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Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal

cortex (mPFC) of mice during basal conditions and following a systemic cocaine

administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber

optic every 2 s and each trial was repeated 100 times. As in the previous study, we

used a surrogate data method to check that nonlinearity was present in the experimental

LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting

induced by the brief 10 ms light stimulus. We found that the steady dynamics of the

mPFC in response to light stimuli could be reconstructed in a three-dimensional phase

space with topologically similar “8”-shaped attractors across different animals. Therefore,

cocaine did not change the complexity of the recorded nonlinear data compared to

the control case. The phase space of the reconstructed attractor is determined by the

LFP time series and its temporally shifted versions by a multiple of some lag time. We

also compared the change in the attractor shape between cocaine-injected and control

using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap

between control and cocaine trials when classified using dendrogram method, which

suggest that it may be possible to describe mathematically both data sets with the same

model and slightly different model parameters. We also found that the lag times are about

three times shorter for cocaine trials compared to control. As a result, although the phase

space trajectories for control and cocaine may look similar, their dynamics is significantly

different.

Keywords: optogenetics, medial prefrontal cortex, electrophysiology, delay-embedding, non-linear dynamics

1. INTRODUCTION

Pyramidal cells together with spiny stellates constitute more than 70% of the excitatory
neural population of the cortex (Feldman, 1984; Bannister, 2005). Pyramidal cells form wide
interconnected network spanning layers 2–6 (Bannister, 2005). They serve, among other functions,
maintaining prefrontal cortex activity during working memory (Sanchez-Vives and McCormick,
2000) and generate the UP states of persistent network activity (Luczak et al., 2007; Compte et al.,
2008).
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The pyramidal neurons receive inhibitory inputs from GABA
interneurons, of which the most prominent group expresses the
calcium-binding protein parvalbumin (PV) (Takahata and Kato,
2008; Casanova and Trippe, 2009; Kana et al., 2011). It is thought
that the PV-positive (PV+) neurons projections coordinate the
output of local minicolumns (Galarreta and Hestrin, 2001; Sultan
et al., 2013). GABAergic interneurons present significant density
and morphological heterogeneities across different cortical areas
(Rodriguez et al., 2002) in order to regulate the firing rate of
pyramidal cells and facilitate information processing (Guidotti
et al., 2005; Fuchs et al., 2007; Schmidt and Mirnics, 2015).
PV+ interneurons also present a significant heterogeneity of
projections to pyramidal cells processes that allow them a
fine-tuned functional control of pyramidal cells (DeFelipe and
Farinas, 1992). It has been established that projections of PV+
neurons to pyramidal cells soma and proximal dendrites are
very effective in modulating their firing rate (Halasy et al., 1996;
Booker et al., 2013), whereas synapses on the axons of pyramidal
cells can block action potentials (Melchitzky and Lewis, 2003;
Henry et al., 2004; Micheva et al., 2016).

It is also believed that PV+ neurons are instrumental in
maintaining and/or modulating both beta (15–30 Hz) and
gamma (25–40Hz) rhythms of the brain. It has been shown
that beta rhythm activity could be linked to autism, as it
coordinates activity across fronto-parietal networks (Schnitzler
and Gross, 2005; Peter and Wolf, 2010), and schizophrenia
(Liddle et al., 2016). Beta rhythm has also been associated
with sensory gating (Michael and Zoe, 2006; Hong et al., 2008;
Cheng et al., 2016). GABAergic neurons in beta band are
thought to guide early stage development of radial columnar
circuits of pyramidal and radial interneurons (Rippon et al.,
2007; Casanova and Trippe, 2009). In this respect, GABAergic
neurons could also be involved in schizophrenia (Schmidt and
Mirnics, 2015), although recent studies (O’Connell et al., 1997;
Muraki and Tanigaki, 2015) suggested that this disorder results
from embryonic developmental abnormalities rather than from
neuronal degenerations .

Gamma band activity has been linked to sensory processing
of stimulus characteristics (Kaiser and Lutzenberger, 2003) and
is determined by the details of the local circuits involving PV+
fast-spiking interneurons (Cardin et al., 2009; Sohal et al., 2009,
2016). PV+ interneurons are thought to also promote gamma
band signal transmission both within (Veit et al., 2017) and
between neocortical areas (Cantero and Atienza, 2005), while
corresponding abnormalities in this process may contribute to
schizophrenia (Lewis et al., 2005; Lewis and Hashimoto, 2007)
and autism (Levy, 2007; Orekhova et al., 2007). Since PV+
neurons provide inhibitory modulation, it has been found that a
decrease in local inhibition could lead to sensory hypersensitivity
and neural hyper-excitability (Gibson et al., 2008; Rotschafer and
Razak, 2014; Contractor et al., 2017; Ethridge et al., 2017).

Optogenetic techniques have recently been used for
investigating basic questions regarding neural plasticity
mechanisms (Iurilli et al., 2012; Eleftheriou et al., 2017; Kim
et al., 2017), information processing (Sohal et al., 2009, 2016;
Wilson et al., 2012), hippocampal memory formation (Liu et al.,
2012; Ramirez et al., 2014), and for the design of neural interface

(Rivnay et al., 2017). Optogenetics was also used for investigating
complex patterns of behavior, such as feeding (Aponte et al.,
2011; Atasoy et al., 2012; Jennings et al., 2013; Chen and Knight,
2016), fear conditioning (Haubensak et al., 2010; Do Monte
et al., 2016), and aggression (Lin et al., 2011). Optogenetics gave
promising results in restoration of visual functions in blind
animals (Lagali et al., 2008; Busskamp et al., 2010; Gelder, 2015),
treatment of neural disorders, such as anxiety and depression
(Tye et al., 2011, 2013; Allsop et al., 2014), and ameliorating
neurodegenerative conditions, such as Parkinson’s disease
(Gradinaru et al., 2009; Kravitz et al., 2010), and epilepsy (Kokaia
et al., 2013; Paz et al., 2013; Peng et al., 2013; Wykes et al., 2016).

