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Despite recent progress, a challenge remains on how to gently release and recover viable
ctDNA captured on DNA probe-based devices. Here, a reusable detector was
successfully manufactured for the capture and release of ctDNA by means of an
UCNPs@SiO2-Azo/CD-probe. Biocompatible NIR light is used to excite UCNPs and
convert into local UV light. Continuous irradiation induces a rapid release of the entire
ctDNA-probe–CD complex from the functionalized surface via the trans−cis isomerization
of azo units without disrupting the ctDNA-structure receptor. Specifically, these composite
chips allow reloading DNA probes for reusable ctDNA detection with no obvious influence
on their efficiency. The results of our study demonstrated the potential application of this
platform for the quantitative detection of ctDNA and the individualized analysis of cancer
patients.
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INTRODUCTION

Circulating tumor DNA (ctDNA), secreted by the tumor cells and enter into the blood, is closely
related tomutations in the original tumor (Cheng et al., 2016). To date, ctDNA, deemed as a new type
of redoubtable noninvasive biomarker, holds great potential application in the early diagnosis of
tumors for patients (Heitzer, 2015; Qin et al., 2016; Spellman and Gray, 2014). However, detection of
these ctDNA with high selectivity involves several challenges: 1) these ctDNA exist at highly rare
frequency and demand specific and sensitive isolation methods and 2) profiling the heterogeneity of
tumors requires different ctDNAmarkers to recognize various ctDNA genotypes. The heterogeneity
of tumors can lead to different responses to therapy as it involves differences between ctDNA of the
same type in different patients and between ctDNA within each tumor (Ma et al., 2015; Zardavas
et al., 2015; Tannock and Hickman, 2016). Each organ is genetically distinct from the modified
genome, and the detection of mutations in ctDNA alone cannot be traced to the organ that causes the
tumor. If the detected ctDNA can be analyzed quickly, gently, and without loss, it is possible to find
the diseased organs and to carry out targeted interventions in future.

As we know, most of the previous reports (Li et al., 2014; Li et al., 2015; Guo et al., 2016)
concentrate on the capture and release of CTC, while the cost of CTC single cell sequencing is
expensive, and it also limits the application of technology. Compared with CTC and other liquid
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biopsy techniques, ctDNA can reflect tumor heterogeneity more
comprehensively (Abbosh et al., 2017). To date, the most
commonly used technology for ctDNA testing in blood is
mainly DNA sequencing and polymerase chain reaction
(PCR). Although great progress has been made in ctDNA
detection, the complex sample preparation and the
interference from the biological environment would be
problematic in further application (Zhou et al., 2016).
Nowadays, a lot of evidence has suggested that nanodevices
play a very important role in the successful detection of
ctDNA (Nguyen and Sim, 2015). For instance, recently, Sim
et al. reported a peptide nucleic acid (PNA)-based biological
probe for analysis of tumor-specific genetic alterations (Nguyen
and Sim, 2015; Gombos et al., 2021; Hasenleithner and Speicher,
2022; Kapeleris et al., 2022). Also, Zhou et al. developed a surface-
enhanced Raman spectroscopy assay which could directly detect
mutated circulating nucleic acids in patient serum (Zhou et al.,
2016). However, these studies only captured ctDNA, and research
on the release of ctDNA is still open wide.

Many external stimuli signals, such as enzymatic hydrolysis
(Shen et al., 2013; Pinheiro et al., 2022; Hack and Bayne, 2022),
pH response (Liu H et al., 2013), and temperature (Ke et al.,
2015), have been used in previous literatures for the release of
ctDNA in one piece. It is noteworthy that light has a great
advantage over other external stimuli because it is non-
contact, accurate, and controllable. One of the remarkable
examples is that azobenzene, which can be readily synthesized
and modified, can be reversibly photoisomerized between trans
and cis configurations by alternating ultraviolet (UV) irradiation
and visible light (Wang et al., 2015; Stricker et al., 2016), making it
an excellent guest molecule in the supramolecular recognition
system for cyclodextrin (CD) (Ueno et al., 1979; Hu et al., 2015).
A supramolecular copolymer between trans-azobenzene and CD
would be constructed though van der waals force and
hydrophobic interaction, while cis-azobenzene conformation
cannot form a host–guest complex on account of the size of
host cave and guest molecular dimension mismatch.
Noteworthily, ultraviolet irradiation can change the structure
of DNA. In contrast, near-infrared (NIR) light holds great
promise to enhance the capability for ctDNA release under a
mild stimulation condition. Upconversion nanoparticles
(UCNPs), which can absorb NIR light and convert it into
high-energy photons in the UV, visible, and NIR regions (Liu
J et al., 2013; Cui et al., 2015; Han et al., 2016), disassembled the
host–guest system of azobenzene and CD due to
photoisomerization on azobenzene.

