
Altered brain complexity in first-episode antipsychotic-naïve patients with 
schizophrenia: A whole-brain voxel-wise study

Naici Liu a,1, Rebekka Lencer b,c,1, Christina Andreou b, Mihai Avram b, Heinz Handels d,e,  
Wenjing Zhang a, Sun Hui a, Chengmin Yang a, Stefan Borgwardt b, John A. Sweeney f, Su Lui a,*,  
Alexandra I. Korda b,*

a Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
b Department of Psychiatry and Psychotherapy, and Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
c Institute for Translational Psychiatry and Otto-Creutzfeldt Center for Behavioral and Cognitive Neuroscience, University of Münster, Münster, Germany
d Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
e German Research Center for Artificial Intelligence, Lübeck, Germany
f Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, USA

A R T I C L E  I N F O

Keywords:
Schizophrenia
Non-linear dynamic model
Cortical topology
Largest Lyapunov exponent
Brain complexity

A B S T R A C T

Background: Measures of cortical topology are believed to characterize large-scale cortical networks. Previous 
studies used region of interest (ROI)-based approaches with predefined templates that limit analyses to linear 
pair-wise interactions between regions. As cortical topology is inherently complex, a non-linear dynamic model 
that measures the brain complexity at the voxel level is suggested to characterize topological complexities of 
brain regions and cortical folding.
Methods: T1-weighted brain images of 150 first-episode antipsychotic-naïve schizophrenia (FES) patients and 161 
healthy comparison participants (HC) were examined. The Chaos analysis approach was applied to detect al
terations in brain structural complexity using the largest Lyapunov exponent (Lambda) as the key measure. Then, 
the Lambda spatial series was mapped in the frequency domain using the correlation of the Morlet wavelet to 
reflect cortical folding complexity.
Results: A widespread voxel-wise decrease in Lambda values in space and frequency domains was observed in 
FES, especially in frontal, parietal, temporal, limbic, basal ganglia, thalamic, and cerebellar regions. The 
widespread decrease indicates a general loss of brain topological complexity and cortical folding. An additional 
pattern of increased Lambda values in certain regions highlights the redistribution of complexity measures in 
schizophrenia at an early stage with potential progression as the illness advances. Strong correlations were found 
between the duration of untreated psychosis and Lambda values related to the cerebellum, temporal, and oc
cipital gyri.
Conclusions: Our findings support the notion that defining brain complexity by non-linear dynamic analyses offers 
a novel approach for identifying structural brain alterations related to the early stages of schizophrenia.

1. Introduction

Schizophrenia is suggested to result from irregularities within 
distributed neural networks rather than dysfunctions of single distinct 
brain regions (van den Heuvel and Fornito, 2014; Jiang et al., 2022). 
Measures of brain topology quantified large-scale cortical networks (He 

and Evans, 2010; Fornito et al., 2012; Zhang et al., 2023), demonstrating 
reduced structural integrity of fronto-parietal and salience networks 
(including dorsal anterior cingulate and fronto-insular cortices) in pa
tients with schizophrenia (Spreng et al., 2019).

Previous large-scale cortical network studies of structural topological 
alternations in schizophrenia mainly investigated the covariation in 
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gray matter volume (Liu et al., 2021), cortical thickness (Zhang et al., 
2020), or cortical gyrification (Palaniyappan et al., 2015) using graph 
theory. This approach uses connectivity matrices based on correlation 
degrees between defined brain regions to investigate interactions be
tween paired regions (Yu et al., 2018). However, region of interest 
(ROI)-based approaches with a predefined template limit investigations 
to linear pair-wise interactions between brain regions, requiring a 
template-based definition of such regions (van den Heuvel et al., 2008). 
As individual brain regions do not inevitably represent the minimum 
functional unit of the brain, voxel-wise approaches are more promising 
to match inherently complex cortical topology (Tian et al., 2019; Kim 
et al., 2015).

Furthermore, a non-linear dynamic model that represents the 
multiplex brain structure using complexity measures, rather than linear 
pair-wise correlations (Fernandez et al., 2013) appears better suited for 
characterizing complex data in biological neural systems (Pham et al., 
2015). In line with this, it has been suggested that nonlinear methods 
may better explain brain structural alterations as observed in schizo
phrenia (Breakspear, 2006). Concerning the application of Chaos the
ory, the largest Lyapunov exponent (Lambda [λ]) derived from a 
Lyapunov exponent equation is well-established as a measure of 
complexity in dynamical systems (Kim et al., 2000). In this model, the 
Lambda value quantifies the divergence of small distances across voxel 
locations, serving as a quantitative indicator of geometry, curvature, 
and, consequently, the topological complexity of the evaluated brain 
regions (Korda et al., 2022). That is, the complexity of brain regions in 
patients can be investigated through the collective interactions between 
multiple voxel intensities at different locations. Moreover, continuous 
wavelet transformations (CWT) can decompose Lambda series into their 
frequency (“multiscale”) components, representing the structure relief 
of the brain and enabling the quantification of the cortical folding 
complexity (Korda et al., 2022). For instance, increased cortical struc
tural complexity has been reported in patients with first-episode psy
chosis in the temporal pole, right posterior cingulate gyrus, and lingual 
and fusiform gyri when compared with healthy comparison participants 
(HC), a finding which might contribute to the identification of structural 
biomarkers (Korda et al., 2022).