We used optogenetic tools to investigate the response of
the local network in the medial prefrontal cortex (mPFC)
of mice under brief light stimuli. This study used the same
knock-in mouse model together with optogenetics and in vivo
electrophysiology described in detail in Dilgen et al. (2013). The
goal was to investigate the effects of acute cocaine on mPFC
gamma oscillation and their relationship to more permanent
cortical changes of long-term use of stimulants. We previously
carried out a similar data mining study on the same animals
under control conditions (Oprisan et al., 2015). The present
study is a continuation of Oprisan et al. (2015) in which
the same mice were systemically injected with cocaine. We
performed a nonlinear time series analysis of LFPs recorded
from PV+ neurons using time reversal asymmetry and false
nearest neighbor (FNN) statistics between the original signal and
surrogate data (Oprisan et al., 2015) to identify the nonlinearity
in the data set.

The local field potential (LFP) is the sum of excitatory and
inhibitory dendritic potentials in a small region (approximately
200–400 µm Katzner et al., 2009) around the tip of the
electrode (Scherberger et al., 2005; Kajikawa and Schroeder,
2011). As opposed to spike recording through intra/extra-
cellular microelectrodes, which represent neural outputs, the
LFPs represent inputs and local processing from synaptic
activity (Mitzdorf, 1987). Additionally, LFPs are easier to record,
which could be useful for practical implementations of control
mechanisms similar to deep brain stimulation or brain-computer
interfaces (Hatsopoulos and Donoghue, 2009). It has been shown
that cognitive processes could modulate the temporal structure
of the LFPs (Pesaran et al., 2002; Mehring et al., 2003). Such a
temporal structure could be captured by the lag time distribution
of delay-embedding method used here.

Oscillatory activity of individual neurons contributes to the
observed beta and gamma rhythms of the brain (Buzsáki and
Draguhn, 2004; Fujiwara-Tsukamoto and Isomura, 2008; Liddle
et al., 2016), they allow task coordination (Kahana et al., 1999),
support memory formation and retrieval (Roux and Uhlhaas,
2014), or signal neuropathological conditions (Orekhova et al.,
2007; Peter and Wolf, 2010). Ongoing oscillatory activity could
be reset by sensory inputs, such as visual (Kambe et al., 2015;
Woelders et al., 2017) or auditory (Mercier et al., 2013) stimuli,
or by extrinsic stimuli, such as deep brain stimulation (Tass,
2003), or temperature (Rensing and Ruoff, 2002). We measured
the phase resetting induced by brief light stimuli using both the
autocorrelation (Oprisan, 2013; Oprisan et al., 2015) and the
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Hilbert’s transform (Oprisan, 2017) methods. The phase resetting
correction allowed an accurate estimate of the delay (lag) time
and embedding dimension of LFP data (Oprisan and Canavier,
2002; Oprisan et al., 2003, 2015).

2. MATERIALS AND METHODS

2.1. Human Search and Animal Research
A detailed description of the procedures can be found in the first
paper of this series (Oprisan et al., 2015) and we only briefly
summarize them here. All procedures were done in accordance
to the National Institute of Health guidelines as approved by the
Medical University of South Carolina Institutional Animal Care
and Use Committee.

2.2. Experimental Protocol
The experimental protocol is the same as in Dilgen et al.
(2013) and Oprisan et al. (2015). Briefly, male PV-Cre mice
(B6; 129P2 – Pvalbtm1(Cre)Arbr/J Jackson Laboratory (Bar Harbor,
ME, USA) were infected with the viral vector (AAV2/5. EF1a.
DIO. hChR2(H134R) – EYFP. WPRE. hGH, Penn Vector Core,
University of Pennsylvania) delivered to the mPFC as described
in detail in Dilgen et al. (2013). The extracellular signals were
amplified using a Grass amplifier (Grass Technologies, West
Warwick, RI, USA), digitized at 10 kHz by a 1401plus data
acquisition system, visualized using Spike2 software (Cambridge
Electronic Design, LTD., Cambridge, UK) and stored on a
PC for offline analysis. A HumBug 50/60Hz Noise Eliminator
(Quest Scientific Inc., Canada) filter canceled out the line noise
and the signal was band-pass filtered online between 0.1 and
130 kHz to obtain the LFPs. A 473 nm laser (DPSS Laser System,
OEM Laser Systems Inc., East Lansing, MI, USA) delivered the
light stimulation via a 1401plus digitizer and Spike2 software
(Cambridge Electronic Design Ltd., Cambridge, UK).

3. DATA ANALYSIS

As in the first paper of this series (Oprisan et al., 2015), for
each 2 s long LFP recording in response to a brief 10ms light
pulse, the first approximately 0.5 s were discarded to remove
the transient response of the neural network and only analyze
the last 1.5 s of steady oscillatory activity of the network. The
transient response is dominated by the transient phase resetting
in response to a brief 10ms optical stimulation (see Oprisan
et al., 2015 for a detailed procedure of measuring network-level
phase resetting). While phase resetting at the neural network
level can provide invaluable information regarding the ability of
stimuli to drive the network with meaningful applications in, for
example, epilepsy (Osorio and Frei, 2009; Parastarfeizabadi and
Kouzani, 2017) or Parkinson’s (Tass, 2000, 2003), here we focused
on the steady state, unperturbed, activity of the network. The
goals of this study were to (1) identify possible low-dimensional
stable attractors of neural activity during the steady activity of the
network, and (2) compare neural activity under systemic cocaine
against the control data published in Oprisan et al. (2015).

3.1. Nonlinearity Tests
Without repeating all the mathematical details from Oprisan
et al. (2015), we again tested for nonlinearity in cocaine-induced
changes in neural activity. The nonlinearity tests are necessary
since some algorithms, e.g., for computing the embedding
dimension of a time series, give similar results both for linear
stochastic processes and for deterministic data (Osborne and
Provencale, 1989). To distinguish nonlinearity from purely
stochastic time series (Osborne and Provencale, 1989; Small
et al., 2001), we used surrogate data (Theiler et al., 1992; Small,
2005) with the null hypothesis that the data is linearly correlated
in the temporal domain, but are random otherwise (Cogranne
and Retraint, 2013). The surrogate data were generated by
randomizing the Fourier transform phases, which is known to
preserve the linear correlations within the original data while
destroying any nonlinear structure (Theiler et al., 1992; Garcia
et al., 2013).