As shown in Scheme 1, here we report a smart biocompatible
NIR light-responsive capture/release platform for ctDNA based on
the DNA assembly system. First, UCNPs (NaYF4:Tm,Yb@NaYF4)
were utilized as a core coated with an SiO2 shell for the construction
of UCNP@SiO2 core–shell nanoparticles. The substrate was first
modified with UCNPs@SiO2; then, azobenzene was functionalized
with UCNPs@SiO2; subsequently, SH-β-CD was attached to the
azobenzene to prepare thiol-terminated CD-modified substrates
(UCNPs@SiO2@Azo/CD). Finally, a DNA probe was linked to
SH-β-CD for constructing a PNA-decorated Si-CD/Azo substrate
(Si-CD/Azo-probe) that could specifically capture ctDNA (PIK3CA

E542K) through a host–guest recognition effect between azobenzene
and β-CD. This UCNPs@SiO2@Azo/CD-probe substrate can
specifically capture ctDNA and release it via near-infrared light
(NIR). After NIR light irradiation, the azobenzene converted from
trans- to cis-isomers, leading to the β-CD being unable to
encapsulate cis-azobenzene, thus releasing the as-captured
ctDNA. By visible light irradiation, the UCNPs@SiO2@Azo
substrate then recovers the function for binding β-CD to
construct the UCNPs@SiO2@Azo/CD-probe. The reversibility of
the differential pulse voltammetric (DPV) measured with the
addition of β-CD and ctDNA could be repeated for several
cycles. As a result, we constructed a smart system by using a
UCNPs@SiO2@Azo/CD-probe substrate with NIR light-
responsive circulative capture and release of ctDNA in biological
samples.

RESULTS AND DISCUSSION

For the construction of a reusable surface for the capture and
release of ctDNA, a surface decorated with the UCNPs@SiO2@
Azo/CD-probe was fabricated (Scheme 2). As shown in
Figure 1A, UCNPs (NaYF4:Tm,Yb@NaYF4) were applied as a
core coated with an SiO2 shell to obtain UCNP@SiO2 core–shell

SCHEME 1 | Schematic diagram of the UCNP-Azo/CD-probe as a NIR-
triggered photoswitch for reversible ctDNA capture/release.
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nanoparticles. As shown in Figures 1Ba,b, the UCNPs are nearly
monodisperse particles. The size of UCNPs is 30 and 40 nm for
the core and core–shell mode, respectively. The core–shell
UCNPs are highly crystalline and hexagonal in phase, as
confirmed by powder X-ray diffraction (Supplementary
Figure S1). However, UCNP@SiO2 NPs with about 10 nm
silica shell were confirmed by TEM imaging (Figure 1Bc). FT-
IR measurement also verified the silica functional procedure
(Supplementary Figure S2, Supporting Information). As
displayed in Supplementary Figure S3, we applied a self-
assembly process for the integration of mono-layered
nanofilms of UCNPs on a quartz slide (1 cm × 1 cm).

NaYF4:Tm,Yb, recently reported as a new type of
upconversion fluorescent nanoparticle, with
photoluminescence (PL) property under NIR laser excitation
(λ = 980 nm, 6.5 W/cm2), was prepared and characterized by
fluorescence measurement as shown in Figure 2. All the
upconversion fluorescent nanoparticles exhibit good
luminescent properties with emission peaks at about 365, 452,
and 474 nm under excitation at 980 nm laser. It is noteworthy
that after chemical modification of the NaYF4 shell, NaYF4:
Tm,Yb@NaYF4 nanoparticles show stronger fluorescence
intensity than NaYF4:Tm. The fluorescence intensity of NaYF4:
Tm,Yb@NaYF4@SiO2 decreased after being modified by the

SCHEME 2 | Modification of the UCNPs@SiO2@Azo/CD-probe on the substrate.
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silicon shell, which is in agreement with previous reports (Wang
et al., 2015). These manifestations were also confirmed by a digital
photo (Figure 2 inset).

β-SH-CD was prepared for grafting to UCNPs@SiO2@Azo by
means of host–guest self-assembly. Subsequently, a specific DNA
probe, used as a ctDNA capture agent, was led to the β-SH-CD
using chemical coupling agents to obtain the DNA probe with
β-CD-thiol exposed outside (UCNPs@SiO2@Azo/CD-probe).
Therefore, specific catching of ctDNA can be realized by
interactions between azobenzene and the CD host–guest
supramolecular system. The azobenzene, well known for its

