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Abstract

Our research is aimed at devising and assessing a computational approach to evaluate the affinity of endocrine active
substances (EASs) and their metabolites towards the ligand binding domain (LBD) of the androgen receptor (AR) in three
distantly related species: human, rat, and zebrafish. We computed the affinity for all the selected molecules following a
computational approach based on molecular modelling and docking. Three different classes of molecules with well-known
endocrine activity (iprodione, procymidone, vinclozolin, and a selection of their metabolites) were evaluated. Our approach
was demonstrated useful as the first step of chemical safety evaluation since ligand-target interaction is a necessary
condition for exerting any biological effect. Moreover, a different sensitivity concerning AR LBD was computed for the
tested species (rat being the least sensitive of the three). This evidence suggests that, in order not to over2/under-estimate
the risks connected with the use of a chemical entity, further in vitro and/or in vivo tests should be carried out only after an
accurate evaluation of the most suitable cellular system or animal species. The introduction of in silico approaches to
evaluate hazard can accelerate discovery and innovation with a lower economic effort than with a fully wet strategy.
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Introduction

During the last years, following some evidence suggesting that

exposure to environmental chemicals can lead to disruption of

endocrine function in a number of wildlife species (molluscs,

crustacean, fish, and birds), concern has been expressed also for

human health. Even if many EU regulations contain specific

provisions on chemicals that can affect the endocrine system, (e.g.

REACH [1], Plant Protection Products Regulation [2], Biocides

Regulation [3], Regulation on cosmetics [4], Water Framework

Directive [5]), warning was raised by Bars et al. [6], who stated

that recent European legislation has created a hazard-based

approval criterion, which supports marketing and use of chemicals

only on the basis that they do not induce endocrine activation in

humans or wildlife species.

The in silico approaches have become relevant to these

legislations as far as they can help reduce the number of animals

used (by pre-screening and prioritising chemicals for more

intensive testing). Moreover, they are in line with the vision of

the 21st century toxicity paradigm: chemicals will be subjected to a

multiplicity of high-throughput screening tests to detect cellular

response to an array of ‘‘pathways of toxicity’’, and results will feed

into computational systems biology tools that model dose-response

effects and inform new risk assessment approaches [7]. Several

computational approaches may be useful for evaluating interac-

tions between a receptor and its putative ligands: some of them are

based on molecular docking, which has been reliably used for

decades in pharmacological research and development [8,9].

The present research is aimed at devising and assessing a

computational approach to evaluate the affinity towards the

androgen receptor (AR) of hormonally active substances and of

their metabolites. To build the model, the ligand binding domain

(LBD) structures of ARs of three distantly related species (human,

rat, and zebrafish) were used. The use of three reference species

was also meant to evaluate whether their sensitivities to the test

chemicals do differ. Three fungicides (vinclozolin, iprodione and

procymidone) and their rat metabolites [10–13], all with a well-

established androgenic activity [14–18], were tested. The

proposed model can anticipate, very early in the hazard

identification procedure, the ability of a chemical to bind the

AR LBD. This information is very useful to set up a priority list

during the screening of a large chemical database, and may be

exploited also to design new chemicals for use in different fields

[19]. To date, considering the available tests, evidence coming just

from in silico assays cannot be considered sufficient for the

identification of an endocrine-active substance, and the assessment

of its possible relevance to humans. However, the information
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about qualitative and quantitative hormonal response to a

chemical might be useful to identify its ‘potential’ for interaction

with the endocrine system, and therefore to better design and

carry out further testing steps.

Materials and Methods

Comparative modeling
The human and rat AR LBD crystal structures were down-

loaded from the RCSB Protein Data Bank [PDB entry: 3L3X

(chain A), and PDB entry: 1I37, respectively]. The crystallographic

structures of the human and rat receptors were then submitted to a

preparation step, based on energy minimization (EM) with the

Amber12:EHT force field [20] and the reaction field solvation

model. Refinement was carried out down to a Root Mean Square

(RMS) gradient of 0.05 kcal/mol/Å2. All the computational

procedures were carried out with the Molecular Operating

Environment (MOE).

The zebrafish AR sequence was downloaded from the UniProt

Protein Knowledgbase database [entry: B9P3Q7]. 1T7R, corre-

sponding to the chimpanzee AR LBD, was set as template in order

to compute a 3D structural model [21]. The alignment produced

by the MOE Align program with default parameters was manually

adjusted. Comparative model building was carried out with the

MOE Homology Model program. Ten independent models were

built and refined, then the highest scoring intermediate model -

according to the electrostatic solvation energy calculated using a

Generalized Born/Volume Integral (GB/VI) methodology [22] -

was submitted to a further round of EM. Both for the intermediate

and the final structures, the refinement procedures consisted in

EM runs based on the Amber12:EHT force field with the reaction

field solvation model. The quality of the final model was carefully

checked with the MOE Protein Geometry module, in order to

make sure that the Ramachandran plot, the side chain packing,

and the stereochemical quality of the generated structure were

acceptable.