The rate of false rejections of the null hypothesis determines
the necessary number of surrogates to be generated (Jung et al.,
2003). At least n = 1/l surrogates should be generated to attain
a certain level l of significance, e.g., for a significance level of
l = 0.05 at least n = 1/l = 20 surrogates are required (Jung
et al., 2003; Yuan et al., 2004). In general, a set of values λi (with
i = 1, . . . , n) of the discriminating statistics is computed for
surrogates and compared against the value λ0 for the original
time series. Rejecting the null hypothesis can be done using rank
ordering, in which case λ0 must occur either on the first or on the
last place in the ordered list of all values of the discriminating
statistics to reject the null hypothesis. Alternatively, the null
hypothesis could be rejected using the average statistical method,
in which case a score γ is derived as follows:

γ =
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statistics over all surrogates. If γ > 1, then the original data and
the surrogates are significantly different and the null hypothesis
is rejected (Yuan et al., 2004). Finally, the null hypothesis could
be rejected using the coefficient of variation statistical method, in
which case a score γ is derived as follows:
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where σλ is the standard deviation of the discriminating statistics
over all surrogates. Assuming a normal distribution for λi,
rejection of the null hypothesis requires γ > 1.96 at a 95%
confidence level (Stam et al., 1998; Jung et al., 2003).

We used the time reversal asymmetry method (Costa et al.,
2005) for surrogate data to compute both the individual trial
measure, λ, and the cumulative statistical scores, γ , for both (1)
the average statistics (Jung et al., 2003; Yuan et al., 2004) and (2)
the coefficient of variation of the distributions of λ’s (Theiler et al.,
1992; Kugiumtzis, 2002; Jung et al., 2003). As before (Oprisan
et al., 2015), for every trial and every animal we generated 100
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surrogates and, in addition to the γ scores (Stam et al., 1998; Jung
et al., 2003), we used the percentage of false nearest neighbors
to check the time series nonlinearity (Birkelund et al., 2004;
Kugiumtzis and Tsimpiris, 2010). Although our time series were
long enough and recorded with a high sampling rate, we also
explored additional null hypothesis testing methods used for
testing very short time series (Caillec and Montagner, 2013).

A time series is said to be reversible if its probabilistic
properties are invariant with respect to time reversal (Diks et al.,
1995). For example, a simple Gaussian random walk is time-
reversal invariant (Weiss, 1975). Practical implementations of
temporal asymmetry measures use, for example, the difference
between the probability density functions of the original
and time-reversed series, or of their corresponding variances
(Zumbach, 2009, 2012), or temporal-based correlation measures
over different temporal windows, or between the past and future
data blocks of the same temporal length (Zamparo et al., 2013),
or by using Granger causality (Winkler et al., 2016). Time
irreversibility is a strong signature of nonlinearity (Schreiber and
Schmitz, 2000) and is commonly related to entropy production
by the underlying (often unknown) mechanism that generated
the time series (see Vladimirov and Petersen, 2010; Roldán,
2014 and references therein). As in the previous study (Oprisan
et al., 2015), the null hypothesis assumes that the time series
is produced by a linear Gaussian random process (Diks et al.,
1995). We used the Tisean software package to compute the
time reversal asymmetry statistics both for the original and
the surrogate data (Hegger et al., 1999; Schreiber and Schmitz,
2000; Oprisan et al., 2015). Given that (1) our time series did
not require a significant computational overhead by generating
the surrogates, and (2) we already know the time scale of the
processes we are interested in capturing, we did not consider
additional nonlinearity tests, such as the horizontal visibility
algorithm and the Kullback-Leibler divergence (Lacasa et al.,
2012). When using the rank ordered statistics for time reversal
asymmetry (see Oprisan et al., 2015 for detailed definitions), the
original data had a value of λ0 = 0.2, and the surrogate data
had a significantly different value of λ = 2.5, which rejects the
null hypothesis. Additionally, the γ score of the coefficient of
variation statistics was above the 1.96 threshold, and therefore we
rejected the null hypothesis (see Oprisan et al., 2015 for a detailed
mathematical description of the statistical tests). As a result, we
concluded that the above statistical tests support the hypothesis
of a nonlinear structure in our data.

3.2. Phase Resetting of LFP
External perturbations, such as synaptic inputs, light, or
mechanical pressure, alter the ongoing rhythm of oscillators
by changing both their phases and amplitudes (Oprisan and
Canavier, 2002; Oprisan et al., 2004; Oprisan, 2013; Oprisan and
Austin, 2017). Brief perturbations applied to intrinsic oscillatory
activities lead only to transient changes of the rhythm, which
eventually dissipate after a few cycles. Since our focus is on
identifying similarities among steady state LFPs, any transient
changes in the phases of LFP oscillations should be removed
(Oprisan, 2017). As previously described (Oprisan, 2017; Oprisan
and Austin, 2017), the phase resetting was estimated by the

amount of required circular shift on each LFP trace (Figure 1A)
in order to maximize the coefficient of correlation between
any trial and an arbitrary selected “reference” trial (Figure 1B).
Phase resetting correction led to a significant increase in
the coefficient of correlation from 0.025 ± 0.035 (red trace
in Figure 1C) to 0.414 ± 0.089 (blue trace in Figure 1C).
Additionally, the root-mean-square (rms) error, i.e., the Euclidian
norm of the difference between each 1.5 s long trial and the
arbitrary “reference” trial, decreased from 22.3 ± 5.5 (red line in
Figure 1D) to 16.6± 3.8 (blue line in Figure 1D).

3.3. Dendrograms of Phase Shifted LFPs
A dendrogram is a visual representation of “relationships” among
trials. A possible quantitative measure of the “relationship” is
through the correlation coefficient (Saraçli et al., 2013), although
in this study we used the Euclidian distance as implemented in
Matlab (Hill and Lewicki, 2005). The trials are aligned along
the horizontal direction of the dendrogram plot and are called
“leaf” nodes, whereas the vertical axis is an appropriately-defined
“distance.” For example, if the correlation coefficient (c) is the
measure of trials’ similarity, then the distance between two trials
is d = 1 − c, i.e., higher the correlation coefficient smaller the
distance between “leaf” nodes (trials).

