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Peripheral neuropathy, which is the result of nerve damage from lesions or disease,
continues to be a major health concern due to the common manifestation of neuropathic
pain. Most investigations into the development of peripheral neuropathy focus on key
players such as voltage-gated ion channels or glutamate receptors. However, emerging
evidence points to mitochondrial dysfunction as a major player in the development
of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in
neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well
as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in
peripheral neuropathy are poorly understood, however, the Class llb histone deacetylase
(HDAC®6), may play an important role in the process. HDACB is a key regulator in
multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial
dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6
inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic
pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral
neuropathy. Thus, HDACG inhibitors are being investigated as potential therapies
for multiple peripheral neuropathic disorders. Here, we review emerging studies and
integrate recent advances in understanding the unique connection between peripheral
neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.

Keywords: histone deacetylase 6, mitochondria, neuropathic pain, peripheral neuropathy, mitochondrial
dysfunction, chronic pain

INTRODUCTION

Peripheral neuropathy is a chronic, debilitating disorder characterized by peripheral nerve damage
occurring in multiple diseases such as diabetes, Charcot-Marie-Tooth disease, mitochondrial
disease, and chemotherapy neurotoxicity (Colloca et al,, 2017). A common manifestation of
peripheral neuropathy is neuropathic pain. The United States spends roughly 100 million
dollars a year on chronic pain treatments, with a significant portion spent on treatments
for neuropathic pain (McCarberg and Billington, 2006). Neuropathic pain often leads to a
decreased quality of life, due to sleep disturbances, anxiety and depression, as well as loss of
productivity at work (Liang et al., 2015). Currently, there is little understanding of the underlying
mechanisms that cause peripheral neuropathy and ineffective treatments for neuropathic pain
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(Cavalli et al, 2019). A potential underlying mechanism,
currently under investigation, lies in mitochondrial dysfunction,
particularly dysfunction in mitochondrial transport (Sui et al.,
2013). Thus, understanding the nuances of mitochondrial
dysfunction as a potential driver for neuropathic pain is
imperative for treatment development.

Though mitochondria are necessary for the health and
survival of all cells, peripheral neurons are particularly sensitive
to homeostatic mitochondrial functions. The complex and
high energy consuming processes of neurotransmission by
peripheral neurons are critically dependent on mitochondrial
metabolic functions (Todorova and Blokland, 2016). Moreover,
peripheral neurons are especially reliant on axonal transport of
mitochondria, which facilitates rapid movement of mitochondria
to areas of high-energy demand along axons up to 1m in
length (Lee and Lu, 2014). Recent findings show that damage to
mitochondria and aberrant mitochondrial transport in peripheral
neurons are common features of peripheral neuropathy. A key
regulator of both mitochondrial movement and function is the
epigenetic modifier histone deacetylase 6 (HDAC6) (Cheng et al,,
2010; Kamemura et al.,, 2012; Guedes-Dias et al., 2015; Kalinski
etal., 2019).

Histone deacetylase 6 is a cytoplasmic Class II histone
deacetylase, known to target and enzymatically remove acetyl
groups from post-translationally modified non-histone proteins,
such as microtubules, and significantly alter target protein
function (Hubbert et al., 2002). Dysregulated HDACS6 correlates
with peripheral neuropathy development, neuronal microtubule
instability, and decreased axonal transport of mitochondria
(Chen et al.,, 2010; Picci et al., 2020; Sakloth et al., 2020).
Therefore, therapies targeting HDAC6 may restore balanced
mitochondrial activity, mediate potential repair of peripheral
neuropathy, and alleviate neuropathic pain (Adalbert et al,
2020). In this review, we discuss the emerging topic of
HDACS activity and non-histone protein modifications linked to
development of peripheral neuropathy by altered mitochondrial
function and transport.

PERIPHERAL NEUROPATHY AND
NEUROPATHIC PAIN

The feeling of pain is an innate, conscious experience that can be
defined as an uncomfortable or distressing sensation in response
to a noxious stimulus (physical or emotional), which may activate
sensory neurons with the purpose of alerting the body to react
and avoid further damage (Yam et al, 2018). For the PNS,
neurons are divided into sensory neurons (afferent), interneurons
(interlay afferent and efferent information), and motor neurons
(efferent neurons). The sensory neurons are located primarily
in the dermis and epidermis and respond to stimuli such as
pain. In general, the pain process involves four major steps:
transduction, transmission, modulation, and perception (Yam
et al., 2018). In transduction the noxious stimuli, strong enough
to reach threshold, activate the sensory neuron nerve endings. In
transmission, the action potential produced by stimuli activating
sensory neurons is transmitted along neuronal pathways via

neurotransmission to the dorsal horn and medulla. Modulation
occurs to reduce activity of the transmission system, which may
allow proper encoding. The process by which information of
tissue injury is transmitted and encoded by the brain is called
nociception (Garland, 2012). Perception involves the integration
and encoding of multiple inputs via a complex process in the
brain which results in the painful sensation (Yam et al., 2018).