In the present study, the topological complexity of brain regions was 
compared between 150 antipsychotic-naïve patients with first-episode 
schizophrenia (FES) and 161 HC by estimating Lambda values across 
the whole brain (Chen and Pham, 2013). A voxel-wise approach was 
used to allow for the template-free examination of both inter-regional as 
well as intra-regional interactions at the whole-brain level (van den 
Heuvel et al., 2008). Additionally, the complexity of cortical folding was 
estimated to realize the visualization of the structural roughness of 
Lambda series (Korda et al., 2022). The associations between clinical 
symptom severity and topological complexities of both brain and 
cortical folding were investigated as well. Results were compared with 
findings from voxel-based morphometry (VBM) and gyrification indices 
(GI) using established standard procedures. We hypothesized that 1) 
reductions in brain and cortical folding complexities would be observed 
in patients with FES, as schizophrenia has been proposed to involve 
potential deficits in cortical maturation (Li et al., 2016); 2) the current 
voxel-vise approach would be more sensitive in detecting cortical al
terations than conventional VBM and surfaced-based morphometry 
(SBM) methods.

2. Methods and materials

2.1. Participants

One hundred and fifty antipsychotic-naïve patients with FES were 
recruited from West China Hospital in Chengdu, China. Diagnostic 
evaluations were conducted using the Structured Interview for DSM-IV 
Axis I Disorders (SCID) (First, 2005) to establish standardized criteria 
for clinical diagnoses. The severity of symptom expression covering 

seven days before testing was assessed using the Positive and Negative 
Syndrome Scale (PANSS) (Kay et al., 1987). In addition to the positive 
and negative scales and global psychopathology subscores, we also 
determined subscores for thought disturbances (comprising P2 + P3 +
P5 + G9), activation (comprising P4 + G4 + G5), paranoid syndrome 
(comprising P6 + P7 + G8), depression (comprising G1 + G2 + G3 +
G6), anergia (comprising N1 + N2 + G7 + G10), and impulsive 
aggression (P4 + P7 + G6 + S1 + S2 + S3) according to the original six- 
factor model of the PANSS (Gladsjo et al., 2004) Furthermore, the 
duration of untreated psychosis (DUP) was determined by the Notting
ham Onset Schedule (Singh et al., 2005). HC with similar demographic 
characteristics were recruited through website advertisements (Table 1). 
The non-patient version of the SCID (First, 2002) was administered to 
the HC group to confirm the lifetime absence of psychotic, mood, and 
substance use disorders. All participants were right-handed and assessed 
based on the Annett Handedness Scale (Dragovic and Hammond, 2007) 
and of Han ancestry. Exclusion criteria for both groups included a his
tory of traumatic brain injury or significant systemic or neurological 
disorders. The study protocol was approved by the research ethics 
committee of West China Hospital of Sichuan University. Written 
informed consent was obtained from all study participants.

2.2. MRI data acquisition

MRI data were collected on a 3-T scanner (EXCITE, General Electric, 
Milwaukee). To minimize the subject’s head motion, the head coil and 
earplugs were employed. High-resolution anatomical T1-weighted im
ages were acquired with a three-dimensional spoiled gradient sequence: 
TR = 8.5 ms, TE = 3.5 ms, TI = 400 ms, flip angle = 12◦, with a 240 ×
240 matrix over a field of view of 240 × 240 mm resulting in 156 axial 
slices of 1 mm thickness. All scans were reviewed by an experienced 
neuroradiologist to rule out gross brain abnormalities.

Table 1 
Demographic and clinical characteristics of the study participants.

FES HC t 
value

p 
value(n = 150) (n = 161)

mean SD mean SD

Age (years) 23.5 7.1 24.7 7 − 1.50 0.135
Education (years) 12.2 3.0 13.1 3.1 − 2.72 0.007
DUP (months) 9.1 15.1 ​ ​ ​ ​

Sex ​ ​ ​ ​ χ2 p 
value

Female (N) 88 ​ 82 ​ 1.88 0.171
Male (N) 62 ​ 79 ​ ​ ​

PANSS ​ ​ ​ ​ ​ ​
Total scores 90.08 16.88 ​ ​ ​ ​
The sum of positive 
symptoms

25.02 6.22 ​ ​ ​ ​

The sum of negative 
symptoms

18.43 7.87 ​ ​ ​ ​

The sum of global 
psychopathology

46.63 9.38 ​ ​ ​ ​

The six-factor model of 
PANSS

​ ​ ​ ​ ​ ​

Thought disturbances 14.00 3.89 ​ ​ ​ ​
Activation 9.25 3.36 ​ ​ ​ ​
Paranoid syndrome 10.33 2.82 ​ ​ ​ ​
Depression 8.55 4.09 ​ ​ ​ ​
Anergia 8.64 4.35 ​ ​ ​ ​
Impulsive aggression 16.13 5.16 ​ ​ ​ ​

Abbreviations: DUP, duration of untreated psychosis; FES, first-episode anti
psychotic-naïve schizophrenia; HC, healthy comparison participants; PANSS, 
Positive and Negative Syndrome Scale.
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2.3. MRI data preprocessing

The structural image preprocessing was carried out using the 
Computational Anatomy Toolbox (CAT) (Fornito et al., 2009) which is 

an extension of the Statistical Parametric Mapping software (SPM) 12 
based on MATLAB R2014b. The analysis pipeline was also followed in 
our previous study (Korda et al., 2022) and presented here briefly. First, 
T1-weighted images were segmented into gray matter (GM), white 