Binding site analysis
The binding site of each receptor was identified through the

MOE Site Finder program, which uses a geometric approach to

calculate putative binding sites in a protein, starting from its

tridimensional structure. This method is not based on energy

models, but only on alpha spheres, which are a generalization of

convex hulls [23]. The prediction of the binding sites, performed

by the MOE Site Finder module, confirmed the binding sites

defined by the co-crystallized ligands in the holo-forms of the

investigated proteins.

Molecular database preparation
The database was prepared by building with the MOE Builder

the molecular structures of the three fungicides and of their major

rat metabolites, as well as the molecular structures of the

endogenous hormones in each species (human, rat and zebrafish).

Each structure was converted into a tridimensional structure, and

energy was minimized, with the MOE Energy Minimize program

and the Amber12:EHT force field, down to a RMS gradient of

0.05 kcal/mol/Å2. Since some of these molecules contain

stereogenic centres (see Figure 1, atoms marked by an asterisk),

all the possible enantiomers/diastereomers were built and added

to the database. Moreover, 20,000 conformations were generated

for each ligand by sampling all their rotatable bonds.

Molecular docking
The in silico screening was carried out with the MOE Dock

program, part of the MOE Simulation module. The whole

procedure was carried out for each of the three AR LBD - human,

rat and zebrafish. The AR LBD was set as ‘Receptor’. The

selected placement methodology was ‘Triangle Matcher’, which is

the best method for standard and well-defined binding sites. With

Triangle Matcher the poses are generated by superposing triplets

of ligand atoms and triplets of receptor site points. The receptor

site points are alpha spheres centres that represent locations of

tight packing. Thirty complexes were generated for each tested

ligand. Duplicate complexes were then removed: poses are

considered as duplicates if the same set of ligand-receptor atom

pairs are involved in hydrogen bond interactions and the same set

of ligand atom receptor residue pairs are involved in hydrophobic

interactions. The accepted poses were scored according to the

London dG scoring function, which estimates the binding free

energy of the ligand from a given pose.
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where c represents the average gain/loss of rotational and

translational entropy; Eflex is the energy due to the loss of

flexibility of the ligand (calculated from ligand topology only); fHB

measures geometric imperfections of hydrogen bonds and takes a

value in [0,1]; cHB is the energy of an ideal hydrogen bond; fM

measures geometric imperfections of metal ligations and takes a

value in [0,1]; cM is the energy of an ideal metal ligation; and Di is

the desolvation energy of atom i. The difference in desolvation

energies is calculated according to the formula
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where A and B are the protein and/or ligand volumes with atom i
belonging to volume B; Ri is the solvation radius of atom i (taken

as the OPLS-AA van der Waals sigma parameter plus 0.5 Å); and

ci is the desolvation coefficient of atom i. The coefficients (c, cHB,

cM, ci) have been fitted from approx. 400 x-ray crystal structures of

protein–ligand complexes with available experimental pKi data.

Atoms are categorized into about a dozen types for the assignment

of the ci coefficients. The triple integrals are approximated using

Generalized Born integral formulas.

All the saved solutions were submitted to a further refinement

step, based on molecular mechanics (MM). In order to speed up

the calculation, residues over 6 Å cutoff distance away from the

pre-refined pose were ignored, both during the refinement and in

the final energy evaluation. All receptor atoms were held fixed

during the refinement. During the course of the refinement,

solvation effects were calculated using the reaction field functional

form for the electrostatic energy term. The final energy, docking

score, was evaluated using the GBVI/WSA dG scoring function

with the Generalized Born solvation model (GBVI) [24]. The

GBVI/WSA dG is a forcefield-based scoring function, which

estimates the free energy of binding of the ligand from a given

pose. It has been trained using the MMFF94x and AMBER99

forcefields on the 99 protein-ligand complexes of the Solvated

Interaction Energy (SIE) training set [25]. The functional form is a

sum of terms:
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where c represents the average gain/loss of rotational and