Sensory neuron cell bodies (collectively known as ganglia)
are located in the dorsal roots of the spinal cord. The sensory
neuronal fibers are responsible for transducing somatosensory
information based on information from sensory receptors, which
can be activated by different stimuli such as pain, temperature,
chemical mediators, and pressure or stretch (ie., touch or
proprioception) (Dubin and Patapoutian, 2010). The axons or
fibers of sensory neurons are divided into three classes: A, B, and
C. Group A fibers are myelinated and subdivided into Aa, AB,
Ay, and A} based on function. Type A8 nerve fibers primarily
respond to thermal and mechanical stimuli and are the smallest
myelinated nerve fibers. They result in short and pricking pain
sensation. Group B are myelinated fibers and are defined as
the preganglionic nerve fibers of the autonomic nervous system
and visceral afferent fibers. The C fibers are unmyelinated and
are categorized as postganglionic fibers in the ANS and the
nerve fibers at the dorsal roots of the spinal cord. Group C
are primarily nociceptive and respond to thermal, mechanical,
and chemical stimuli. They respond with a poorly localized
and dull pain sensation. Both A3 and C fibers are the primary
afferent nociceptors with specialized free nerve endings located
in multiple areas of the body, including skin, and bone (Dubin
and Patapoutian, 2010; Yam et al., 2018).

Based on mechanistic origin, pain can be divided into three
categories: nociceptive pain, inflammatory pain, and neuropathic
pain. Nociceptive pain is a conscious perception in response
to an actual or potential noxious stimulus (Garland, 2012).
Inflammatory pain sensation is the response to inflammation,
which is a reaction to harmful stimuli and includes the release
of chemical mediators, such as prostaglandins via an immune cell
mediated process (i.e., Neutrophils). These chemical mediators
can activate nociceptors within the inflamed area. In general
pain sensation can be further classified based on onset and is
divided into two types: acute or chronic. Acute pain is defined
as lasting less than 3 months, while chronic pain is defined as
lasting three to 6 months or longer (Derry et al., 2017). Acute is
generally mediated by A3 fibers in response to harmful stimuli,
while chronic is mediated by C-fibers and is generally thought of
as pathologic since it occurs past healing (Austin and Moalem-
Taylor, 2010). Other pain classifications exist such as nociplastic
pain sensation, which is associated with changes in the nervous
system that lead to the processing of pain without tissue injury,
and disease specific pain sensation such as radicular pain, which
is pain sensation associated specifically with lumbar or nerve root
pain (Murphy et al., 2009; Larson et al., 2019). To note, this is not
an exhaustive list of the diverse types of pain, but touches upon
the most commonly described in the literature.

Neuropathic pain, the focus of this review, is abnormal
hypersensitivity to noxious stimuli, known as hyperalgesia,
and nociceptive responses to non-noxious stimuli, known as
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allodynia (Jeong et al., 2013). The pain sensation can be described
as pathologic since it can occur due to normally non-painful
stimuli or even spontaneously. Neuropathic pain manifests
as a result of injury or impairment to sensory nerves and
nerve fibers, also known as peripheral neuropathy (Marchettini
et al., 2006; Starobova and Vetter, 2017; Zajaczkowsks et al.,
2019). The primary targets of peripheral neuropathy are motor
and sensory neurons. As a result, peripheral neuropathy is
characterized by painful paresthesia (tingling, prickling or a
“pins and needles” sensation), numbness mostly in the upper
and lower extremities, and muscle weakness (Starobova and
Vetter, 2017). Neuropathic pain is one of the most common
manifestations of peripheral neuropathy (Marchettini et al.,
2006; Jeong et al., 2013; Matsushita et al., 2013; Colloca et al.,
2017; Starobova and Vetter, 2017; Zajaczkowsks et al., 2019).
Damage to sensory neurons and fibers can occur as a result
of lesions and disease, such as mitochondrial disorders (Vital
and Vital, 2012). A potential culprit underlying neuropathic
pain development includes altered sodium channel expression
(particularly voltage-gated sodium channels). Briefly, multiple
sodium channels (Nav) are expressed on dorsal root ganglion
neurons; the ones implicated in neuropathic pain are Navl.7 and
Navl.8. Navl.7 is preferentially expressed on DRG neurons but
also has some expression in the olfactory system (Ahn et al., 2011;
Hameed, 2019). Nav1.8 has high expression in DRG neurons, as
well as expression in cardiomyocytes and in some cells in the
brain such as cerebellar purkinje cells (Renganathan et al., 2003;
Hoftfmann et al., 2018; Hameed, 2019; Odening, 2020). Though
the role of Nav1.7 in acquired neuropathic pain syndromes is still
being elucidated, the role in inherited neuropathic pain disorders
has been well established. The tetrodotoxin-sensitive Nav1.7 is
encoded by the SCN9A gene, and in human neuropathic pain
disorders various mutations in the SCN9A gene appear to be a
common underlying causation (Hoffmann et al., 2018). SCN9A
gene mutations are found in erythromelalgia, characterized
by severe burning pain and superficial reddening of the skin
(erythema); small fiber neuropathy, characterized by servere
autonomic dysfunction and neuropathic pain; and, paroxysmal
extreme pain disorder, characterized by episodic erythema and
painful burning sensations from the lower extremities (waist
downward) (Dib-Hajj et al., 2008; Han et al., 2012; Wu et al., 2013;
Hoffmann et al., 2018; Hameed, 2019). The tetrodotoxin-resistant
Nav1.8 channel is encoded by the SCNIOA gene and different
mutations in the SCNIOA gene have been observed in small
fiber neuropathy in humans (Faber et al., 2012). Another culprit
could be altered NMDA and AMPA receptor expression. NMDA
receptors, though primarily expressed post-synaptically, are also
expressed pre-synaptically at the central terminals of primary
sensory neurons in the spinal dorsal horn (Deng et al., 2019).
They are normally quiescent but in the presence of neuropathic
pain can become active and potentiate glutamate release from
primary afferent terminals to spinal dorsal horn neurons. This
may promote the development of chronic neuropathic pain
in traumatic nerve injury or chemotherapy-induced peripheral
neuropathy (Deng et al., 2019). Similarly, post-synaptic spinal
AMPA receptor activity in response to painful stimuli plays a
role in attenuation of acute and chronic pain (Wang et al., 2010).