The circular shift, performed in the previous section with the
purpose of maximizing the coefficient of correlation between any
trial and an arbitrary “reference” trial, helps defining the relative
phase of the trials with respect to each other. The hierarchical
classification of trials in dendrogram groups suggests “similar”-
looking clusters of trials that may have a similar mathematical
description. The rms error computed between each trial and its
corresponding cluster average further decreases (see green solid
circles in Figure 1D), suggesting a strong correlation among
the clustered trials. Throughout this study, we only used the
Euclidian distance to measure similarities among the “leaf”
nodes of the dendrogram (see Figure 2A). As we noticed, phase
resetting correction significantly lowered the distance among
similar trials. For example, the distance threshold for breaking
the trials in six clusters before correcting for phase resetting was
about 80 units (see Figure 2A) and after phase correction was
about 60 units (see Figure 2B). In Figures 2C,D we plotted the
average trace of each cluster from the optimized dendrogram
shown in Figure 2B. There are some clear differences between
the cluster traces, e.g., clusters 1 (magenta trace in Figure 2C)
and 2 (green trace in Figure 2C) have high amplitude oscillations
whereas cluster 6 (yellow trace in Figure 2D) has a very small
peak-to-peak amplitude. Although we only show figures for one
of the six animals, the same numerical procedure was applied to
all the data.

4. DELAY EMBEDDING METHOD

Membrane potential oscillations are generated by intricate
feedback mechanisms that involve many different types of
ionic channels (Hille, 2001). Although in the simplest possible
conductance-based model only a fast sodium and a potassium
delayed rectifier suffice (Hodgkin and Huxley, 1952), more
accurate models have hundreds of compartments each populated
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FIGURE 1 | Phase resetting of neural network activity from LFPs. Steady LFP activity between a “reference” trial (blue) and another arbitrary trial (A) without phase

shift and (B) with a circular phase shift that maximizes the coefficient of correlation. (C) Without phase shifting to correct for the phase resetting, the average

correlation was 0.025 ± 0.035 (red trace), which increased after appropriately phase shifting to 0.414 ± 0.089 (blue trace). (D) The root-mean-square (rms) error

between the two trials decreases from 28.3 ± 7.8 without phase resetting correction (red line), to 22.3 ± 5.5 after phase-shifting (blue line), to 16.6 ± 3.8 for

phase-shifted dendrogram-based correlation (green solid circles).

with tens of different ionic channels (Buzsáki and Draguhn, 2004;
Schnitzler and Gross, 2005). Even the simplest conductance-
based model requires evolution equations for four independent
variables (membrane potential, activation variable for both
sodium and potassium and inactivation of potassium channels)
(Hodgkin and Huxley, 1952). The number of independent
variables required for a model is its dimensionality. For
pyramidal cells realistically interconnected to mimic the mPFC
network, we would expect an extremely large number of
dimensions (Schnitzler and Gross, 2005). However, when
the actual model equations are not known, finding the
dimensionality of a nonlinear system falls on experimental data.
Nonlinear dynamics (Abarbanel, 1996; Kantz and Schreiber,
1997; Schuster and Just, 2005) developed a set of tools for
data mining, which include phase space embedding. In this
paper series (see also Oprisan et al., 2015), we investigated the
LFPs using delay-embedding method of nonlinear dynamics to
estimate the number of degrees of freedom of the steady activity
of mPFC neural network.

One of the challenges of delay-embedding is that we only
record one-dimensional data (time series) of the membrane
potential and use it to identify all the other independent variables
that describe the system. The delay embedding method (Packard
et al., 1980; Takens, 1981), takes a time series xi = x(i1t) with
i = 1, 2, . . . ,N where N is the number of data points and 1t is

the uniform sampling time, and expands it into a d−dimensional
vector:

xi = (xi, xi+n, . . . , xi+(d−1)n),

where τ = n1t is the delay, or lag, time.

4.1. The Lag Time
One potential problemwith selecting the “right” delay time is that
a too small value leads to highly correlated embedded vectors.
Geometrically, all the data points cluster along the diagonal
direction of the embedding space leading to a one-dimensional
attractor, regardless the complexity of the original data. This issue
is known as redundancy, and the obvious solution is to increase
the delay time τ until the components of the embedded vectors
become independent (Casdagli et al., 1991). However, the delay
time cannot be arbitrarily large because then the reconstructed
vectors are completely de-correlated. Geometrically, the data
points will uniformly fill out the entire phase space without
showing any particular structure (Casdagli et al., 1991). As in
the previous study (Oprisan et al., 2015), we used both (1) the
autocorrelation (Holzfuss and Mayer-Kress, 1986; King et al.,
1987; Zeng et al., 1991; Schiff and Chang, 1992; Schuster and Just,
2005) and (2) the average mutual information (AMI) (Fraser and
Swinney, 1986; Kantz and Schreiber, 1997; Hegger et al., 1999)
for estimating the lag time τ .
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FIGURE 2 | Dendrogram-based grouping of similar LFPs. Six similar clusters are formed out of the 100 trials both without (A) and with (B) trial phase shifts to account

for network phase resetting. The distance threshold that generates six clusters is about 80 units without phase correction (A) and decreases to about 60 units (B) after

phase correction. The corresponding average LFPs for each of the clusters of the optimized dendrogram show large (C) and smaller (D) amplitude oscillations.

4.2. The Embedding Dimension
As before (Oprisan et al., 2015), Takens’ theorem (Takens, 1981)
provided a rough estimate of the embedding dimension through
its practical implementation in the false nearest neighbors (FNN)
algorithm (Kennel et al., 1992; Hegger et al., 1999; Sen et al.,
2007). The intuitive idea behind FNN is that high-dimensional
phase space trajectories projected onto a lower dimensional
embedding space will show self-crossing points. Such false
crossing points could be eliminated by unfolding the attractor in
the right dimensional space (Kennel et al., 1992).