correspondent transform that could participate in this CD
supramolecular self-assembly recognition system, was prepared
in accordance with previous literature (Wu et al., 2012). A red
shift of about 20 nm in the plasmonic peak after modification of
Azo is presented in Supplementary Figure S4. In addition,
GMBS was introduced onto the as-formed surface, which
acted as a coupling agent for a DNA probe for establishment
of the ctDNA analytical surface. X-ray photoelectron
spectroscopy (XPS) is a classical characterization method that
provides critical chemical bonding information for DNA
modification procedures (Saoudi et al., 2004). The chemical
compositions of the as-prepared UCNPs@SiO2@Azo substrate
revealed by XPS measurement are shown in Figure 3A. It is
obvious that the binding energies at 168.1 and 134.3 eV appeared
and related to S 2p of β-CD and P 2p of DNA sequence signals,
respectively, showing that the DNA probe has been successfully
coupled to the UCNPs@SiO2@Azo/CD-probe (Figure 3B). The
carbon (C) and oxygen (O) spectra in the XPS measurement
were also confirmed by the DNA probe attached to the
UCNPs@SiO2@Azo/CD surface, as shown in Figures 3C,D.
Comparing UCNPs@SiO2@Azo with UCNPs@SiO2@Azo/CD-
probe surfaces in the C1s XPS spectrum, two shoulder peaks at
289.4 eV were observed due to the N−C=O chemical groups
derived from the nucleic bases (Saoudi et al., 2004; Chandra et al.,
2011). Additionally, three peaks at 532.9, 531.8, and 532.5 eV in
O1s characterization correspond to N−C=O, C−O−C, and PO4

bonding, respectively (Qi et al., 2015). The peaks at 532.9, 531.8,
and 532.5 eV were assigned to the oxygen in the nucleobase, the
ether bond of β-CD, and the backbone phosphate group of the
DNA sequence, respectively. In conclusion, the results discussed
clearly demonstrate that the DNA probe was evidently grafted
onto the UCNPs@SiO2@Azo.

To confirm the ctDNA capturing ability of this UCNPs@
SiO2@Azo/CD-probe, 30 min was chosen as the capture time by
means of fluorescein diacetate (Gene Finder) as a model to trace

FIGURE 1 | (A) Synthesis procedures of UCNPs, (B)TEM images of core (a), core–shell (b) nanoparticles for NaYF4:Tm/Yb and NaYF4:Tm/Yb@NaYF4 UCNPs,
respectively. UCNPs@SiO2 NPs (c).

FIGURE 2 | Luminescence analysis of NaYF4:Tm,Yb (green), NaYF4:
Tm,Yb@NaYF4@SiO2 (red), and NaYF4:Tm,Yb@NaYF4 (black). The
corresponding fluorescent photographs are shown in the inset images from
the left to right. All samples at 1 mg/ml were used in the experiment.
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the capture process directly. To the whole substrate, 40 μL ctDNA
(3.91 nM) in PBS was added. As shown in Supplementary Figure
S5A, the substrate was stained bright green fluorescent and
exhibited high-efficiency capturing activity after 30 min of
incubation. For the sake of ctDNA detection sensitivity, the
chip was challenged with different concentrations of ctDNA.
Figure 4A illustrates the DPV response of the UCNPs@SiO2@

Azo/CD-probe for different concentrations of ctDNA (1, 2, 5, 20,
50, 200, and 500 fM). The current response of the oxidation (ipa)
process shows a good linear relationship with the analyte
concentration (1–500 fM) for ctDNA (Figure 4B). The
detection limit was 1 nM as calculated based on the 3σ IUPAC
criteria for three times the DPV response of ctDNA in the
UCNPs@SiO2@Azo/CD-probe, demonstrating its good

FIGURE 3 | XPS wide spectra of (A) UCNPs@SiO2@Azo and (B) UCNPs@SiO2@Azo/CD-probe. XPS C1s (C) and O1s (D) core-level spectra of UCNPs@SiO2@
Azo (top) and UCNPs@SiO2@Azo/CD-probe (bottom) surfaces, respectively.

FIGURE 4 | Differential pulse voltammetric (DPV) response for UCNPs@SiO2@Azo/Au electrode incubated with different concentrations of ctDNA in 0.1 M pH 7.4
phosphate buffer; pulse period, 0.2 s; and amplitude, 50 mV.
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sensitivity and stability. This result shows this probe is more
sensitive than the carbon nanotube-modified GC electrode
(37 μM for DA). After electrochemical detection, the substrate
was immersed in pH 7.4 PBS solution and exposed to 6.5 W/cm2

NIR light for 10 min (2 min break after 2 min irradiation). Then
the solution is amplified by PCR, and the amplified PCR product
is characterized. As displayed in Supplementary Figure S5B, the
results of the PCR measurement clearly demonstrates that NIR
irradiation induced a rapid release of ctDNA from the substrate.
Therefore, the presence of fluorescent bands in the gel indicates
the release of ctDNA was successful.

CONCLUSION

In summary, we have successfully fabricated an UCNPs@
SiO2@Azo/CD-probe chip with switchable NIR. First, a
DNA probe was utilized to selectively identify the tumor
ctDNA. Then, UCNPs were used to convert the NIR light
into local UV light for ctDNA capture or release by means of
supermolecule host–guest assembling interaction between
azobenzene and β-CD, which has created opportunities for
precision cancer management in the future. This UCNPs@
SiO2@Azo/CD-probe chip can be easily regenerated for the
next cycles. Therefore, we designed an UCNP-based chip
that could capture ctDNA with high sensitivity and
selectivity. This study proves the significance of controllable
ctDNA on the chip. The effective release of ctDNA provides a
facile and effective strategy for nondestructive release, and can
be used for the dynamic study of cancer therapy in the
early stage.
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