Another potential mediator includes loss of inhibitor channels
such as chloride ion channels (Denk and McMahon, 2012;
Descalzi et al., 2015; Colloca et al,, 2017). A continued in-
depth discussion of receptor activity in neuropathic pain is
outside the scope of this review, but it is important to note
that altered receptor function and mechanisms play a role in
the development of neuropathic pain. Accumulating evidence
suggests that altered mitochondrial transport and mitochondrial
health are involved in the development of neuropathic pain,
specifically in the presence of peripheral neuropathy. While
mechanisms underlying development of peripheral neuropathy
and neuropathic pain are not completely understood, there is
emerging evidence suggesting a role for epigenetic modifiers,
such as histone deacetylases, in the process (Denk and McMahon,
2012; Ueda and Uchida, 2014; Descalzi et al., 2015; Liang
et al., 2015) in regards to mitochondrial transport (Denk and
McMahon, 2012; Ueda and Uchida, 2014; Descalzi et al., 2015;
Liang et al., 2015).

HISTONE MODIFICATIONS ARE
IMPORTANT FOR NEURONAL
MICROTUBULE STABILITY

Epigenetics is the study of the mechanisms that lead to
heritable phenotypic changes, such as to a gene locus or
chromosome, via DNA-independent alterations (Goldberg et al.,
2007; Chi et al., 2010). DNA methylation and post-translational
histone modification are two important epigenetic mechanisms
(Goldberg et al., 2007). The process of DNA methylation involves
enzymatic addition of a methyl group to the number 5 carbon
of the Cytosine pyrimidine (Cp) ring on CpG nucleotides of
DNA. This is followed by condensation of methylated DNA
with histone and non-histone proteins that form chromosomes
(Goldberg et al., 2007; Chi et al, 2010). Histones provide
structural stability and nucleosomal organization to DNA as
chromatin. Histone post-translational modification is a form
of regulation that can impact condensation of the chromatin,
assembly of the chromatin, or create a platform for binding
of chromatin remodeling/modifying complexes (Chen and
Dent, 2014). The ultimate result of histone post-translational
modification is a regulatory influence on transcription initation
or elongation (Chen and Dent, 2014). Post-translational
modification of histones includes: phosphorylation, acetylation,
ubiquitination, and methylation (Ueda and Uchida, 2014).
Histone methylation includes post-translational modification
of histones by addition of one or more methyl groups to
lysine or arginine residues of histone proteins (Chi et al,
2010). The process of acetylation is balanced through enzymes
called histone acetyltransferases (HATs) and histone deacetylases
(HDACs). HATs enzymatically acetylate protein lysines, while
HDACs remove acetyl groups (Zhang et al., 2003; Hake et al,,
2004). Histone acetylation generally occurs in euchromatin or
active chromatin, allowing for increased transcription. Histone
deactylation generally occurs in heterochromatin, leading to
decreased transcription (Hake et al, 2004). These post-
translational modifications, which may be added to either histone
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or non-histone proteins, can be viewed as a “written” code,
in that “writers” (acetyltransferases) add modifications, and the
“erasers” (deacetylases) remove modifications. Post-translational
modifications create a language that is translated into action
through “readers;” effector proteins with structural domains
that interact with specific post-translational modification (Hake
et al., 2004; Strahl and Allis, 2000). Imbalances in “writers” or
“erasers,” specifically between HATs and HDACs, can lead to the
development of disorders such as neuropathic pain.

Currently, little is known about possible epigenetic
mechanisms of mitochondrial DNA (mtDNA) regulation,
with that said it was found by Chatterjee et al., that the nuclear
MYST family acetyl transferase (MOF) binds to mtDNA and
regulates oxidative phosphorylation by controlling expression of
respiratory genes (both nuclear and mtDNA) (Chatterjee et al,,
2016). MOF regulates both nuclear and mitochondrial genomes
(Chatterjee et al,, 2016). Knockout of MOF leads to severe,
tissue-wide consequences including triggering hypertrophic
cardiomyopathy and other cardiac pathology in murine hearts.
Severe mitochondrial degeneration and deregulation is observed
in murine tissues with MOF KO (Chatterjee et al., 2016). Though
it has yet to be investigated if MOF dysregulation is involved
in the development of peripheral neuropathy or neuropathic
pain, it is one of the few known proteins involved in mtDNA
regulation (Mishmar et al., 2019).

Histone deacetylases are divided into 4 classes based on
subcellular localization and structure. Class I is predominately
nuclear and Class II is primarily cytoplasmic, but can be shuttled
between the nucleus and cytoplasm. Class III is a different
family of deacetylases called sirtuins, which are distinct NAD+
-dependent HDACs. Class IV deacetylases have not been well
studied (Cho and Cavalli, 2014). Class II HDACs can be further
divided into IIa and IIb. Class IIa HDACs (HDAC4,5,7, and
9) have a unique regulatory N-terminus binding domain and
Class IIb HDACs (HDAC 6 and 10) have a long extension of
the C-terminus domain, called the tail domain (Cho and Cavalli,
2014; Park and Kim, 2020). HDACS6 is unique in that, despite
being a histone deacetylase, it has a specificity for non-histone
targets, contains two deactylase domains, and a C-terminal zinc-
finger ubiquitin-binding domain (Park and Kim, 2020).