5. RECONSTRUCTED NEURAL ACTIVITY
UNDER COCAINE

5.1. Experimental Data
Every 1.5 s-long LFP trial was first circularly shifted to correct for
the phase resetting induced by the brief 10ms light stimulus (see
Figure 1B).

The lag time was estimated both with (1) the autocorrelation
(Casdagli et al., 1991), and (2) the average mutual information
method (Fraser and Swinney, 1986). The autocorrelation
measures the amount of linear correlation between the time series
and a time-shifted version of itself. By selecting for the lag time
the first zero crossing of the autocorrelation (see Figure 3A),
we ensure that any (linear) correlation between the two time
series was removed (Abarbanel, 1996). Since the autocorrelation
method only eliminates the linear correlation between a time
series and its time-shifted version, we also used the firstminimum
of the nonlinear autocorrelation function called Average Mutual
Information (AMI) (Fraser and Swinney, 1986; Kantz and
Schreiber, 1997) to estimate the lag time (see Figure 3B). The
distribution of all autocorrelation-based lag times for animal
#1 is shown in Figure 3C and the corresponding dendrogram-
based cluster averages are given in Table 1. Although only the
autocorrelation-based lag times are shown both in Figure 3C

and Table 1, the AMI-based lag time values (not shown) were
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FIGURE 3 | Time lag estimation. The first zero crossing of the autocorrelation function is around τ ≈ 2,4001t (A) and the first minimum of the average mutual

information is around τ ≈ 2,3001t (B) with 1t = 10−4 s. The histogram of all lag times for animal #1 has a broad range with a mean of about

τmean = (2,428± 707)1t ≈ (0.24± 0.07) s (C).

TABLE 1 | Estimated average lag times for each cluster of the dendrogram.

Mouse # Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

1 1,724 1,810 2,966 3,114 2,589 2,857

2 4,038 3,982 2,009 2,530 4,548 932

3 2,924 2,104 943 3,797 1,654 3,316

4 1,114 5,417 1,347 1,345 1,688 2,540

5 4,901 4,225 4,079 1,096 4,022 5,000

6 5,453 4,779 2,902 3,415 1,859 3,156

within 5% of those obtained with the autocorrelation method. As
before (Oprisan et al., 2015), we used the Tisean function autocor
to compute the autocorrelation (see Figure 3A) and mutual to
compute the AMI (Figure 3B).

5.2. Embedding Dimension
Once we obtained a consistent estimate of the lag time, the Tisean
package was used for computing the embedding dimension of
the data (see Oprisan et al., 2015 for explicit Tisean function
calls). In the examples shown in Figure 4A, we used a lag time
τmean = 24281t to estimate the embedding dimension with
variable distance ratios, f , between 2 and 20. The distance ratio
f is given by the distance between two points in a (d + 1)-
dimensional space relative to its value in the d-dimensional
space. Distance ratio (Kennel et al., 1992; Abarbanel, 1996) is
sometimes called “the escape factor” (Kugiumtzis, 2002) since
by increasing the embedding dimension from d to (d + 1) false
neighbors move quickly apart. Too small of a distance ratio
leads to an overestimation of the percentage of false neighbors,
whereas too large of a distance ratio gives a large number of
false positives. For example, for large distance ratios, e.g., f > 7,
the percentage of false nearest neighbors drops below 1% for an
embedding dimension dE = 3 (see Figure 4A). For all values
of the distance ratio f > 12, the percentage of FNN dropped
below 10−6% at embedding dimension dE = 3 (not shown in
Figure 4A).

Strong temporal correlations are expected among data points
that are close to each other (Theiler, 1990; Theiler et al., 1992). As
a result, such data points should be removed, i.e., the time series
must be “windowed” to avoid spurious temporal correlations

(Grassberger, 1987; Theiler, 1990). Among the most used Theiler
window criteria is three times the correlation time (Heath, 2000),
(d− 1)τ , or the space-time separation distance (Provenzale et al.,
1992). We tested a wide range of Theiler windows from 100
to 8,000 sampling times, which allowed us to account for any
possible strong temporal correlation of closely spaced data points.
For all Theiler windows tested, the percentage of FNN dropped
below 0.1% at embedding dimension of dE = 3 (see Figure 4B).
Although we tested a wide range of Theiler windows, we only
show five representative results in Figure 4B for two reasons:
(1) the trend in the omitted data is similar and does not add
anything to the data shown in Figure 4B, and (2) avoid figure
cluttering.

For each trial, the phase space attractor was reconstructed
using its corresponding delay (lag) time, of which we only show
two examples from each cluster, represented by the red and
green thin lines in Figure 5. For each cluster, we also show the
average reconstructed trace with the thick blue line in Figure 5.
Although the reconstructed cluster average (blue thick traces in
Figure 5) does not represent any “true” attractor, we used it here
mostly as a visual aid that helps us gauge how individual phase
space trajectories relate to the average. Although it seems as if all
the attractors are different, they are topologically equivalent (see
Oprisan et al., 2015), i.e., by changing the delay time one phase
space trajectory could be morphed into the other. The attractors
in Figures 5A,B show a double loop (period-2 attractor), which
can be “unfolded” into the “8”-shape in Figures 5E,F by slightly
changing the delay time. Furthermore, any “8”-shaped attractor is
topologically equivalent with a closed elliptic attractor as shown
in Figures 5C,D. Indeed, the attractor in Figure 5D could be
morphed into the one shown in Figure 5F by twisting the upper
half of the attractor with respect to the lower half. Moreover, an
“8”-shaped attractor such as the one shown in Figure 5F could be
morphed into a period-2 attractor as in Figure 5B by folding the
front two loops.

The detailed procedure described above was also applied to
the other five data sets from the different animals (not shown).
In summary, the delay embedding method gave consistent delay
(lag) time estimations with both the autocorrelation and the
average mutual information methods (see Table 1) and the
optimum delay embedding dimension was dE = 3.
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FIGURE 4 | Percentage of false nearest neighbors. (A) A semi-log plot of the percentage of FNN shows that for a distance ratio f > 7 the percentage drops below 1%

for an embedding dimension of dE = 3. This suggests that an optimum ratio is above f = 7, in agreement with results from others (Abarbanel, 1996; Konstantinou,

2002). (B) Spurious temporal correlations among too closely spaced data points were removed by different Theiler windows from 100 to 8,000 samples, i.e., from

0.01 to 0.8 s (only a small subgroup is shown here). The percentage of FNN drops below 0.1% for an embedding dimension of dE = 3.

