Eq.

(14)) in single epidemic situations.

To perform MC simulations of the model, we have generated

networks of size N~25|104 with fat-tailed degree distributions

fpkg (distribution of number of contacts per individual, shown in

Figure 9), via the Configuration Model algorithm [40]. For every

generated network, a randomly chosen individual is infected with

the wild-type strain and the dynamics are then simulated in

discrete time:

i. each time step, every susceptible neighbor S of every

infectious individual Ix is infected with probability bxDt;

ii. wild-type infections are treated with probability r, leading to

resistance-conferring mutation with probability c;

iii. each time step every infectious individual Ix recovers with

probability sxDt (with m~0).

Figure 10 shows the variation in the final epidemic size (FS) of

the system due to the contact heterogeneity and the inherent

stochasticity of the disease and pathogen mutation processes. The

worst-case scenarios (the highest FS obtained for a given value of

r) qualitatively follow the same behavior as the ODE model above

(blue curves in Figure 6). More importantly, the predicted optimal

treatment fraction r� provides a good approximation to what

could be considered the best treatment plan, yielding the lowest

total FS while halting the spreading of resistance (Figure 10,

greener dots). As in the deterministic case, for rwr�, resistance

spreads widely. Hence, when the frequency of de novo cases is small,

the efficacy of the treatment fraction r� to minimize both the

epidemic size and the risks of resistance emergence, is robust to

both the heterogeneity of population structure as well as the

stochasticity of transmission and mutation dynamics.

Discussion

The rapid development of an effective vaccine against an

emerging novel influenza virus presents considerable challenges.

Thus, antiviral agents could play a central role as a first-line

defense against emerging epidemics of influenza. The large-scale

use of these drugs could, in turn, select for the evolution of drug-

resistant strains [8], making the strategic distribution of antivirals

essential in quelling the spread of drug-resistance while limiting the

overall epidemic size. In this work we have discussed the influence

of two key parameters on the effectiveness of treatment: the

relative transmissibility of the drug-resistant strain (w), and the

frequency of de novo resistance (c). We extended a previous model

[17] to include demography and performed analytical calculations

of the reproductive numbers, stability of the fixed points, and

conditions for the exclusion or coexistence of resistant and wild-

type pathogen strains.

In the endemic case we found that, depending on the values of

Rr
0 (or equivalently w) and c, the optimal treatment regime will be

at intermediate (case (A) for high w and low c ) or more extreme

values (case (B) for low w and high c). Intuitively it is clear that if

the resistant strain is highly transmissible (high w), then treatment

Figure 8. FSres{FSw in the (bu=ªu,w) parameter space. cu is fixed, and r~0:3,0:5,0:7 (left to right). Gray-black regions are dominated by the
resistant strain. As treatment increases the resistant strain 1) benefits from higher wild-strain transmissibility, 2) increases the range of relative
transmissibility for which it can spread, and 3) expands the region in which it can extensively spread (black region).
doi:10.1371/journal.pone.0059529.g008

Figure 9. The fat-tailed degree distribution (contact per
individual) with power-law tail and exponential cut-off. Used
to generate heterogeneous networks for the MC simulations.
doi:10.1371/journal.pone.0059529.g009
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should be moderate in order to limit the selective advantage of

drug-resistant phenotypes. Conversely, if the resistant strain is

weakly transmitted (low w), then more intense treatment regimes

are preferred since resistance-only endemic levels will be relatively

low. These recommendations are valid as long as infections with a

wild-type or a resistant strain represent the same harm to the host

(e.g., strains with similar infectious periods and virulence). In

addition, we also remarked that when c is low, the optimal

treatment regime can be approximated by r�. In the single

epidemic case, numerical simulations also suggest that if c and w
are low, r� is still a useful quantity when designing treatment

strategies. However, in contrast to the endemic case, knowing the

relative transmissibility of the resistant strain is not enough to

predict the final outcome of the competition between the two

strains. In this case, the strain that successfully spreads first has a

significant impact on which strain infects more individuals during

the epidemic. Our results also indicate that early and high

treatment regimes are most effective at reducing the number of

infections while hindering the rise of resistance, when the

transmissibility of the wild-type strain is relatively low. This

emphasizes the importance of non-pharmaceutical interventions

aimed at reducing the transmission rate of the disease.