Histone deacetylase was first identified as a tubulin deacetylase
and further shown to regulate stability and structure of
microtubules (Hubbert et al., 2002; Zhang et al., 2003; Skultetyova
et al., 2017). HDAC6 also regulates actin by regulating the
acetylation of cortactin which enhances F-actin stability (Zhang
et al., 2007). HDAC6 modulates the charge patch in a repeat
region for cortactin which alters the protein’s ability to bind
to F-actin (Zhang et al, 2007). As such, HDAC6 plays
a key role in regulating many cellular processes, such as
intracellular transport (Howes et al., 2014). Microtubule and
actin structure is particularly important for neurons, which rely
on microtubules for axonal transport of many components,
including mitochondria (Mandal and Drerup, 2019; Moore and
Holzbaur, 2018). HDAC6 and HAT1 play a balancing, regulatory
role in ensuring the stability of microtubules. However, in
response to cellular insult and damage, this balance is disrupted
and increased HDAC6 activity may be especially detrimental to

neurons (Rivieccio et al., 2009; d’Ydewalle et al., 2012). It should
be noted that other HDACs, such as HDAC3, may be involved
in neuropathic pain development and resolution, as illustrated
by studies with pan-HDAC inhibitors (Cho and Cavalli, 2014).
With that said, many studies point to HDAC6 as a major player
in mechanisms that underlie peripheral neuropathy development
(d'Ydewalle et al., 2012; Benoy et al., 2017; Krukowski et al.,
2017; Ma et al., 2018b; Prior et al., 2018; Sakloth et al., 2020).
Moreover, HDAC6-specific inhibitors are being investigated as
targeted therapeutics for peripheral neuropathy, in comparison
to other HDAC inhibitors, especially in light of observations of
HDACS6 regulation of neuronal microtubule stability (Rivieccio
et al., 2009; d'Ydewalle et al., 2012; Simdes-Pires et al., 2013;
Wang et al., 2016).

HDAC6 AND NEUROPATHIC PAIN
DEVELOPMENT IN PERIPHERAL
NEUROPATHIC DISEASES

Emerging studies implicate HDAC6 deacetylase activity in
development of peripheral neuropathy and subsequently
neuropathic pain in two diseases: Charcot-Marie-Tooth disease
(CMT) and Chemotherapy Induced Peripheral Neuropathy
(CIPN) (D’Ydewalle et al., 2011; Benoy et al., 2017, 2018; Mo
et al., 2018; van Helleputte et al., 2018; Kalinski et al., 2019;
Picci et al, 2020). CMT disorders are a group of hereditary
motor and sensory polyneuropathies that are genetically and
clinical heterogeneous (Benedetti et al., 2010; Bird, 2020). The
CMT phenotype is typically characterized by a length-dependent
motor and sensory neuropathy with distal weakness, sensory
loss, foot deformities, such as pes cavus and hammertoe,
and sometimes pain (Pareyson et al, 2017; Azevedo et al,
2018). Roughly one-third of CMT2 patients show symptoms
of neuropathic pain (Azevedo et al., 2018). The traditional
classification of CMT disorders is based on nerve conduction
velocity (NCV) and mode of inheritance (Benedetti et al., 2010;
Fridman et al., 2015). CMT are caused by mutations in more than
100 genes, continuously increasing, and that a new classification
has been proposed based on inheritance and mutated gene
(Benedetti et al., 2010; Fridman et al., 2015; Pareyson et al.,
2017). CMT neuropathies are classically characterized on
the basis of neurophysiological evaluation. CMT1, in which
the pathology is primarily demyelinating with upper limb
motor nerve conduction velocities (MNCVs) < 38 m/s;
CMT2, in which the pathology is pre-dominantly axonal with
MNCVs > 38 m/s; and intermediate CMT when MNCVs are
between 25 m/s and 45 m/s (Fridman et al., 2015; Pareyson
et al,, 2017). CMT2 is a non-demyelinating axonopathy that
is clinically characterized by muscle weakness and atrophy
but this type does have some overlap with CMT1 (Bird, 2020;
Fridman et al., 2015). Dominant intermediate CMT (DI-CMT)
is clinical characterized by muscle weakness and atrophy, but
pathology and patient presentation falls between both CMT1 and
CMT2 (Bird, 2020; Fridman et al., 2015; Benedetti et al., 2010;
Fridman et al., 2015; Pareyson etal.,, 2017). As the current
classification has not yet been solidified this review will continue
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with the traditional classification especially since some of the
reviewed literature continue to use this classification. The specific
subtype used by the literature will be defined when necessary
(Azevedo et al., 2018).

In D’Ydewalle et al. (2011) and Adalbert et al. (2020) and
mouse models of human CMT2, which exhibit mechanical
allodynia and hyperalgesia, show significant loss of a-tubulin
acetylation along distal portions of the sciatic nerve in
comparison to controls (D’Ydewalle et al., 2011; Adalbert et al.,
2020). There is also a decrease in mitochondrial transport in
such models, which is tied to loss of a-tubulin acetylation that
will be discussed in later sections (D’Ydewalle et al., 2011;
Benoy et al, 2018; Adalbert et al., 2020; Picci et al.,, 2020).
Picci et al. (2020) found that mutant Mitofusin 2 (MFN2R94Q).
induced CMT2A mice are characterized by progressive a-tubulin
acetylation and peripheral neuropathy. CMT2A is a subtype of
CMT2 characterized as being autosomal dominant with classic
CMT2 features and is due to mutations in the Mitofusin-
2 (MFN2) gene (Fridman et al, 2015). When these mice
were treated with SW-100, an HDAC6 inhibitor, a-tubulin
acetylation in sciatic nerve tissue was restored (Picci et al.,
2020). Moreover, Picci et al. (2020) found that SW-100
reversed motor deficits and neuropathic pain, measured by
rotarod and von Frey/Hargreaves, respectively. These studies of
CMT and inhibition of HDAC6 provide physiological evidence
that increased HDAC6 activity is linked to instability of
a-tubulin in sensory neurons, a commonly observed feature of
peripheral neuropathy.