Fig. 1. Flowchart of the Chaos analysis and Continuous Wavelet transformation. (A) step 1: the distances between the center of mass and all voxels were measured 
based on the modulated and normalized GM segment images, (B) step 2: weighted distances (distance in mm × voxel intensity) were obtained to capture geometric 
changes in brain regions and were sorted from the highest to lowest, higher weighted distances are indicated by red/warm color and lower weighted distance are 
indicated by blue/cold color. Then the top 10,000 non-zero voxels were retained to estimate Lambda values, (C) step 3: Lyapunov exponent equations and expla
nation of the divergence of the points in a state-space, (D) step 4: non-zero Lambda values were mapped back to GM segments for each individual. Representations of 
the mean non-zero Lambda values of FES (red) and HC (blue) at the group level, (E) step 5: a spatial-scale representation of the original Lambda spatial series of the 
10,000 selected voxels was utilized. The Scalogram showed significant FDR-corrected group differences at different scales (0–500). Selected top 10,000 non-zero 
voxels are represented on the x-axis and scales on the y-axis. Each value in the scalogram represents the correlation of the Lambda series with the Morlet 
wavelet on the respective voxel and scale. The colors represent the correlation with the Morlet wavelet with deep purple color corresponding to larger and white 
color corresponding to smaller FDR-corrected p-values. All voxels had significant FDR-corrected p values. Abbreviations: GM, gray matter; FDR, false discovery rate; 
L, left; R, right.
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matter (WM), and cerebrospinal fluid (CSF) using a standard segmen
tation model in CAT12 (Spalthoff et al., 2018). Second, a hidden Markov 
Random Field model was applied to obtain a higher signal-to-noise ratio 
of the final tissue probability maps (Cuadra et al., 2005). Third, the filter 
strength involved an automatic assessment based on estimating the re
sidual noise in each image. Fourth, the original voxels underwent pro
jection into new locations in the warped images, ensuring the 
preservation of tissue volume within each voxel. This preservation 
process was achieved through a combination of affine transformation 
(global scaling) and non-linear warping (local volume change). Finally, 
the segmented GM, WM, and CSF maps were normalized to the Montreal 
Neurological Institute (MNI) space and modulated. Each voxel with an 
isotropic voxel size of 1.5 mm was used for the extraction of the spatial 
series.

2.4. Chaos analysis and topologic complexity of cortical folding

A flowchart depicting the principles of the Chaos analysis is shown in 
Fig. 1. The center of mass of the modulated and normalized GM seg
ments was first obtained by the function named “center of Mass” in 
MATLAB R2014b which could find the gray-level-weighted center of 
mass of an N-dimensional numerical array. The weighted distance of the 
GM center of mass with the voxel intensities (distance in mm × voxel 
intensity) was calculated to capture geometric changes in brain regions. 
The weighted distances were sorted from the highest to lowest. The top- 
weighted distances correspond to voxels that either belonged to the 
cortical surface or were slightly close to the center mass of GM. The 
highest 10,000 voxels were ultimately left to maintain the balance be
tween computational cost and reserving the topological differences be
tween groups. Then, the highest 10,000 voxels accounting for 2 % of the 
non-zero voxels in the GM segments were extracted as the spatial series 
to reconstruct the matrix of the state space and to estimate the Lambda 
value (Rosenstein et al., 1993; Korda et al., 2018).

An approach developed by Rosenstein was applied to obtain Lambda 
values (Rosenstein et al., 1993). This approach was appropriate for small 
datasets and was robust to the embedding dimension, reconstruction 
delay, and noise (Rand and Young, 1981). The detailed procedure of this 
method was described in our previous study (Korda et al., 2022). Briefly, 
positive Lambda values are known to depict the sensitive dependence on 
initial conditions in a dynamical system. According to the theory of 
Takens (Rand and Young, 1981), the trajectory of a system’s attractor, 
whose states evolve with spatial location over a state-space and predict 
the interactions between multiple voxel intensities, can be described by 
a matrix X. Thus, in a finite state-spatial, Takens’s Theorem is not 
restricted to time series. We can let xi denote the spatial-series of the 
path-free sorted distances extracted from the brain’s sMRI. Assuming the 
given spatial series provides an observation of a dynamical system 
where the parameter time is replaced by the voxel intensity and distance 
from the center of the mass combined. Then, the Lambda could be 
considered as a feature describing structural aspects of the cortex.

Lambda value quantified the divergence of small distances across 
voxel locations, serving as a quantitative indicator of the topological 
complexity of the evaluated brain regions (Korda et al., 2022). That is, 
the complexity of brain regions in patients can be investigated by the 
collective interactions over locations between multiple voxel intensities. 
To obtain the location, Lambda values were mapped back to GM seg
ments for each individual using the stored coordinates of the weighted 
distances of each voxel. Lambda values of voxels that were not selected 
as the top-weighted voxels were set to 0.

2.5. Continuous wavelet transformation

The pipeline of the continuous wavelet transformation (CWT) fol
lowed a previous report by our group (Korda et al., 2022). In short, the 
CWT utilizes a fully scalable modulated window, offering a robust so
lution to the windowing function selection challenge in frequency- 

related (scale-related) signal processing methodologies (Korda et al., 
2022). In the present investigation, the CWT was applied to decompose 
the Lambda series into frequency components for feature extraction. The 
CWT utilized the complex Morlet wavelet as its fundamental function to 
produce a spatial-scale representation of the original Lambda spatial 
series, displayed as a “scalogram” plane (Korda et al., 2022). That is, the 
CWT of a one-dimensional series has two-dimensional outputs of a 
scalogram that contains geometrical points and scales (Korda et al., 
2022). Within this scalogram plane, each value (referred to as a wavelet 
coefficient) signifies the degree of correlation between the Lambda se
ries and the Morlet wavelet at specific geometrical point-scale pairs. This 
approach facilitated the quantification of cortical folding complexity by 
extracting statistical features representing the structural relief of brain 
geometry, which were subsequently computed in the spatial domain.