FIGURE 5 | Reconstructed 3-dimensional attractors. For each of the six dendrogram-based clusters (see Figure 2B) two randomly selected trials (red and green thin

lines) together with the cluster average (blue thick line) show the reconstructed attractors. The cluster average (blue thick line) only serves as a visual aid to guide us

gauge if the two randomly selected trials from the same cluster remain close to each other al all times.

6. CONTROL VS. COCAINE NEURAL
ACTIVITY

What did we learn from analyzing the neural activity under
cocaine? First, we found that the delay embedding method also
works for the cocaine case as well (see Oprisan et al., 2015
for a discussion of control data). Second, we found that the
embedding dimension is still three, the same as for the control
data in Oprisan et al. (2015). This means that the mathematical
model that could describe both the control and the cocaine
cases only require three independent variables. This is significant
because it opens the possibility of deriving a single mathematical
model, possibly with only (slightly) different control parameters
to describe both control and cocaine results.

Are control data truly different in a significant way when
compared against cocaine to warrant such a hypothesis? To
answer this question, we compared the data side-by-side from
the same animals before and after cocaine using a dendrogram
similarity measure. For each of the six animals, we concatenated
the 100 trials before cocaine (trial index from 1 to 100) with the
100 trials after cocaine (trial index 101 to 200) in a single 200-
trial file. As it was described above, after performing appropriate
phase shifting to account for the transient phase resetting induced
by the light stimulus (see also Oprisan et al., 2015), we performed
a dendrogram analysis. If the neural activity patterns before
and after cocaine are totally distinct, then we would expect that
they separate in clusters with no overlap. A very high degree of
similarity would be troubling from the modeling point of view
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since it would indicate that we cannot distinguish between the
two conditions using this dendrogram method.

For each cluster, we computed the percentage of mixing
between before and after cocaine trials by using the formula:

% overlap =
min(#trialsbefore, #trialsafter)

#trialscluster
, (2)

where #trialscluster represents the total number of trials in a given
cluster, of which #trialsbefore belong to the experiments before
cocaine injection (trial index 1 to 100) and #trialsafter belong
to the experiments after cocaine injection (trial index 101 to
200). If a dendrogram cluster contains only one category of trials
(either only before or only after cocaine trials), then the overlap
is zero and the separation between before and after cocaine
trials is maximum possible. However, if half of the trials of a
cluster are from before and the other half are from after cocaine,
then the overlap is maximum possible and the dendrogram
cannot discriminate between those trials. We used both the
six-cluster (see Figure 6A) and the 12-cluster (see Figure 6B)
dendrograms to classify the 200 combined trials. The difference
in the average percentage of trial overlap between the two cases
is not significant, i.e., (21.2 ± 1.1)% for six-cluster and (18.9
± 1.1)% for 12-cluster dendrograms. The fact that the average
percentage overlap does not change with the number of clusters
of the dendrogram suggests that the amount of overlap could
be determined by a true similarity among the three-dimensional
reconstructed dynamics both before cocaine (see Oprisan et al.,
2015) and after cocaine (as in this work). As a result, it may be
possible to fit the same three dimensional mathematical model to
the data before cocaine with one set of model parameters and the
after cocaine data with the same model but with a different set
of parameters. The almost 20% average mix between before and
after cocaine could be the result of a small set of parameters that
remain constant between the two models, i.e., the most stable, or
invariant, part of the model.

We also know that between before and after cocaine, there are
significant differences that a possible mathematical model must
capture (besides the common or invariant part represented by
a 20% similarity among phase space reconstructions). Indeed,
from a dynamical point of view, we found significant differences
between before and after cocaine trials. For example, the delay
times for the phase space reconstructions are significantly
different (see Figure 7). Although for each trial the optimal
delay is different, it is clear that the distributions of delay times
are also significantly different between before and after cocaine
(see Figure 7A). We notice that, on average, all delay times are
larger for before cocaine trials compared to after cocaine (see
Figure 7A). We fitted the distributions with lognormal functions
to capture correctly the long tail of distributions and showed
that the center of the delay time distributions before and after
cocaine are well separated (see Figure 7B). In all animals except
one, the centers of lognormal delay time distributions for before
cocaine trials are two to three times longer (see Figure 7B)
than for cocaine trials. This has a significant impact on the
mathematical modeling since the delay time sets the time scale
of model equations. One possible approach to modeling such a

difference in delay times between control and cocaine trials could
be along the line of inquiry of previous experiments done by
Dilgen et al. (2013), who speculated that cocaine may enhance
synchronization of neural activity via a tighter PV-cell induced
oscillation.

The above classification method is entirely based on
dendrogram’s Euclidian distance between phase shifted trials.
However, the one-dimensional time series do not tell the
entire story of neural activity. Therefore, after we reconstructed
the three-dimensional attractors using the delay-embedding
method, we computed the Frechet distance between phase space
reconstructed trajectories (Frechet, 1906). Frechet distance can
be intuitively formulated in terms of a man walking a dog on a
leash. The man walks along one curve whereas the dog along the
other and Frechet distance is the shortest leash that is sufficient
for traversing both curves (Eiter and Mannila, 1994). In other
words, the Frechet distance is a measure of the similarity between
two curves in anymetric space by taking into account the location
and ordering of the points along the curves (Eiter and Mannila,
1994). We used a readily available Matlab implementation of
Frechet distance algorithm (Danziger, 2013) and computed all
distances between any possible combinations of the 100 trials
before cocaine (bc) with the 100 trials after cocaine (ac) for all
six animals. In Figure 8, each white-bordered square corresponds
to a combination of 100 × 100 trials. For example, the top
left square shows the color-coded Frechet distance between the
100 trials before cocaine for the first animal (labeled bc1) and
the 100 trials after cocaine for the first animal (labeled ac1).
Deep blue colors indicate small Frechet distances, i.e., more
similar reconstructed attractors. Wemust emphasize that this is a
different kind of similarity measure compared to the dendrogram
similarity described above. This is because the Frechet distance
was computed between the three-dimensional reconstructed
attractors rather than the one-dimensional LFPs. As a result,
Frechet distance includes dynamic information regarding both
the lag time and the embedding dimension of the reconstructed
attractors. A cursory inspection of Figure 8 suggests some
patterns. For example, all after cocaine trials for animal #3 (ac3)
have large Frechet distances to any control trial across all animals
(bc1 to bc6). Similarly, it seems that the control data for animal
#4 (bc4) have consistent large Frechet distances with respect to all
after cocaine trials across all animals (ac1 to ac6). The dynamic
information contained in the Frechet distance plots shown in
Figure 8 could potentially provide additional hints regarding the
time scales of variables involved in a future modeling of LFPs.
A consistent blue color due to a small Frechet distance between
trials suggests very similar phase space dynamics, i.e., possibly
with very close time scales.