Chemotherapy-induced peripheral neuropathy (CIPN) is one
of the most common side effects of chemotherapy treatments in
cancer patients. CIPN is present in 30-80% of cancer patients
depending on the type of chemotherapy drug used, drug dosage,
and duration of treatment (Krukowski et al., 2017). Platinum-
based chemotherapies, such as cisplatin and antimicrotubule
chemotherapies, e.g., Vincristine and Paclitaxel, are strongly
associated with development of CIPN (Trecarichi and Flatters,
2019). In mouse models of CIPN, treatment with HDAC6
inhibitors alleviated mechanical allodynia and reversed damage
from chemotherapy, concomitant with increased acetylated
axonal a-tubulin (Krukowski et al., 2017). Krukowski et al. (2017)
found that cisplatin decreases a-tubulin acetylation in tibial
nerve fibers and treatment with ACY-1083 (HDAC6 inhibitor)
increases a-tubulin acetylation. These authors also report that
ACY-1083 reverses cisplatin-induced mechanical allodynia and
spontaneous pain induced with the nerve blocker, retigabine
(Krukowski et al., 2017). Other studies showed that genetic
deletion of HDAC6 in vivo, via global HDAC6 knockout or
sensory neuron knockout in advillin-positive sensory neurons,
protected against cisplatin-induced mechanical allodynia (Ma
et al, 2019). These studies, combining treatment of CIPN
mouse models by chemotherapeutics and inhibitors of HDACS,
suggest that HDAC6 inhibition may offer protection against
chemotherapeutic toxicity in peripheral nerves (Krukowski et al.,
2017; van Helleputte et al., 2018). Krukowski et al. (2017) also
found that cisplatin reduces intraepidermal nerve fiber density
in the plantar surface of the mouse hind paw and that ACY-
1083 restores density, indicating that HDAC6 inhibitors may

assist in restoration of peripheral nerve fibers. Overall, studies
of CMT and CIPN using genetic and drug-induced in vivo and
in vitro models strongly indicate that dysregulated, increased
HDAC6 enzymatic activity plays a detrimental role in peripheral
sensory neuronal health. Dysregulated HDACG6 activity leads to
development of peripheral neuropathy and closely associated
neuropathic pain by destabilizing microtubules and exacerbating
nerve injuries. Dysruption of microtubules by dysregulated
HDACE is associated with poor axonal trafficking, particularly
mitochondrial trafficking.

MITOCHONDRIAL TRANSPORT IS
ALTERED IN MODELS OF PERIPHERAL
NEUROPATHY

An outcome of microtubule destabilization in neurons is poor
mitochondrial transport. Mitochondria are double membrane-
bound organelles that are crucial for cellular health through
ATP production via oxidative phosphorylation, regulation of
apoptosis, and Ca2+ signaling and buffering, as well as other
functions (Kann and Kovécs, 2007). Peripheral neuronal cell
bodies and nerve terminals require mitochondria for high
energy demands,thus mitochondrial trafficking between the two
sites is critical for neuronal function either motor or sensory.
Mitochondrial transport for peripheral neurons can be a long
journey as neurons can reach up to 1m in length and microtubule
stability is imperative to ensure that transport is not hindered
(Rintoul and Reynolds, 2009). The presence of microtubule
destabilization and dysfunctional mitochondria transport is
observed in many peripheral neuropathies (Sui et al., 2013; Vital
and Vital, 2012).

In neurons, mitochondria are transported via microtubule-
based trafficking and anchoring mechanisms. Transport between
the soma and axonal destinations occur via microtubule-based
motors, Dynein and Kinesin, and require ATP hydrolysis. Dynein
motors allow for retrograde transport, while Kinesin motors
allow for anterograde transport. Kinesin family-1 (KIF5), a
predominately neuronal kinesin motor, attaches to microtubules
via adaptor proteins. Trak 1/2 are prominent adaptor proteins
in neurons (Iworima et al., 2016; Melkov et al., 2016). Trak1/2
attach KIF5 to microtubules by binding the KIF5 cargo-binding
domain and the outer mitochondrial membrane receptor known
as Mitochondrial Rho-GTPase (Miro) (Lee and Lu, 2014; Lopez-
Doménech et al., 2018). Miro has two isoforms, Mirol and
Miro2. Mirol is a well known regulator of mitochondrial
transport in sensory neurons (Lopez-Doménech et al., 2018).
Misko et al. (2010) found, through immunoprecipitation that,
Mirol interacts with Mitofusins, which are outer mitochondrial
membrane proteins that regulate mitochondrial dynamics,
to regulate mitochondrial transport. Mirol, Mitofusinl, and
Mitofusin 2 are substrates of HDAC6 (van den Bosch, 2019;
Kalinski et al., 2019; Lee and Lu, 2014). Kalinski et al. (2019)
as well as Lee and Lu (2014) have found that Mirol and MFN2
proteins undergo acetylation through an unknown mechanism
and HDACS6 binds to both protein for deacetylation (Lee and
Lu, 2014; Kalinski et al., 2019). This means that HDAC6
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dysregulation may play in a role in mitochondrial transport and
dynamics.