Further, we showed that for small c, the parameter r� is robust

to the presence of contact heterogeneity and stochasticity, as it still

minimizes both the epidemic size and the risks of resistance

emergence. This reinforces the public health implications of the

effective treatment expressions derived herein.

An interesting similarity across time scales is the impact of the

frequency of de novo resistance on r�: as c increases, the

effectiveness of r� becomes compromised. While we give

mathematical and biological arguments for this property, the

inherent uncertainty in the empirical values of c make this

observation potentially relevant to the designing of treatment

strategies [8].

Our model, like any other, is not exempt of simplifying

assumptions, or uncertainties about the model parameter values

and transmission dynamics of wild-type and resistant strains. Thus,

rather than providing specific quantitative recommendations for

treatment policies, we emphasize the qualitative character of our

observations. Moreover, we recognize that even if these uncer-

tainties were resolved, we still face ethical issues when deciding to

implement treatment policies based on our recommendations; e.g.,

treat only a certain fraction of those infected if relative transmis-

sibility is high and de novo resistance is unlikely. This is a difficult

case for the public health planner, and the choice is left to them. If

relative transmissibility is low and de novo resistance is more likely,

then our recommendations are less controversial: treat people as

they come in based on their clinical profile. In terms of the

assumptions made in our analysis, we considered that treatment

and de novo resistance happen immediately after infection. In the

Text S1 we present a model that features stage progressions

(treatment and de novo resistance occur at certain rates rather than

instantaneously) and show that its dynamics are analogous to those

presented here (see Figure S1, S2, S3). We also assumed that the

fraction of treated individuals can, with no regard to economic and

social costs, attain any value between 0 and 1, and remain constant

throughout time. This is generally not true as treatment

availability and costs vary with time and socioeconomic context

(models in [5,6,41,42] explore different time-dependent treatment

regimes). We have considered a model with equal birth and death

rates, thus, it may also be important to study the impact of

demographics on the effectiveness of treatment regimes, though

less so in the single epidemic case. We have also excluded

coinfection with both strains, which is known to affect the

evolution of the influenza virus (e.g., viral reassortment [4]), and

could in turn influence the development of drug-resistant

phenotypes. We suspect that accounting for coinfection might

lead to new and interesting dynamics.

Our results shed light on the epidemiological impact of the

interplay between treatment regimes and relative transmissibility

of a strain of influenza resistant to antiviral treatment and the

frequency of de novo resistance, both aspects which are difficult to

assess empirically. These findings could have important implica-

tions for the strategic distribution of antivirals in a population in

response to the emergence of a novel influenza strain.

Supporting Information

Figure S1 Compartmental diagram for the analogous
model.

(EPS)

Figure S2 Comparison of the two models in the endemic
case.

(EPS)

Figure S3 Comparison of the two models in the single
epidemic case.

(EPS)

Figure S4 Transcritical Bifurcation between DFE and
CFP.

(EPS)

Figure S5 Transcritical Bifurcation between RFP and
CFP.

(EPS)

Figure S6 Transcritical Bifurcation between the DFE
and the RFP.

(EPS)

Figure S7 Transcritical Bifurcation between RFP and
CFP.

(EPS)

Figure S8 Stability behavior of the system.

(EPS)

Figure 10. Monte Carlo simulations on a network with
heterogeneous contact structure. (c~0:002). Every point repre-
sents one of over 10,000 simulations on networks of size 250 000, with
color indicating the proportion of resistance in the FS (from black, 100%
wild-type, to green, 100% resistant). r� (Eq. (14)) is shown in dashed
black line. The effectiveness of r� is robust to stochasticity and
h e t e r o g e n e o u s c o n t a c t s t r u c t u r e s . O t h e r p a r a m e t e r s :
bt~0:3, m~0:3, w~0:5, t~0,bu=cu~0:6, a n d Ru

0~Sk’Tbu=cu~9:6,
where Sk’T is the average excess degree in the network [39].
doi:10.1371/journal.pone.0059529.g010
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Figure S9 Prevalence as a function of r and w.
(EPS)

Figure S10 I3
r (r) for 1vRr

0v1=(1{r�c) and for
Rr

0w1=(1{r�c).

(EPS)

Text S1 Analytical derivation of reproduction numbers;
analogous model; analytical derivations regarding the
stability of the system; and analytical derivations
regarding the optimal treatment regimes.
(PDF)
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