translational entropy. a and b are constants, which were

determined during training (along with c) and are forcefield-

dependent. Ecoul is the coulombic electrostatic term, which is

calculated using currently loaded charges, using a constant

dielectric of 1. Esol is the solvation electrostatic term, which is

calculated using the GB/VI solvation model. Evdw is the van der

Waals contribution to binding. SAweighted is the surface area

Figure 1. 2D structures of the molecules used to build the test database. The stereogenic centres are marked with an asterisk (*). Each
molecule is marked by a letter: A = testosterone, B = dihydrotestosterone (DHT), C = 11-ketotestosterone, D = vinclozolin, E = vinclozolin_1,
E = vinclozolin_2, F = vinclozolin_5, H = iprodione, I = iprodione_8, J = iprodione_13, K = iprodione_14, L = procymidone, M = procymidone_1,
N = procymidone_2, O = procymidone_3, P = procymidone_4, Q = procymidone_5, R = procymidone_6, S = cyproterone acetate, T = flutamide,
U = procymidone-NH-COOH, V = procymidone-3-Cl, W = cyclopropane-(COOH)2.
doi:10.1371/journal.pone.0104822.g001
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weighted by exposure. This weighting scheme penalizes exposed

surface area. All the ligands of the molecular database were tested

according to the above procedure. The Amber12:EHT force field

was used for all the computational procedures.

Docking accuracy was evaluated using the present procedure for

reproducing 10 ligand-receptor crystallographic complexes. Li-

gand RMSD values between crystallographic vs computational

complexes were measured.

As a negative dataset, we randomly selected 1,000 compounds

from the Asinex Platinum Database (http://www.asinex.com) and

docked them on the human AR LBD, using the above procedure.

Low-mode molecular dynamics simulations
For studying the flexibility of AR LBD helix 12, we applied the

low-mode molecular dynamics approach, aimed at focusing a MD

trajectory along the low-mode vibrations and featuring a very

efficient way vs classical MD for searching for minima troughs on

the potential energy surface. To run these computations, we used

the MOE Conformational Search program of the Conformations

module. This program uses an efficient implicit method for

estimating the low-frequency modes and is based on the

attenuation of high-range velocities as described in detail in [26].

The human AR LBD bound to: i) dihydrotestosterone (DHT),

an agonist, ii) cyproterone acetate, an antagonist, and iii) in its apo
form was simulated after preparation. The complex with DHT

was obtained from RCSB PDB (3L3X); the apo form was obtained

by in silico removing DHT, and the complex with cyproterone

acetate was obtained through molecular docking on the same

crystal structure.

Both helix 12 (set as a rigid body) and the loop joining helix 12 to

the preceding helix were left free to move during the low-mode

molecular dynamics, whereas the residues more than 4.5 Å away

were fixed (not free to move, but used for the energy calculations);

the other residues were defined as inert (fixed and not used for energy

calculations). The simulation was carried out with default param-

eters, except for strain energy cutoff, which was set at 100 kcal/mol.

One thousand conformations were generated and analysed.

The same computational approach was used also to produce

ensembles of natural ligand-receptor complexes, in order to

estimate with greater accuracy their binding free energies. To this

purpose, we started from the top scoring poses obtained from the

molecular docking procedure. The ligand and the residues within

4.5 Å from it were left free to move during the low-mode

molecular dynamics, whereas the residues more than 4.5 Å away

were fixed (see above); the other residues were defined as inert (see

above). The simulation was carried out with default parameters,

except for strain energy cutoff, which was set at 50 kcal/mol. Four

hundred conformations were generated and the one with the

lowest energy was used to compute the complex dissociation

constant value. The Amber12:EHT force field was used for all the

computational procedures.

Dissociation constant calculation
The estimated binding affinity of the top-scoring solution for each

complex (receptor-ligand) was not directly computed from the GBVI/

WSA dG value, but the complexes were further refined through the

use of a set of specific MOE procedures, named LigX, aimed at the

minimization of ligands in the receptor binding site. The dissociation

constant (Ki) was computed through the binding free energy estimated

with the GBVI/WSA dG scoring function, after complex optimiza-

tion with LigX, according to the following equation:

DG~RT ln(Ki) ð4Þ

where R represents the gas constant and T the temperature. The Ki

was computed starting from the binding free energy values at a fixed

temperature (300 K).

Results

Comparative modeling
The homology model of the zebrafish AR LBD was built using

as template 1T7R, the crystal structure of chimpanzee AR LBD

(66% sequence identity). Figure S1 in File S1 shows the alignment

used for carrying out the modelling procedure. Ten independent

models were built and refined, and the one top scoring according

to the electrostatic solvation energy was selected. The presence of a

well-defined binding site, shown in Figure 2, was probed through

the MOE Site Finder program. The same approach was applied to

human and rat AR LBD crystals. Table 1 reports the binding site

scores for the three receptor structures and lists the residues lining

each of them. Figure 3 shows the global alignment of the

investigated AR LBD; the residues in the binding sites are

highlighted. Finally, after a structural superposition, the global and

the binding site RMSD values were computed both for a-carbons

and for whole residues of the three AR LBD; data are summarized

in Table 2.