2.6. Statistical analysis

Lambda images were loaded in MATLAB R2014b using a two-sample 
t-test to obtain group differences between FES and HC at the voxel level. 
P-values of the 10,000 selected top-weighted voxels were corrected with 
a false discovery rate (FDR) to correct for multiple comparisons. An 
FDR-corrected p-value (two-tailed) < 0.05 was considered statistically 
significant. FDR-corrected p values were mapped back to GM segments 
and allocated to 116 regions based on the AAL templates in MRICron 
(https://www.nitrc.org/projects/mricron/). The corresponding brain 
regions with the number of non-zero voxels in each region and mean 
Lambda values of non-zero voxels were presented in Table 2. Raw test 
statistics, p-values, and coordinates of significant voxels were not pro
vided in the results part owing to their large number. The presented 
coordinates are restricted to those brain regions with both increased and 
decreased measures of brain complexity.

Regarding the Lambda values at different scales, group comparisons 
with significant FDR-corrected p values were represented using the 
scalograms from 0 to 500 (Fig. 1E). The 400 scales were found to provide 
the most adequate representation for each group and were selected for 
further two-sample t-tests to compare the group differences with the 
significance level set at p < 0.05 (FDR corrected). A surface overlay of 
the mean correlations between the Lambda values and the Morlet 
wavelet was applied to represent the statistically significant differences 
in 400 scales by using CAT12 (Fig. 4A and B). As above, only brain re
gions with both increased and decreased measures of cortical 
complexity were presented with coordinates.

After group comparisons, Lambda values in space and frequency 
domains showing significant group differences were further used to 
identify associations with clinical scores by conducting partial correla
tion analyses with age and sex as covariates of no interest.

2.7. Voxel-based morphometry analysis

For exploratory purposes, VBM analyses were performed to identify 
gray matter volume differences between groups. The modulated and 
warped GM segments were smoothed with an 8 mm full-width at half 
maximum (FWHM) Gaussian Kernel. After spatial pre-processing, the 
smoothed, modulated, normalized GM segments were used for statistical 
analysis in the context of the general linear model in the SPM12 toolbox. 
Voxel-wise two-sample t-tests were performed using age and sex as 
covariates. The threshold was set at p < 0.05 corrected by the family- 
wise error rate (FWE). A contiguous cluster of at least 30 voxels was 
accepted as significant. The significant findings were visualized using 
MRICron.

2.8. Gyrification index analysis

Additionally, SBM pre-processing and analyses were performed 
using the default CAT12 pipeline which has been used in previous 
studies of patients with schizophrenia (Spalthoff et al., 2018). A 
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gyrification index, one of the SBM parameters, was extracted with the 
CAT12 toolbox (Dahnke et al., 2013) based on the absolute mean cur
vature of the cortex (Luders et al., 2006). A Gaussian kernel of 20 mm 
was applied to smooth the gyrification images. The statistical analysis 
was performed in CAT12 using a general linear model with a two-sample 
t-test design. Results were considered significant at the cluster-level 
FWE-corrected p < 0.05 for multiple comparisons. The significant 
findings were visualized using CAT12.

3. Results

3.1. Demographic characteristics

A total of 150 antipsychotic-naïve patients with FES (88 females, 62 
males; mean age of entire sample: 23.5 ± 7.1 years, range: 16–44 years; 
DUP: 9.1 ± 15.1 months; education: 12.3 ± 2.8 years) and 161 HC 
matched by age and sex (82 females, 79 males; mean age: 24.7 ± 7.0 
years, range: 16–45 years; education: 13.1 ± 3.1 years) was included in 
this study (Table 1). Notably, the HC group had a significantly higher 
educational level than the patient group.

3.2. The distribution of Lambda values

As laid out above, the distribution of Lambda reflects the topological 
complexity of the brain. In both groups, Lambda distribution patterns 
were predominately found related to the left hemisphere (Fig. 1) with 
Lambda values differing between both groups indicating brain 
complexity alterations in patients.

3.3. Altered brain complexity in patients with schizophrenia and its 
association with clinical scores

Specifically, patients predominately showed decreased topological 
complexity in left frontal, left limbic, left basal ganglia regions and 
bilateral occipital, parietal, temporal, thalamic, and cerebellar regions 
(p < 0.05, FDR-corrected, Table 2, Fig. 2). Interestingly, some voxels 
among these regions (i.e. left middle occipital gyrus, left fusiform gyrus, 
left thalamus, left temporal gyrus, and left cerebellum) also presented 
increased topological complexity in patients compared with HC (p <
0.05, FDR-corrected, Table S1).

Partial correlation analyses with age and sex as covariates showed 
correlations between brain complexity and DUP in several brain regions 
in the patient group: longer DUP was associated with higher complexity 
in the cerebellum, temporal, and occipital gyri. We also observed cor
relations between brain complexity and clinical symptoms. To be spe
cific, stronger PANSS negative symptom expression was associated with 
higher complexity in the cerebellum, temporal, and occipital gyri. 
Meanwhile, stronger expression of anergia was associated with higher 
complexity in the left cerebellum crus 1 (Table 3, Fig. 3).

3.4. Altered cortical folding complexity in patients with schizophrenia and 
associations with clinical scores

Significant group differences were observed in several frequency 

Table 2 
Brain regions showing FDR-corrected decreased brain complexity in FES 
compared with HC by applying two sample t-tests on Lambda values.