Recent studies indicate that interaction between HDACG6
and Mirol is involved in regulating mitochondrial transport,
mitochondrial health, and axonal growth of sensory neurons
(Kalinski et al., 2019). Kalinski et al. (2019) found that inhibition
of HDACS6 led to an increase in mitochondria at the growth
cones of sensory neurons, indicating that HDAC6 is involved
in mitochondrial transport and an increase in growth cone
size. Briefly, growth cones are extensions of neuronal processes
that are developing or regenerating (Kalinski et al., 2019). This
means that transport of mitochondria in sensory neurons, which
involves Mirol activity, is regulated by HDAC6 and this appears
to be tied to sensory axonal development or regeneration. Upon
injury, increased HDAC6 activity can exacerbate mitochondrial
damage not only in the soma but also in distal axons in sensory
neurons, as shown by studies assessing outcomes of HDAC6
inhibition indicating that HDACS6 activity effects the whole cell
(Kalinski et al., 2019). Inhibition of HDAC6 led to stabilized
recovery of mitochondrial function post-injury. Kalinski et al,
then investigated if HDACS6 interacted with Mirol. Mirol, which
has a high number of acetylation sites, coimmunoprecipitated
with HDACS, thus providing evidence that Mirol is likely
a prominent substrate for HDAC6. This means that HDAC6
binds to Mirol and deacetylates the protein, which may be a
driving factor in the observed deficits in mitochondrial function
and transport. Further studies used axonal growth inhbitors to
decrease mitochondrial transport through an HDAC6-dependent
process on DRG neurons in vitro (Kalinski et al., 2019). Using
axonal growth inhibitors to attenuate mitochondrial transport
in DRGs, Kalinski et al. (2019) found that HDAC6 deacetylated
Mirol which resulted in a decrease in mitochondrial transport
in DRG neuronal axons. The HDAC6-mediated block of Mirol
was alleviated by the HDAC6 inhbitor, Tubastatin A, using
FRAP analysis (Kalinski et al., 2019). Kalinski et al. (2019)
showed that increased HDAC6-Mirol interaction could be one
of the underlying mechanisms of poor axonal mitochondrial
transport and ultimately sensory neuron damage observed in
peripheral neuropathy models (van den Bosch, 2019; Kalinski
etal., 2019).

In vivo and in vitro studies of CMT and CIPN showed
decreased axonal mitochondrial transport and impaired
mitochondrial function (Benoy et al.,, 2017; Ma et al., 2018a,
2019; Adalbert et al., 2020). In CIPN, inhibition of HDAC6
improved axonal transport of mitochondria, which correlated
with repaired nerve fibers and a-tubulin acetylation (Ma et al.,
2019). For CMT disordes, particularly CMT2, it has been well
established that axonal mitochondrial transport is impaired in
patients and mouse models of CMT2 though other factors such as
genetics play an important role (Schiavon et al., 2021). Mutated
Mitofusin 2, a gene mutated in CMT2, led to clustering of
mitochondria due to diminished movement along axons (Baloh
et al., 2007). Baloh et al. (2007) observed in cultured dorsal
root ganglion neurons from a MFN2R%Q _induced CMT2A
mouse model, mitochondria were abnormally clustered in the
soma and proximal axons, and that mitochondrial transport was
significantly impaired (Baloh et al.,, 2007). Baloh et al. (2007)

proposes that peripheral neurons could be particularly sensitive
to dysfunctional mitochondria and that mutated MEN2 may
be an underlying culprit of mitochondrial deficits observed in
CMT2A peripheral/sensory neuropathy based on the results
from the MEN2R%4Q induced CMT2A mouse model (Baloh et al.,
2007). Picci et al. (2020) showed that in a MFN2R%Q-induced
CMT2A mouse model of mutant MFN2 the mice displayed
progressive motor and sensory dysfunction which was alleviated
with HDAC6 inhbition. Picci et al. (2020) also found that a mouse
model crossed between the MFN2R94Q and HDAC6 KO did not
develop neuropathic pain nor sensory nerve dysfunction. From
Baloh et al. (2007) it is understood that the MFN2R%4Q.induced
CMT2A mouse model has impaired mitochondrial dynamics
and trafficking due to mutated MFN2. Picci et al. (2020) expands
upon this finding by investigating that HDAC6 alleviates motor
and sensory dysfunction in the MEN2R%*Q mouse model. With
the addition of the finding by Misko et al. (2010) where MFN2
is a substrate for HDAC6 deacetylation, it could be speculated
that HDAC6 dysfunction could play a role in compounding
the deleterious effects observed in CMT2A through further
dysregulation of MFN2. Dysregulated HDACS6 interactions with
mutated MFN2 could lead to mitochondrial deficits that, based
on the literature, may be one of many important factors in the
development of CMT2A peripheral neuropathy (Baloh et al.,
2007; Misko et al., 2010; Picci et al., 2020).

Adalbert et al. (2020) observed in a mouse model of CMT2F
slowed and stunted movement of mitochondria, which was
restored after inhibition of HDAC6 (D’Ydewalle et al., 2011).
CMT2F is a subtype of CMT?2 that is autosomal dominant and
involves the heat shock protein family B (HSPBI) gene (Fridman
et al., 2015; Bird, 2020). HDAC6 inhibition led to faster axonal
mitochondrial transport (D’Ydewalle et al.,, 2011; Benoy et al,
2018; Mo et al.,, 2018; Adalbert et al.,, 2020). Though Adalbert
et al. (2020) did not investigate interactions between HDAC6
and HSPB or other known mutations of CMT2E it does appear
that HDAC6 exacerbates mitochondrial transport in CMT2F, an
axonal neuropathy. As discussed by Misko et al. (2010) HDAC6
interacts with MFN2 protein but HDAC6 may also interact with
MFN2 mRNA as will be further discussed later in this review.