Validation of the docking protocol
The accuracy of the docking protocol detailed under Methods

was extensively validated by reproducing the ligand-receptor

complexes for 10 different AR LBDs deposited in the RCSB PDB.

Table 3 reports the selected structures and the RMSD values

between the co-crystallized and the docked ligands: the latter

range between 0.13 and 0.35 Å.

In order to assess the correlation between docking scores and

biological data, we docked to the rat AR LBD seven ligands from a

published dataset, whose relative affinities for the rat AR binding

site had been experimentally determined [27]. The computed

relative affinities (dissociation constants, Ki) showed the same

ranking as the experimental ones; Table 4 reports experimental

(literature data) vs in silico (our computations) data.

Furthermore, from an Asinex combinatorial chemistry dataset,

we randomly selected 1,000 compounds, which have never been

predicted/demonstrated to bind AR LBDs, and evaluated their

docking score on the human AR. All of their docking scores were

positive (.0, as plotted in Figure S2 in File S1), which

substantiates the ability of the proposed procedure to correctly

identify negative (non-interacting) compounds.

Results of docking the test compounds to zebrafish, rat
and human AR LBD

Figure 1 reports the structures of the three parent test fungicides

and of their selected metabolites. The molecular database also

contains the main endogenous androgenic hormones for all the

three species, namely testosterone and DHT for human and rat

[28], testosterone and 11-ketotestosterone for zebrafish [29].

Table 5 reports the dissociation constants (Ki) computed

complexes through equation (4) (see under Methods) for all AR

LBD. From these data, endogenous hormones show the highest

affinity for their AR in rat; instead, both in zebrafish and humans,

the affinity of endogenous hormones for their AR is lower than

with some xenobiotics. Table 6 reports the Docking Score (kcal/

mol) for the tested chemicals. For human AR, in comparison with

the hormones, (S)-vinclozolin and (R)-vinclozolin show an

intermediate affinity (29.87 kcal/mol and 29.61 kcal/mol,

respectively), whereas their metabolites, (R)-vinclozolin_1 and

(S)-vinclozolin_1, show the second (210.80 kcal/mol) and the
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fourth highest affinity (210.44 kcal/mol), respectively. Iprodione

shows the highest affinity (211.35 kcal/mol) for human AR,

whereas procymidone one of the lowest (29.27 kcal/mol). The

Docking Scores reported in Table 6 were used to build the box

plot reported in Figure 4.

Taking as thresholds the affinities for the endogenous hormones

[30,31], five molecules, iprodione, (R)-vinclozolin_1, (R,S)-procy-

midone_1, (S)-vinclozolin_1 and (S,S)-procymidone_1, show a

higher affinity for human AR than testosterone (210.30 kcal/mol)

(Figure 4, human, green line), while only two molecules,

iprodione_14 and iprodione_13, have a lower affinity (Figure 4,

human, pink line) than DHT (29.11 kcal/mol).

In rat, iprodione and its metabolites have the lowest affinity

(higher Docking Score) for AR: iprodione_13 (J), 26.93 kcal/

mol, and iprodione_14 (K) 27.21 kcal/mol, rank worse than the

parent molecule iprodione (28.94 kcal/mol). The affinity varies

extensively among molecules derived from procymidone: (R)-

procymidone_6 (R), 29.65 kcal/mol, and (R,R)-procymidone_3

(O), 29.67 kcal/mol, have a favourable binding energy, contrary

to the parent compound, procymidone (L), 28.31 kcal/mol.

Compared with their metabolites, (S)-vinclozolin and (R)-

vinclozolin show low affinities for rat AR: 28.22 kcal/mol and

28.18 kcal/mol, respectively. Finally, the binding energies of the

endogenous hormones are the lowest (most favourable) among

the tested molecules: testosterone, 210.40 kcal/mol, and DHT,

210.97 kcal/mol.

In zebrafish, procymidone metabolites vary extensively in

energy: (R,R)-procymidone_3 (O) has the best affinity (2

11.06 kcal/mol), but procymidone_4 (P) has the third worst

energy (28.52 kcal/mol), and the parent compound has a low

affinity (28.49 kcal/mol) for AR.

As in rat, (R)-vinclozolin, 29.12 kcal/mol, and (S)-vinclozolin,

28.73 kcal/mol, are in the low ranking positions. Also iprodione,

29.74 kcal/mol, and its metabolites show low affinity for zebrafish

AR: the molecule with the lowest affinity is iprodione_13 (J), 2

8.38 kcal/mol.

Using hormone affinity as threshold, four molecules, all

procymidone metabolites, (R,R)-procymidone_3, (S)-procymi-

done_6, (R,R)-procymidone_2, (S,R)-procymidone_1, display a

better affinity than 11-ketotestosterone (210.29 kcal/mol), while

testosterone shows a slightly lower affinity (210.21 kcal/mol).