Brain regions Number 
of voxels

Number of 
non-zero 
voxels

Fraction of 
non-zero 
voxels

Mean Lambda 
values in space 
of non-zero 
voxels

Precentral L 28,174 565 0.020 0.000161
Frontal Sup Orb L 7654 89 0.012 0.000105
Frontal Mid L 38,722 1 <0.001 0.000138
Frontal Inf Tri L 20,104 54 0.003 0.000080
Rolandic Oper L 7939 7 0.001 0.000189
Rectus L 6864 163 0.024 0.000156
Insula L 15,025 836 0.056 0.000053
Cingulum Mid L 15,512 292 0.019 0.000101
Cingulum Post L 3715 205 0.055 0.000504
Hippocampus L 7469 9 0.001 0.000110
Parahippocampal 

L
7891 112 0.014 0.000209

Calcarine L 18,157 1941 0.107 0.000102
Calcarine R 14,885 923 0.062 0.000124
Cuneus L 12,133 779 0.064 0.000121
Cuneus R 11,323 592 0.052 0.000107
Lingual L 16,932 1308 0.077 0.000104
Lingual R 18,450 1372 0.074 0.000144
Occipital Sup L 10,791 307 0.028 0.000140
Occipital Sup R 11,149 96 0.009 0.000172
Occipital Mid L 25,989 3751 0.144 0.000177
Occipital Mid R 16,512 181 0.011 0.000159
Occipital Inf L 7536 1779 0.236 0.000131
Occipital Inf R 7929 710 0.090 0.000179
Fusiform L 18,333 3152 0.172 0.000192
Fusiform R 20,227 913 0.045 0.000166
Postcentral L 31,053 649 0.021 0.000106
Parietal Sup L 16,519 28 0.002 0.000223
Parietal Sup R 17,554 358 0.020 0.000118
Parietal Inf L 19,447 691 0.036 0.000186
SupraMarginal L 9907 1383 0.140 0.000144
Angular L 9313 688 0.074 0.000164
Angular R 14,009 515 0.037 0.000121
Precuneus L 28,358 1599 0.056 0.000271
Precuneus R 26,083 594 0.023 0.000138
Paracentral 

Lobule R
6693 540 0.081 0.000155

Putamen L 7942 1348 0.170 0.000279
Pallidum L 2285 198 0.087 0.000156
Thalamus L 8700 837 0.096 0.000268
Thalamus R 8399 567 0.068 0.000205
Temporal Sup L 18,307 1737 0.095 0.000103
Temporal Pole Sup 

L
10,228 32 0.003 0.000103

Temporal Mid L 39,353 5754 0.146 0.000154
Temporal Mid R 35,484 32 0.001 0.000163
Temporal Pole 

Mid L
5984 9 0.002 0.000175

Temporal Inf L 25,647 4106 0.160 0.000351
Temporal Inf R 28,468 2078 0.073 0.000175
Cerebellum Crus1 

L
20,667 2818 0.136 0.000133

Cerebellum Crus1 
R

21,017 1469 0.070 0.000138

Cerebellum Crus2 
L

15,216 2175 0.143 0.000125

Cerebellum Crus2 
R

17,038 886 0.052 0.000165

Cerebellum 3 R 1600 1 0.001 0.000123
Cerebellum 4 5 L 9034 687 0.076 0.000026
Cerebellum 4 5 R 6763 523 0.077 0.000085
Cerebellum 6 L 13,672 3472 0.254 0.000299
Cerebellum 6 R 14,362 1177 0.082 0.000131
Cerebellum 7b L 4639 1055 0.227 0.000154
Cerebellum 7b R 4230 146 0.035 0.000210
Cerebellum 8 L 15,090 1099 0.073 0.000192
Cerebellum 8 R 18,345 1504 0.082 0.000143
Cerebellum 9 L 6924 184 0.027 0.000137
Cerebellum 9 R 6462 179 0.028 0.000124
Vermis 4 5 5324 32 0.006 0.000094

Table 2 (continued )

Brain regions Number 
of voxels 

Number of 
non-zero 
voxels 

Fraction of 
non-zero 
voxels 

Mean Lambda 
values in space 
of non-zero 
voxels

Vermis 7 1564 5 0.003 0.000087
Vermis 8 1940 690 0.356 0.000089
Vermis 9 1367 254 0.186 0.000206
Vermis 10 874 158 0.181 0.000168

Abbreviations: Inf, inferior; L, left; Mid, middle; Oper, operculum; Orb, orbital 
part; Post, posterior; R, right; Sup, superior; Tri, triangular part.
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scales (0–500). In 400 scales the number of the FDR corrected p-values 
(<0.05) was higher than in other scales and were finally selected for 
further analysis. This indicates that low frequencies (high scales) were 
more prominent in patients reflecting a smoother divergence of voxels in 
the spatial series (Fig. 4). Specifically, patients showed decreased to
pological complexity of cortical folding in left frontal and bilateral 
limbic regions, basal ganglia, as well as occipital, parietal, temporal, 
thalamic, and cerebellar regions (p < 0.05, FDR-corrected, Table 4). 
Meanwhile, some voxels among these regions (e.g., left parietal lobe, left 
precentral gyrus, right cuneus gyrus, bilateral superior occipital gyrus, 
and bilateral cerebellum) also presented increased topological 
complexity of cortical folding in patients compared with HC (p < 0.05, 
FDR-corrected, Table S2).

Partial correlation analysis with age and sex as covariates showed 
that higher PANSS depression subscores and lower paranoid syndrome 
subscores were associated with higher complexity of cortical folding in 
the right thalamus (r = 0.3713, FDR p-value ≤ 0.05) and left middle 
occipital gyrus (r = − 0.3596, FDR p-value ≤ 0.05) in patients compared 
with HC, respectively (Fig. 5).