These preclinical studies provide evidence that HDAC6
interacts with multiple proteins involved with mitochondrial
transport and dynamics. HDAC6 appears to have a pathological
interaction with Mirol and possibly Mitofusin 2 through
downstream interactions which appears to lead to impaired
mitochondrial transport as will be discussed further.

HDAC6 AND MITOCHONDRIAL
DYSFUNCTION IN PERIPHERAL
NEUROPATHY

Dysfunctional mitochondria and metabolic disruption are
common themes in many disorders that lead to peripheral
neuropathy and are observed experimentally and clinically
(Canta et al,, 2015; Chandrasekaran et al.,, 2015; Cheng et al,,
2019; Vital and Vital, 2012). Hallmarks of damaged nerves take
many forms, including mitochondrial DNA damage, structural
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damage such as damage to cristae, and functional damage
including altered metabolic activity (Vital and Vital, 2012).

Studies of CIPN and CMT reveal mitochondrial metabolic
damage as a key factor in these disorders. For CIPN, Podratz et al.
(2011) found that cisplatin directly binds to mitochondrial DNA
(mtDNA), inhibits mtDNA replication, and inhibits transcription
of mitochondrial genes in dorsal root ganglion neurons (Podratz
et al, 2011). Bobylev et al. (2018) found in mice proximal
and distal nerves treated with cisplatin mitochondria were
abnormally swollen in myelinated and unmyelinated axons.
They also found that cisplatin significantly reduced mRNA
expression of Mfn2 in proximal nerve segments which is
associated with dysfunctional mitochondrial dynamics. The
mRNA of Drpl, required for mitochondrial fission, as well
as Mfn2 and Opal, required for fusion, were all significantly
reduced in distal nerve segments (Bobylev et al., 2018). As we
will discuss, the protein products have multiple interactions
with HDACG6. Trecarichi and Flatters (2019) found that rats
treated with paclitaxel exhibited a large quantity of swollen,
vacuolated mitochondria within C-fibers and myelinated axons.
The mitochondrial alterations were primarily associated with
the development and continuation of paclitaxel-induced painful
neuropathy since the morphological changes were not present
once the neuropathic pain resolved (Flatters and Bennett, 2006).
Other studies have shown that paclitaxel-induced mitotoxicity
is emphasized in rat saphenous nerve, sciatic nerve, DRG cell
bodies, and sensory axons in the dorsal root thus illustrating
that paclitaxel has an affinity for sensory neuronal mitotoxicity
(Trecarichi and Flatters, 2019). Both paclitaxel and oxaliplatin
lead to altered oxygen consumption due to injury to complex
I mediated and complex II mediated respiration in peripheral
nerves during painful peripheral neuropathy (Zheng et al,
2011). Human nerve biopsies are rarely done but Fazio et al.
(1999) reported that in a patient treated with three courses
of low-dose docetaxel (a taxane similar to paclitaxel) there
was loss of large myelinated fibers and regeneration as well
as swollen, vacuolated mitochondria in sensory neurons (Fazio
et al., 1999). Briefly, mitochondrial dysfunction occur in models
of inflammatory peripheral neuropathy. Sajic et al. (2018)
found that in experimental autoimmune neuritis (a Guillain-
Barre model), mitochondria in large and small diameter axons
had depolarized, fragmented, and immobile mitochondria. The
depolarized mitochondria in small diameter axons appeared to
create a “plug” in the axon and even obstructed the traffick of
other organelles (Sajic et al., 2018). Schwann cell mitochondria
have also been found to be morphologically and functionally
altered as well (Muke et al., 2020). These studies indicate that
mitochondrial dysfunction is a common finding in preclinical
and clinical studies on peripheral neuropathy.

Mechanisms that lead to altered mitochondrial function in
sensory neurons have yet to be fully elucidated, including a role
for HDAC6 in mitochondrial function. With that said, non-
sensory neuronal studies show that HDAC6 has a complex role
in mitochondrial metabolism and function. HDAC6 activates
Hsp90, a regulator of mitochondrial integrity. Hsp90 interacts
with Mitofusin, Parkin, and DRPI1, which are regulators of
mitochondrial fission, fusion, and mitophagy, respectively (Baloh

et al, 2007; Lee et al, 2010; Guedes-Dias et al., 2015).
Furthermore, HDAC6 activity correlates with mitochondrial
metabolic enzymes such as citrate synthase (Lee and Lu,
2014). Though a deep discussion of non-neuronal HDAC6
activity in mitochondrial function and dynamics is outside the
scope of this review, these findings suggest multiple points
of potential therapeutic intervention by HDACS6 inhibition in
peripheral neuropathy.