Only for exemplification purposes, Figure 5 reports the top

scoring poses for iprodione complexed with human (A), rat (B),

and zebrafish (C) AR, respectively; iprodione orientation appears

similar in the three complexes, with a RMSD value of 0.8 Å

between human and zebrafish, and 1.9 Å between rat and

zebrafish.

Low-mode molecular dynamics simulations
Differences between experimental and computational values of

Ki are consistently expected for nuclear steroid receptors and are

specifically connected with the dynamic changes in their structure.

After the initial molecular recognition step, nuclear steroid

receptors deeply rearrange [32–34], partially blocking the ligand

into their binding site through a displacement of helix 12; as a

result, apparent Ki measured through experimental approaches

Table 1. Binding site features for each of the three selected receptors.

AR Size PLB Hyd Side Residues

Human 54 2.43 24 44 LEU701 LEU704 ASN705 LEU707 GLY708 GLN711 TRP741 MET742 MET745 VAL746 MET749 ARG752 PHE764
MET780 MET787 LEU873 PHE876 THR877 MET895

Rat 70 3.01 35 54 LEU701 LEU704 ASN705 LEU707 GLY708 GLN711 TRP741 MET742 MET745 VAL746 ALA748 MET749 ARG752
PHE764 MET780 MET787 LEU873 PHE876 THR877 LEU880 MET895 ILE899

Zebrafish 73 2.44 30 47 LEU652 LEU655 ASN656 LEU658 GLY659 GLN662 TRP692 MET693 MET696 VAL697 LEU700 ARG703 PHE715
MET731 MET738 LEU822 PHE825 THR826 ILE846 ILE850

Size indicates the number of alpha spheres comprising the site. PLB is the Propensity for Ligand Binding score for the contact residues. Hyd indicates the number of
hydrophobic contact atoms in the receptor. Side indicates the number of sidechain contact atoms in the receptor.
doi:10.1371/journal.pone.0104822.t001

Figure 2. Molecular surface of the binding site and filling dummy atoms in the zebrafish AR LBD model, side (A) and top (B) view.
doi:10.1371/journal.pone.0104822.g002
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are very low. Our in silico approach does not take into account the

receptor rearrangement and this results in higher values for

computed Kis.

Low-mode molecular dynamics simulations of AR LBDs were

then run, under different computational setups, with a twofold

aim: i) sampling the conformational space of helix 12 in the human

AR LBD, when bound to an agonist and to an antagonist, and in

its apo form); ii) estimating binding affinities of the natural

hormones for the three AR LBDs at a higher accuracy level than

with molecular docking.

During the molecular dynamics simulations, helix 12 keeps a

closed conformation when the human AR binds an agonist

(DHT), whereas it opens when the LBD is empty or bound to an

antagonist (cyproterone acetate). Starting from a common closed

conformation of helix 12 in all the three setups, only the apo and

the antagonist-bound structures rapidly evolve towards helix 12

opening. Figure 6 shows the three closed starting conformations

(helix 12), superposed to the most energetically favoured open

conformation for the apo (Figure 6, panel B) and the antagonist-

bound LBD (Figure 6, panel C). On the contrary, helix 12 does

not open (1,000 generated and analysed conformations) when

LBD is bound to an AR agonist, such as DHT (Figure 6, panel A).

In spite of the ability of molecular dynamics to correctly sample

the reported helix 12 conformational transition, the differences

between experimental and computational dissociation constant

values for natural agonists cannot yet be compensated for. Indeed,

as shown in Table 5, the binding affinities of the natural hormones

for the three investigated LBDs, computed applying LigX to the

lowest energy complex out of 400 obtained from the low-mode

molecular dynamics simulations, are very close to the affinities

obtained from our rapid docking procedure. The experimental

issue is connected with the definition of Ki as the ratio koff/kon,

where koff is the dissociation rate constant in min21 and kon is the

association rate constant in M21 min21. The closed conformation

of helix 12 induced by the binding of an agonist produces a

decrease in koff values, thus reducing the apparent dissociation

constant. The discrepancy between experimental and computa-

tional Ki for the tested natural agonists is strictly connected with

this phenomenon. The analysis of the interactions between helix

12 and DHT, carried out on a crystallographic complex (RCSB

PDB code: 3L3X), shows only one weak and non-specific

interaction between the ligand and the side chain of Met 895, in

helix 12 (see Figure S3 in File S1), corroborating a kinetic more

than a thermodynamic effect as the reason for the discrepancy

between computed and experimental Kis.