3.5. Voxel-based morphometry analysis

To compare the results conducted by the non-linear dynamic model 
with the results obtained by the conventional morphometric method, 
VBM analyses were performed to identify gray matter volume differ
ences between groups. Patients with FES showed significantly decreased 
gray matter volume than HC related to the left parahippocampus, left 
cerebellum crus 1, and right lingual gyrus (Table S3, Fig. S1). No 
increased gray matter volume was observed in any regions in the patient 
group when compared with the healthy group.

3.6. Surfaced-based morphometry analysis

For a similar exploratory purpose as above, SBM analyses were 
further conducted to figure out group differences in gray matter gyr
ification. Patients with FES showed a significant hypo-gyrification 
pattern than HC in the left middle temporal and right superior tempo
ral gyri (Table S4, Fig. S2). No hyper-gyrification pattern was observed 
in any regions when compared with the healthy group.

4. Discussion

To identify alterations of topological brain complexity and cortical 
folding in antipsychotic-naïve patients with FES, we applied the Chaos 
analysis using Lambda values and Lambda values in the frequency 
domain as key measures. Our main findings demonstrated a widespread 
voxel-wise decrease of Lambda values and their components at 400 
scales, indicating a general reduction of topological brain and cortical 
folding complexities in patients at an early stage of this severe mental 
disorder. Most importantly, we identified associations between brain 
complexity and DUP/ psychopathological symptoms (anergia and 
negative symptoms) on the one hand, and associations between cortical 
folding complexity and psychopathological symptoms (depression and 
paranoid syndrome) on the other hand.

Generally, we found distributions of Lambda values, with higher 
Lambda values representing higher brain complexity, mainly located in 
the left occipital and temporal regions and cerebellum in both FES and 
HC groups. These findings were consistent with previous reports about 
human brain lateralization (left–right asymmetry) representing a sub
stantial feature of human brain organization (Schijven et al., 2023) 
shaped by neurodevelopmental processes (Koelkebeck et al., 2014; Sha 
et al., 2021). In line with this, the exhibition of a general left-greater- 
than-right asymmetry had been associated with unequal development 
of diverse brain regions (e.g., language and right-handedness) mostly in 

Fig. 2. Brain regions showing significant FDR corrected group differences in Lambda values indicating both higher and lower complexity in FES compared with HC. 
Blue spots represent FES while red spots represent HC (FWHM = 6 mm). The horizontal blue lines in the right part of the figure indicate the axial slice locations. The 
spots in the same brain area are circled by yellow lines. Abbreviations: ANG, angular gyrus; CAL, calcarine fissure and surrounding cortex; CC1, cerebellum crus 1; 
CC2, cerebellum crus 2; Cere6, cerebellum 6; CUN, cuneus; IFGtriang, triangular part of inferior frontal gyrus; INS, insula; ITG, inferior temporal gyrus; L, left; MOG, 
middle occipital gyrus; MTG, middle temporal gyrus; PCUN, Precuneus; PreCG, precentral gyrus; PUT, putamen; R, right; SMG, Supramargnial gyrus; SOG, superior 
occipital gyrus; SPG, superior parietal gyrus; THA, thalamus.

Table 3 
Partial correlations between brain complexity and DUP/clinical symptoms 
defined by PANSS in FES using age and sex as covariates.

Brain region r value FDR-corrected p value

DUP Temporal Mid L 0.773 <0.00001
Temporal Mid R 0.749 <0.00001
Temporal Inf L 0.749 <0.00001
Occipital Mid L 0.749 <0.00001
Cerebellum Crus 1 L 0.749 <0.00001
Cerebellum Crus 2 L 0.596 <0.00001
Cerebellum Crus 2 R 0.749 <0.00001
Cerebellum 6 L 0.733 <0.00001
Cerebellum 8 L 0.749 <0.00001
Cerebellum 8 R 0.679 <0.00001

Anergia Syndrome Cerebellum Crus 1 L 0.302 0.04706
Negative Symptoms Temporal Mid L 0.349 0.03529

Temporal Mid R 0.337 0.01176
Temporal Inf L 0.337 0.01569
Occipital Mid L 0.337 0.00784
Cerebellum Crus 1 L 0.337 0.04314
Cerebellum 6 L 0.337 0.01176
Cerebellum 8 R 0.330 0.01176

Abbreviations: Inf, inferior; L, left; Mid, middle; R, right.
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HC (Kong et al., 2018; Toga and Thompson, 2003). Thus, the general 
pattern of Lambda distribution found in both groups supported a model 
of Lambda representing reliable measures of topological brain 
complexities.

Second, the widespread voxel-wise decrease in Lambda values 

observed in first-episode patients indicated an extensive brain 
complexity decrease in the left hemisphere, with some additional brain 
regions showing decreased complexity also in the right hemisphere. This 
was consistent with previous reports showing decreased brain structural 
complexity in schizophrenia patients compared with HC (Squarcina 

Fig. 3. Correlations between brain complexity and (A) DUP, (B) negative syndrome, and (C) anergia subscores in FES. The red spots indicate positive correlations 
(FWHM = 6 mm). The horizontal blue lines in the right part of the figure indicate the axial slice locations. Abbreviations: CC1, cerebellum crus1; CC2, cerebellum 
crus2; Cere6, cerebellum 6; Cere8, cerebellum 8; ITG, inferior temporal gyrus; L, left; MOG, middle occipital gyrus; MTG, middle temporal gyrus; R, right.
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et al., 2015). Decreased Lambda values were related to temporal regions 
as previously reported from both individuals with first-episode psy
chosis and individuals at clinically high risk (Korda et al., 2022). Given 
the association between tissue complexity and both dendritic arboriza
tion and synapse formation (Neil et al., 1998), a reduction in brain 
complexity observed in patients with schizophrenia had been proposed 
as a potential deficit of cortical maturation (Li et al., 2016).