7. DISCUSSION

As in the previous study (Oprisan et al., 2015), we performed
both a phase shifting on the LFPs to correct for the phase
resetting induced by light stimulus, and a grouping of the shifted
LFPs in similar patterns of activity using a dendrogram (see
Figure 2).
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FIGURE 6 | Overlap index between before and after cocaine for each of the six animals. The overlap index varies from zero (total separation of before from after

cocaine trials) to maximum possible overlap where 50% of trials are from before and the other 50% are from after cocaine in the same cluster. The overlap seem to be

consistent regardless the number of clusters: in six-cluster dendrogram (A) the mean percentage overlap is (21.2 ± 1.1)%, whereas in 12-cluster dendrogram of the

same data the mean overlap is (18.9 ± 1.1)% (B).

FIGURE 7 | Distribution of delay times before and after cocaine. Typical delay time distributions show a clear time scale separation between conditions: after cocaine

the delay times are significantly smaller than before cocaine (A). The average value of the lognormal fit for the six animals show that for all animals except one, the after

cocaine mean delay time is shorter (two to three times shorter) than for before cocaine (B).

We successfully reconstructed three dimensional attractors
based on LFPs from mPFC of ChR2 expressing PV+
interneurons. The delay time for each trial was estimated using
both the autocorrelation and the average mutual information
functions (see Table 1). We used the false nearest neighbor
method and found that the minimum embedding dimension was
dE = 3 for all six animals.

We found topologically similar phase space attractors that
could be morphed into each other through an appropriate
change in delay time (see Oprisan et al., 2015 for details). The
characteristic “8”-shaped attractor (see Figure 5) was also found
in the control cases (Oprisan et al., 2015).

Both the study on control data (Oprisan et al., 2015) and this
study on cocaine modulated neural activity suggest that the local
network could be described by a model with only three variables.
Furthermore, the control and cocaine trials are classified as
similar and placed in the same cluster by the dendrogrammethod
in about 20% of the cases, regardless the number of clusters

of the dendrogram (see Figure 6). This overlap suggests that
there may be a common, invariant, part of the mathematical
model that describes both control and cocaine trials. At the
same time, the significant difference in the delay times between
control and cocaine trials (see Figure 7) could lead to different
phase space dynamics. This finding suggests that although there
may be some similarities between control and cocaine trials, the
differences in the delay times could be interpreted as two different
time scales for the two experiments. Additionally, the Frechet
distance plots shown in Figure 8 provide an intuitive and global
understanding of potentially similar time scales between different
trials as represented by blue colors.

This study complements a previous Fourier-based analysis
done by our group (Dilgen et al., 2013). For the Fourier-
based analysis, power spectral densities before and during
the optogenetic stimulation were computed. It was found
that stimulation at 40 Hz significantly increased oscillations
and induced a clear peak in the gamma range (see Figure 3 in
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FIGURE 8 | Frechet distance between the control, before cocaine (bc) and

after cocaine (ac) trials for all six animals. Each white-bordered square

contains the color-coded Frechet distance between the 100 control (bc) trials

and the 100 after cocaine (ac) trials. Deep blue colors mean small Frechet

distance and suggests more similar phase space trajectories.

Dilgen et al., 2013). The effect of cocaine in the Fourier-based
analysis was reflected in a decrease in bandwidth of induced
oscillations (see Figure 4 in Dilgen et al., 2013). As a result,
it was concluded that the main effect of cocaine is that “it
increases the entrainment of the laser-induced oscillation to the
driving frequency, resulting in a very narrow-bandwidth gamma
oscillation centered at 40 Hz.”

Applications of nonlinear dynamics methods to neuroscience
are based on the assumption that the central nervous system
is a nonlinear dynamical system exhibiting deterministic
chaos. The combination of the two words, “deterministic”
and “chaotic,” seem unlikely, since we associate deterministic
behavior of systems with predictable, well-behaved, responses
governed by precise (deterministic) evolution equations whereas
chaotic behavior is associated with unpredictable and “random”
responses. More than a century ago, Poincaré shifted the
paradigm by noticing that “... it may happen that small
differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon” (Poincare,
1920). Poincaré showed that the three celestial bodies problem,
although mathematically described by Newton’s law of gravity,
has “chaotic” behavior determined by initial conditions, i.e.,
sometimes small difference in initial conditions (positions and
velocities of the three bodies) remain small and produce a
well-behaved solution whereas for other infinitesimally close
initial conditions the trajectories diverge exponentially. Such
sensitivity of complex, nonlinear, systems to small variations in
initial conditions are particularly important in computational
neuroscience since the evolution equations are solved using
digital computers that can only represent data with a finite
precision. The nonlinearity and sensitivity to initial conditions

is ubiquitous in neuroscience (Faure and Korn, 2001) and has
been captured starting with early models, such as Hindmarsh and
Rose model (Hindmarsh and Rose, 1984), which can produce
a “chaotic” looking spike train that is actually deterministic.
The interest in deterministic chaos and nonlinear dynamics
is also clinically motivated as it has been shown that some
nonlinear dynamics measures are very effective in detecting
pathological conditions such as epileptic seizures, coma and
dementia from electroencephalogram (EEG) recordings (Galka,
2000; Müller et al., 2001; Lehnertz, 2008). Others related
the unfolding rate of the system attractor obtained with
delay-embedding to different pathological cases of epilepsy
(Pravitha et al., 2001), or used delay-embedding to filter various
EEG artifacts (Anderson et al., 2006). Another important
clinical application of delay-embedding include the detection
of cardiac arrhythmia (Ravelli and Antolini, 1992; Richter
and Schreiber, 1998) or the correlation between anxiety
and electrocardiogram complexity (Radhakrishna and Vikram,
2001).