Another connection may be found in actin-dependent
mitochondrial gene regulation as well as the contribution of
MOF in mtDNA. As previously discussed HDAC6 modulates
actin stability (Zhang et al., 2007). Actin is not only important
for mitochondrial motility along with microtubules, but actin,
particularly B-actin, may also play a role in mitochondrial gene
expression (Moore and Holzbaur, 2018; Reyes et al., 2011;
Venit et al.,, 2021). Cortactin, when hypoacetylated, can lead to
actin instability and thus may alter mitochondrial motility and
function (Zhang et al., 2007). It has been suggested that actin
may regulate OXPHOS gene expression through regulation of
nuclear and mitochondrial genomes (Xie et al., 2018). Though
speculative, it could be possible that HDAC6 modulation of
actin could lead to a dysregulation of mitochondrial function
and motility in pathological states. In terms of MOF, there is
little data suggesting that MOF is dysregulated in peripheral
neuropathy nor does HDAC6 interact with MOE, but it is known
to be involved in mtDNA regulation (Chatterjee et al., 2016).
Both actin and MOF dysregulation has yet to be fully elucidated
in peripheral neuropathic or neuropathic pain disorders but
they are included to provide some inkling as to potential
epigenetic/genetic players that may incentivize future research.

Though it is yet to be determined how HDAC6 affects
mitochondrial metabolism in CMT, the functions of HDAC6 in
CIPN are better understood. In one study of CIPN, chemotherapy
reduced the oxygen consumption rate of mitochondria in DRGs,
suggesting that the metabolic function of ATP synthesis was
decreased (Krukowski et al., 2017). In the presence of an HDAC6
inhibitor, oxygen consumption improved and the inhibitor
appeared to play a protective role. Glycolytic and citrate synthase
activities of DRG mitochondria also normalized in the presence
of an HDAC6 inhibitor (Ma et al., 2019). Furthermore, in
an HDAC6 knockout mouse model, mitochondrial metabolism
exhibited higher activity in DRGs, while oxygen consumption
remained similar to wild-type controls (Ma et al., 2018a,b).
These studies show that selective inhibition of HDAC6 improves
mitochondrial oxygen consumption, as well as glycolytic and
citrate synthesis in DRG neurons. Overall, in the presence of
chemotherapeutic insult, increased HDAC6 activity leads to
altered mitochondrial metabolic activity in CIPN mouse models.

DISCUSSION

Histone deacetylase may be a missing link to fully understanding
the role that mitochondria play in the development of peripheral
neuropathy (Figure 1). In this review we summarized how
HDACS6 activity is intertwined in development of peripheral
neuropathy through dysfunctional mitochondrial axonal
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FIGURE 1 | Summary of HDACS interaction with Miro1 in the development of mitochondrial pathophysiology and peripheral neuropathy. (A) The healthy neuron has
a proper balance between acetylation (Ac) and deactylation for microtubules and Miro1, which allows for microtubule stability, axonal transport, and healthy
mitochondria. (B) Neurons undergoing neuropathy and thus have increase HDAC6 which leads to a decrease in acetylation for microtubules and Miro1. This leads to
microtubule instability (unraveling microtubule), inhibition of axonal transport (stop sign), and dysfunctional mitochondrial (swollen mitochondria). Miro1, mitochondrial
Rho-GTPase 1; Kif, kinesin motor protein; HDACS, histone deacetylase 6. Created with BioRender.com.

transport and sensory nerve damage. Taken together, HDAC6
activity in both mitochondrial function, mitochondrial
transport, and microtubule stability connect multiple
lines of investigation to the mechanistic underpinnings
of peripheral neuropathy. In Figure 1, we provide a
simplified summary of how HDAC6 activity within healthy
neurons and neurons experiencing neuropathy can lead to
unbalanced acetylation which contributes to microtubule and
mitochondrial dysfunction.

However, the mechanistic role that HDAC6 plays in
peripheral nerve damage is not broadly defined, especially
regarding mitochondrial function. This area warrants a
focused study on HDAC6 substrates in mitochondrial
dynamics and transport, including Mitofusin and Mirol
as potential targets of HDAC6. Mutated Mitofusin is the
cause of CMT, however Mitofusin levels have not been
measured in other neuropathies. A focus on Mitofusin in
peripheral neuropathy disease models may provide information
about altered mitochondrial dynamics in nerve damage and
potential HDAC6 involvement. Uncovering Mirol-HDAC6
interactions may offer increased understanding of altered
mitochondrial transport in peripheral neuropathies, as Mirol
activity has not been determined in in vivo neuropathic
disease models. Another potential target of HDAC6 is

Hsp90, a mitochondrial quality regulator. Hsp90 is involved
in mitophagy, or mitochondrial degradation, as well as
mitochondrial fission and fusion (Areti et al, 2016). Hsp90-
HDACS interactions were identified in non-neuronal cells. This
finding presents an interesting facet regarding the possibility that
mitochondrial quality controls are altered in nerve damage via
Hsp90-HDACS activity.

Whether HDACS is involved in the development of diabetic
neuropathy merits investigation. Currently, most studies
investigating the activity of HDAC6 on development of painful
peripheral neuropathy center on CIPN and CMT, despite diabetic
neuropathy showing similar symptoms (Chandrasekaran
et al, 2015; Cheng et al, 2019). Considering that HDAC6
inhibitors are being investigated as a treatment for pain caused
by peripheral neuropathy in multiple disorders, it would
be beneficial to determine how HDACS6 inhibition affects
diabetic neuropathy (Akude et al, 2011; Benoy et al., 2018;
Prior et al,, 2018; Cavalli et al., 2019). Increased mechanistic
investigations of HDACG6 interactions with targets involved in
mitochondrial function and transport may reveal neuronal-
specific mechanisms in the development of neuropathic
pain. Further investigation and deep understanding of
HDAC6 mediated interactions in microtuble stabilization
and mitochondrial transport may lead to clinical use
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of targeted HDACS6 inhibition therapies, which are sorely needed
for treatment of peripheral neuropathy and neuropathic pain.
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