Our findings also revealed an additional pattern of increased Lambda 
values, indicating enhanced brain complexity in patients, particularly in 
the left middle occipital gyrus, left fusiform gyrus, left thalamus, left 
temporal gyrus, and left cerebellum. The finding underlined the notion 
that in early states brain complexity was not just reduced, as had been 
reported for different types of dementia (Nicastro et al., 2020; Moller 
et al., 2016). This was consistent with our previous study (Korda et al., 
2022) that first-episode psychosis or even clinical high-risk showed a 
generally lower pattern of Lambda values but some specific brain re
gions showed higher Lambda values in the left middle occipital gyrus, 
left temporal gyrus, left fusiform gyrus, and cerebellar regions when 
compared with HC. These findings suggested a redistribution of brain 
complexity during the early stages of schizophrenia, with potential 
progression as the illness advances. This was evidenced by our obser
vation of longer DUP being associated with higher brain complexity in 
bilateral temporal gyri, left occipital gyrus, and cerebellum. Thus, this 
constellation of bidirectional findings supported a model of redistribu
tion of brain complexity across the whole brain in schizophrenia as has 
been concluded from a previous functional MRI study of temporal brain 
entropy (another kind of complexity measure) (Xue et al., 2019). We 
also found that stronger expression of negative symptoms was associated 
with increased brain complexity in the bilateral temporal gyri, left oc
cipital gyrus, and cerebellum. Notably, these regions partially 

overlapped with those associated with DUP. This observation aligned 
with a previous study that suggested brain structural alterations related 
to schizophrenia appear characterized by a “dys-structure” pattern 
which might mirror the psychopathological characteristics of specific 
clinical syndromes (Kay et al., 1987).

Applying exploratory VBM analysis to our sample, only limited GMV 
decrease was found in the left parahippocampus, left cerebellum crus 1, 
and right lingual gyrus. The decrease in hippocampal volume had been 
consistently reported in previous studies (Lieberman et al., 2018; van 
Erp et al., 2016). The decreased cerebellar regions were suggested to 
partly explain the cognitive impairment and motor function deficits in 
patients in our previous meta-analysis (Li et al., 2022). It was of note that 
decreased GMV in brain regions would deteriorate and spread to con
nected areas with disorder progression (Chopra et al., 2023). The anti
psychotic medication would affect GMV as well (Tang et al., 2024). 
Compared with the VBM findings, the Chaos analysis approach based on 
the measurement of Lambda revealed a more widespread decrease in 
brain complexity at the voxel-wise level. Notably, the Lambda measure 
represented a “template-free” or “path-free” measurement that captured 
the divergence of neighboring voxels across GM topology in relation to 
other entitled voxels. This illustrated how voxels from distinct regions 
were associated with structural alternations in schizophrenia (Korda 
et al., 2022) and suggested that applying Lambda represented a more 
sensitive approach for detecting brain alternations.

Furthermore, the Lambda series was transformed into a two- 
dimensional scalogram using CWT to depict the brain’s structural re
lief of brain and spatial-scale features. This enabled the quantification of 
cortical folding complexity, which had previously shown a regional 
decrease in the right superior temporal gyrus (Trevisana et al., 2022). 
The widespread voxel-wise decrease in Lambda components at 400 

Fig. 4. Correlations of the Lambda values with the Morlet wavelet in voxels with statistically significant FDR-corrected differences for 400 scales were overlaid to (A) 
FES and (B) HC. The color scale represents the range of the correlation, higher (lower) correlations are indicated by red/warm (blue/cold) color and represent smooth 
(sharp) cortical folding. Abbreviations: L, left; R, right.
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scales showed less lateralized specificity in patients, with decreased 
complexity of cortical folding primarily in the left frontal gyrus and 
bilaterally in other cortical regions. This suggested that decomposing the 
Lambda series into frequency components for feature extraction might 
diminish the lateralized feature of brain complexity. However, 
compared with the finding of brain regions with increased Lambda 
values, we observed a greater number of brain regions exhibiting an 
increased Lambda pattern in the frequency domain. This suggested that 
decomposing the Lambda series into the frequency domain might help 
determine the redistribution of topological complexity across the entire 
brain in schizophrenia. Interestingly, this approach revealed additional 
associations with symptom expression. Specifically, higher complexity 
of cortical folding in the right thalamus was associated with more severe 
depressive symptoms, while lower complexity of cortical folding in the 
left middle occipital gyrus was associated with more pronounced para
noid syndrome. Cortical complexity was suggested to develop during the 
pre/perinatal period, with only minor changes occurring until around 
the age of 20 (White et al., 2010). After this age, the measure remained 
stable throughout adulthood, making it a viable neurodevelopmental 
biomarker representing late fetal/early postnatal life (White et al., 
2010). Based on the above, our findings further supported the neuro
developmental hypothesis and suggested that alternations in cortical 
folding complexity could be considered an imaging marker of schizo
phrenia (Schmitt et al., 2021).