Other optogenetic modeling studies used a bottom-up
approach in which relevant brain areas subject to optogenetic
stimulation, such as the subthalamic nucleus (STN)—
external Globus Pallidus (GPe) subnetwork, are modeled
with conductance-based model neurons (Ratnadurai-Giridharan
et al., 2017). Although limited to only ten STN and ten GPe
neurons, the model seems to capture patterns of synchronized
oscillatory activity observed in Parkinsonian patients. Their
numerical simulations show that optogenetic inhibition is more
effective than electrical deep brain stimulation (DBS) (Rosa et al.,
2012; Wichmann and DeLong, 2016). While further studies are
needed, a data-driven model obtained with the delay-embedding
method could provide subject-tailored clinical support for
alternative optogenetic solutions to DBS.

Other recent studies used a combination of delay embedding
(Kantz and Schreiber, 1997; Hegger et al., 1999) and statistical
learning theory (Hastie et al., 2001). The method was applied
to a different data structure than ours, i.e., to analyze multiple
single-unit recordings from the rat anterior cingulate cortex
while the animals performed decision-making tasks in a radial-
arm-maze (see Balaguer-Ballester et al., 2011 for details), or
from the medial prefrontal cortex of rats while the animals
performed a foraging task guided by working memory (Lapish
et al., 2015). The authors augmented the embedding space
with extra dimensions represented by interactions between
units’ firing rates to account for neuronal cross-correlations. In
their study, the dimension of the embedding space (106) was
significantly larger than in our case. To handle the statistical
analysis in such a high dimensional space, they used kernel-
methods (Hastie et al., 2001). To visualize the phase space
trajectories, they used a kernel-PCA (Principal Component
Analysis) (Scholkopf et al., 1998; Zheng et al., 2005) by only
retaining the three most variance-explaining dimensions of
the neural dynamics. PCA algorithms find directions which
have minimal reconstruction error by describing as much
variance of the data as possible with a (relatively) small
number of orthogonal directions. To further aid with visual
interpretation of the data, they also projected neural dynamics
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onto a 3-dimensional space using a Fisher discriminant analysis
(FDA) technique (Fisher, 1936; Mika et al., 1999; Sugiyama
et al., 2009). FDA maximizes the separability of classes in a
dataset by constructing projection vectors that maximize the
scatter between the classes, while minimizing the scatter within
each class (Duda et al., 2000). By augmenting the embedding
space, the 3-dimensional visualizations seem to uniquely identify
task-specific phases space attractors associated with different
population states.

In this study, we corrected for the transient change in the
LFPs by computing the amount of phase resetting required to
maximize the correlation among trials. For truly nonstationary
recordings, new methods have been suggested that range
from machine learning to a novel class-trajectory coherence
algorithm that can estimate the departures from deterministic
nature in multi-attracting dynamics (Balaguer-Ballester et al.,
2014). The method of class-trajectory coherence is particularly
suitable for detecting subtile dynamical changes that are not
detected by statistical moments and, therefore, when significant
trends cannot be statistically proven (Balaguer-Ballester et al.,
2014).

Our ultimate goal is to better understand the mechanisms
of information processing and the role of the coherent 40Hz
oscillations. It is believed that this gamma rhythm of the brain is
involved in higher cognitive function or consciousness (Mashour,
2006; Lee et al., 2009). The rhythm supports information
integration across different areas of the brain and helps binding
neural processes that generate consciousness as shown both
experimentally (Tononi et al., 1998; Tononi and Sporns, 2003)
and through computer modeling (Hauptmann et al., 2005). Loss
of consciousness has been revealed by decoherence of gamma
rhythm (John et al., 2001; Lee et al., 2009). The delay-embedding
method has been previously used to investigate the change in the
embedding dimension and lag times due to anesthetics (Walling
et al., 2006; Lee et al., 2009). The “cognitive rebinding” associated
with the emergence from unconsciousness was associated with
the significant change from an ordered to a chaotic reconstructed
attractor. Since the mice in our experiments were awake
during both control and cocaine experiments, we did not find
such a dramatic change in the attractors’ structure. However,
the underlying dynamics has a faster time scale for cocaine
experiments, a detail that is only captured by analyzing the lag
times.

8. CONCLUSIONS

The activity of the medial prefrontal cortex in six mice
systemically injected with cocaine (20mg/ kg ip) was
optogenetically perturbed with brief laser pulses. The permanent
phase resetting induced by a light stimulus was removed using
the pair correlations between recorded local field potentials. The
phase-corrected trials were embedded in a three dimensional
phase space using a delay embedding method. The main results
are as follows: (1) The reconstructed attractors for cocaine
trials are three-dimensional. (2) The 20% classification overlap
between control and cocaine trials suggests a possible common,
invariant, mathematical description of network activity. (3) At
the same time, the cocaine dynamics is about three times faster
than the control, suggesting different time scales for a possible
mathematical model. Since previous experiments using EEGs for
delay-embedding focused only on comparing the wakefulness
vs. unconsciousness attractors, we can only speculate that a
gradual increase of the anesthetic could be useful in revealing
not just the topological, i.e., the appearance and dimensionality
of the attractor, but also the dynamical aspects, i.e., the lag time
distribution, of phase space activity. Similarly, we would like to
devote future experimental studies to investigate the effect of
cocaine dose on the phase space reconstruction. We hypothesize
that increasing the cocaine dose should shorten the lag times to
the point where neural activity leads to a dramatic change even
in the topology of the attractors. Such a hypothesis aligns with
the general consensus of a communication breakdown between
different parts of the cerebral cortex as consciousness fades
(Massimini et al., 2005; Ferrarelli et al., 2010).
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