Discussion

Traditional in vitro and in vivo toxicity-testing strategies, which

are expensive and time consuming and involve a large number of

test animals, have been evolving over the last few decades, in order

to address increasing concerns about a wider variety of toxic

responses, such as subtle neurotoxic effects, adverse immunologic

changes, and endocrine activity. Moreover, toxicity testing is

under increasing pressure, and the most utilized approach, which

Figure 3. Global alignment of the selected AR LBD: the residues of the binding sites are highlighted with the following color-code:
red for human AR, green for rat AR, and yellow for zebrafish AR.
doi:10.1371/journal.pone.0104822.g003

Table 2. AR LBD and binding site RMSD values, computed for a-carbons and for whole residues of the three selected receptors.

RMSD RMSD

C alpha [Å] All atoms [Å]

AR LBD 1.27 1.52

Binding site 0.59 0.77

doi:10.1371/journal.pone.0104822.t002
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relies primarily on in vivo mammalian toxicity testing, is unable to

adequately meet the competing demands [35].

Although the current knowledge may not yet allow to fully

eliminating the need for in vivo testing, our proposed computa-

tional approach, associated with suitable in vitro assays, can

provide an effective tool to identify, at a very early stage, the

potency of any EAS, through the measurement of its affinity (the

binding free energy/complex Ki) for the AR. This kind of

information can be useful at the very beginning of the pipeline of

hazard identification for compounds with putative EAS activity.

The direct interaction between the putative EAS and the AR is a

prerequisite to biological activity and should be carefully kept into

account, as done in our model. Interaction depends principally

upon affinity, which is a term referring to the strength of

interaction between two molecules. The affinity of a ligand for a

specific receptor determines its residence time of association, a

parameter often quantified by the dissociation constant [36].

Generally, the higher is the affinity the longer is the residence time.

Low affinity ligands do not need any evaluation of intrinsic activity

(a, which is the relative ability of a drug-receptor complex to

produce a maximum functional response), since they do not spend

enough time in the receptor binding site to exert any effect either

in in vitro or in in vivo tests.

Although interaction between ligand and receptor is essential in

order to cause any effect, the intrinsic activity is the key to the

ability of a molecule to induce a specific response. For the

molecules with in silico high affinity for ARs, in vitro selected tests

should first confirm the computed affinity. Next, only for the

molecules that show high in vitro affinity, the intrinsic activity

should be evaluated in order to discriminate between agonist

(a= 1), partial agonist (1, a ,0), or antagonist (a= 0).

Our in silico approach can thus compute the affinity of the

simulated complexes, whereas reliable values for intrinsic activity

(a) can be obtained only by in vitro and/or in vivo tests [37,38].

Nowadays, several in vitro tests aim at evaluating the affinity of

chemicals for ARs, such as the AR Binding Assay described in

OCSPP Guideline 890.1150 and proposed by the EPA [39] as

part of the Tier 1 of the Endocrine Disruptor Screening Program

(EDSP). This test consists of a radioligand binding assay that

identifies compounds able to compete for AR binding in vitro, and

is not meant to measure the molecular intrinsic activity (a) and to

classifying them as (partial) agonists or antagonists.

Tests aimed at the evaluation of the intrinsic activity (a) of

putative EASs are mainly based on two end points: the

measurement of cell proliferation or the use of an androgen-

responsive reporter gene. The A-SCREEN assay [40] measures

the proliferation of sensitive cells to screen for androgen activity.

The MDA-kb-2 cell line has been developed by scientists at the

EPA [41] through a stable transfection of AR and the insertion of

an MMTV-driven luciferase reporter gene into the human

mammary cancer MDA-MB-453 cell line. Both androgen and

glucocorticoid agonists can activate the MMTV luciferase gene,

and antagonists can be tested with respect to a fixed reference

concentration of the agonist.

Table 3. Molecular docking validation dataset and RMSD values between the co-crystallized and the docked ligands.

Species PDB code Ligand RMSD [Å]

Human 3L3X DHT 0.17

Human 2AMA DHT 0.24

Human 2PIO DHT 0.26

Human 2AM9 testosterone 0.13

Human 2YHD testosterone 0.26

Human 2OZ7 cyproterone acetate 0.35

Chimpanzee 1T7R DHT 0.15

Chimpanzee 1T73 DHT 0.14

Rat 1I37 DHT 0.32

Rat 3G0W oxazolidin-2-imine 0.30

doi:10.1371/journal.pone.0104822.t003

Table 4. Experimental (from [27]) and in silico (computed) dissociation constants for the selected compounds with respect to rat
AR binding site.

Letter (Fig. 1) Natural ligand Relative binding affinity DG-MD kcal/mol Computed Ki

B DHT 100 212.52 1.6?1029

S cyproterone acetate 14 212.47 1.5?1029

T flutamide 0.058 28.78 2.89?1026

L procymidone 0.065 28.66 2.36?1026

V (R,S)-procymidone-3-Cl 0.050 28.38 1.47?1026

U (R,S)-procymidone-NH-COOH ,0.0001 28.37 1.44?1026

W cyclopropane-(COOH)2 ,0.0001 26.12 3.19?1024

DG-MD: binding free energy computed through molecular docking.
doi:10.1371/journal.pone.0104822.t004
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We carried out a validation of the molecular modelling and

docking procedures we had devised by comparing experimental

and computed dissociation constants (Ki) for the human, rat and

zebrafish endogenous hormones with respect to their ARs. A high

in silico affinity between the endogenous ligands and their specific

Figure 4. Box plot for all the calculated binding free energies. The yellow boxes represent the binding free energies of the vinclozolin and its
metabolites for each species. The red boxes represent the binding free energies of iprodione and its metabolites for each species. The blue boxes
represent the binding free energies of procymidone and its metabolites for each species. Outliers are marked as circles. Binding free energies of the
endogenous hormones are marked with continuous lines.
doi:10.1371/journal.pone.0104822.g004

Table 5. Experimental (from literature) and in silico (computed) dissociation constants for the three endogenous tested hormones.

Species Natural ligand DS kcal/mol DG-LM kcal/mol DG-MD kcal/mol Ki (from MD) Experimental Ki

human testosterone [45] 210.30 212.08 212.49 1.55?1029 Low nM range

human DHT [46] 29.11 211.10 212.08 7.76?1028 1.3?102960.2?1029

human DHT [47] 29.11 211.10 212.08 7.76?1028 2.3?1021060.4?10210

zebrafish testosterone [28] 210.21 212.06 212.19 9.35?1028 1.70?102960.50?1029

zebrafish 11-ketotestosterone [28] 210.29 212.09 210.93 1.11?1028 4.77?102962.26?1029

rat testosterone 210.40 212.25 212.81 2.67?1029 NA

rat DHT [48] 210.97 212.37 212.52 1.64?1029 2.7?10210

DS: Docking Score; DG-LM: binding free energy computed through low-mode molecular dynamics simulations; DG-MD: binding free energy computed through
molecular docking; Ki: dissociation constant computed from molecular docking data.
doi:10.1371/journal.pone.0104822.t005
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ARs is a conditio sine qua non for applying our selected approach

to the investigated problem.

Experimental data available from scientific reports are associ-

ated with very high standard error of the mean. Computed

binding free energies are evaluated from the analysis of specific

ligand-receptor non-covalent interactions; their occurrence is

associated with a score that can be interpolated on an

experimental curve [42]. We have already reported that the use

of empirical scoring functions for estimating dissociation constant

values has accuracy in the range of one order of magnitude [43].

Furthermore, the specific ligand-induced activation mechanism of

nuclear steroid receptors is based on a conformational transition,

leading to the rearrangement of helix 12 [32,33], which seemingly

traps the ligand inside the binding site. Accordingly, the

experimentally measured Ki have very low apparent values

(corresponding to most favourable affinities). Conversely, the Ki

values obtained through our in silico approach do not take into

account such a displacement. This structural rearrangement is

peculiar of nuclear steroid receptors, and should not be confused

with the ligand-induced-fit process, which characterizes all the

ligand-receptor interaction events. No induced-fit protocols [44]

have been implemented in this investigation, since the ligand

binding sites of the selected receptors were already well defined in

the available crystallographic structures.

In this paper, our model was used to study the affinity of three

fungicides (vinclozolin, iprodione and procymidone), as well as of

Table 6. Docking Score (DS) (kcal/mol) for the top scoring poses (protein-ligand complexes) for all the compounds of the tested
database.

Human DS Rat DS Zebrafish DS

Letter (Fig. 1) Molecule kcal/mol kcal/mol kcal/mol

D (R)-vinclozolin 29.61 28.22 29.12

D (S)-vinclozolin 29.87 28.18 28.73

E (R)-vinclozolin_1 210.80 28.82 29.86

E (S)-vinclozolin_1 210.44 28.83 210.23

F (R)-vinclozolin_2 29.46 27.96 28.94

F (S)-vinclozolin_2 29.82 27.92 28.65

G (R,R)-vinclozolin_5 210.04 28.62 29.04

G (R,S)-vinclozolin_5 210.01 28.66 29.74

G (S,R)-vinclozolin_5 210.28 28.57 29.26

G (S,S)-vinclozolin_5 29.94 28.62 29.05

H iprodione 211.35 28.94 29.74

I iprodione_8 29.18 27.71 28.93

J iprodione_13 28.38 26.93 28.38

K iprodione_14 28.99 27.21 28.58

L procymidone 29.27 28.31 28.49

M (R,R)-procymidone_1 29.86 29.51 29.94

M (R,S)-procymidone_1 210.56 29.44 210.24

M (S,R)-procymidone_1 210.20 29.35 210.35

M (S,S)-procymidone_1 210.31 29.60 29.75

N (R,R)-procymidone_2 29.83 28.87 210.47

N (R,S)- procymidone_2 210.17 29.17 29.85

N (S,R)-procymidone_2 210.09 28.97 210.17

N (S,S)-procymidone_2 210.21 29.19 210.24

O (R,R)-procymidone_3 29.96 29.67 211.06

O (R,S)-procymidone_3 29.91 29.50 29.36

O (S,R)- procymidone_3 29.53 29.15 29.84

O (S,S)-procymidone_3 210.22 29.22 210.15

P procymidone_4 29.74 28.49 28.52

Q procymidone_5 29.54 28.37 28.63

R (R)-procymidone_6 210.29 29.65 210.23

R (S)-procymidone_6 210.28 29.58 210.48

A testosterone 210.30 210.40 210.21

B DHT 29.11 210.97 –

C 11-ketotestosterone – – 210.29

The last three rows contain the DS values for the endogenous hormones in each species.
doi:10.1371/journal.pone.0104822.t006
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their metabolites, with respect to the AR LBD of three different

species (human, rat and zebrafish). These molecules were selected

because of their classification in the same chemical group

(dicarboximides) as well as of their classification as EASs. The

mechanism behind the endocrine effects of both vinclozolin [10]

and procymidone [16] is well-documented. They compete with

the endogenous hormones for the binding to the AR, but they

Figure 5. Best pose of iprodione complexed with the AR LBD in each species. The ligand molecular surface is also rendered. A) Iprodione
complexed with the human AR LBD, B) iprodione complexed with the rat AR LBD, and C) iprodione complexed with zebrafish AR LBD.
doi:10.1371/journal.pone.0104822.g005

Figure 6. Low-mode molecular dynamics simulations. Superposition of the starting conformation (helix 12) and the most energetically
favoured open conformations for the agonist-bound LBD (A), the apo LBD (B), and the antagonist-bound LBD (C).
doi:10.1371/journal.pone.0104822.g006
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cannot activate it, because of their low intrinsic activity (a . 0),

and thus exert antiandrogenic effects. The toxic mechanism of

iprodione has not been fully clarified yet and this compound is

classified sometimes as antiandrogenic [16] sometimes as

androgenic agent [14]. From our results, it is clear that all the

tested fungicides and their metabolites can bind AR and compete

Figure 7. Hazard evaluation pipeline for putative androgen disruptors. Step 1: database production; step 2: in silico binding assay; step 3
in vitro binding assay for the selected dataset; step 4: in vitro activity assays only for the high affinity molecules (positive hits); and identification of
agonist (a= 1), partial agonist (1,a,0) and antagonist (a= 0) activity.
doi:10.1371/journal.pone.0104822.g007
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with the endogenous hormones in all the tested species, exerting

antiandrogenic effects.

In detail, in human and zebrafish, the tested compounds and

metabolites can bind AR LBD with affinities comparable to the

endogenous hormones: this suggests that there is a strong

competition to occupy the binding site. On the contrary, the rat

AR shows a lower affinity for the tested compounds, and - as a

single assay – it is thus not a suitable molecular model to assess the

toxicity of EASs and of their derivatives. However, identifying a

toxic molecule in rat is an important alert signal, because this

compound is likely to have an even stronger impact in humans.

Conclusions

Our results shed a new light on the selection of the in vitro tests

used for EAS hazard identification. Actually, rat seems to be less

sensitive than human to the tested putative EASs. In vitro tests

based on rat preparations could underestimate the sensitivity to

these classes of molecules, differently from the human AR. On the

other hand, zebrafish could be a more reliable model than rat,

especially for environmental effects. For these reasons, the human

AR LBD seems the most reliable target to be considered for

estimating the EAS hazard in humans, whereas the zebrafish AR

LBD should be considered, when environmental effects of EAS

have to be investigated.

Our in silico approach emerges as a computational methodol-

ogy for the evaluation of the AR affinity (prioritization of

assessment) of a large number of molecules. During the design

of new chemicals, the molecules that show highest affinities should

in principle be disregarded and the main efforts should be focused

on the molecules that show the lowest affinities. On the contrary,

during a safety evaluation process, attention should be focused on

the molecules that show the highest affinities.

While the in silico screening cannot be used as a stand-alone

procedure, it can be successfully used as a first prioritizing step in a

tier approach (Figure 7). The second mandatory check for the in
silico positive hits should be an in vitro evaluation procedure, in

which the affinity of the positive hits are measured through a

reference cellular assay. From our results, the choice of the species

to use in competitive binding assay should be carried out carefully,

because it may lead to hazard over-under-estimation.
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