In our exploratory analysis of the gyrification index, a significant 
hypo-gyrification pattern in the left middle temporal and right superior 
temporal gyri was reported in patients with FES compared with HC. 
Abnormal cortical folding had been reported as a marker of aberrant 
fetal development in schizophrenia (Palaniyappan et al., 2013). 
Reduced gyrification in the temporal, precentral, precuneus (Nesvåg 
et al., 2014), and limbic regions (Gao et al., 2023) had been observed in 
both first-episode and chronic patients with schizophrenia in previous 
studies. Indeed, hyper-gyrification had also been reported in first- 
episode patients with schizophrenia, though in regions different from 
the current findings, such as the bilateral prefrontal and right occipital 
cortices (Takayanagi et al., 2019). It was notable that variation trends in 
cortical gyrification remained inconsistent across studies and might 
depend on the age and stage of illness of the recruited patients (Rosa 
et al., 2021). The new approach revealed a more widespread decrease in 
cortical complexity at a voxel-wise level. This suggested that Lambda 
values and their components were more sensitive in detecting cortical 
alterations. The finding that alterations in both hypo- and hyper- 
complexity were related to the same brain regions further suggested that 
the voxel-level approach could provide more relevant and widespread 
information on alternations in cortical complexity than other ap
proaches, such as regions of interest analyses based on predefined 
atlases. This model was supported by previous studies showing that 
brain abnormalities related to schizophrenia should be rather treated as 
brain network alterations accounted at a voxel-level (Korda et al., 2022).

Several limitations need to be addressed. First, the Chaos analysis 
approach involves several parameter selections that require further 

Table 4 
Brain regions showing FDR-corrected decreased cortical folding complexity in 
FES compared with HC by applying two sample t-tests on the scalograms.

Brain regions Number 
of voxels

Number of 
non-zero 
voxels

Fraction of 
non-zero 
voxels

Mean Lambda 
values in 
frequency 
domain of non- 
zero voxels

Precentral L 28,174 1 0.000 0.012
Frontal Sup Orb L 7654 12 0.002 0.033
Frontal Mid Orb L 7112 4 0.001 0.047
Frontal Inf Oper L 8271 20 0.002 0.036
Frontal Inf Tri L 20,104 13 0.001 0.042
Rolandic Oper L 7939 11 0.001 0.034
Rectus L 6864 11 0.002 0.026
Insula L 15,025 8 0.001 0.043
Cingulum Post L 3715 1 0.000 0.027
Hippocampus L 7469 25 0.003 0.024
ParaHippocampal 

L
7891 12 0.002 0.030

ParaHippocampal 
R

9028 7 0.001 0.034

Calcarine L 18,157 486 0.027 0.026
Calcarine R 14,885 202 0.014 0.022
Cuneus L 12,133 149 0.012 0.027
Cuneus R 11,323 96 0.008 0.028
Lingual L 16,932 526 0.031 0.023
Lingual R 18,450 253 0.014 0.026
Occipital Sup L 10,791 95 0.009 0.024
Occipital Sup R 11,149 78 0.007 0.020
Occipital Mid L 25,989 1944 0.075 0.022
Occipital Mid R 16,512 94 0.006 0.028
Occipital Inf L 7536 447 0.059 0.023
Occipital Inf R 7929 254 0.032 0.029
Fusiform L 18,333 850 0.046 0.022
Fusiform R 20,227 121 0.006 0.025
Postcentral L 31,053 46 0.001 0.031
Parietal Sup L 16,519 2 0.000 0.043
Parietal Inf L 19,447 52 0.003 0.037
SupraMarginal L 9907 236 0.024 0.029
Angular L 9313 230 0.025 0.028
Angular R 14,009 5 0.000 0.029
Precuneus L 28,358 84 0.003 0.032
Precuneus R 26,083 140 0.005 0.030
Caudate L 7682 1 0.000 0.035
Putamen L 7942 67 0.008 0.023
Putamen R 8510 4 0.000 0.008
Pallidum L 2285 15 0.007 0.019
Pallidum R 2188 1 0.000 0.031
Thalamus L 8700 319 0.037 0.019
Thalamus R 8399 173 0.021 0.020
Heschl L 1804 1 0.001 0.027
Temporal Sup L 18,307 305 0.017 0.028
Temporal Pole Sup 

L
10,228 43 0.004 0.028

Temporal Mid L 39,353 1815 0.046 0.023
Temporal Mid R 35,484 95 0.003 0.024
Temporal Pole Mid 

L
5984 4 0.001 0.031

Temporal Inf L 25,647 1330 0.052 0.020
Temporal Inf R 28,468 336 0.012 0.027
Cerebellum Crus1 

L
20,667 1299 0.063 0.021

Cerebellum Crus1 
R

21,017 606 0.029 0.026

Cerebellum Crus2 
L

15,216 140 0.009 0.023

Cerebellum Crus2 
R

17,038 64 0.004 0.029

Cerebellum 3 L 1072 6 0.006 0.031
Cerebellum 4 5 L 9034 4 0.000 0.015
Cerebellum 6 L 13,672 854 0.062 0.023
Cerebellum 6 R 14,362 241 0.017 0.028
Cerebellum 7b L 4639 10 0.002 0.030
Cerebellum 8 L 15,090 62 0.004 0.024
Cerebellum 8 R 18,345 11 0.001 0.025
Cerebellum 9 L 6924 23 0.003 0.029

Table 4 (continued )

Brain regions Number 
of voxels 

Number of 
non-zero 
voxels 

Fraction of 
non-zero 
voxels 

Mean Lambda 
values in 
frequency 
domain of non- 
zero voxels

Cerebellum 9 R 6462 7 0.001 0.027
Vermis 4 5 5324 22 0.004 0.031
Vermis 6 2956 100 0.034 0.018
Vermis 7 1564 39 0.025 0.022
Vermis 8 1940 24 0.012 0.024
Vermis 9 1367 4 0.003 0.031

Abbreviations: Inf, inferior; L, left; Mid, middle; Oper, operculum; Orb, orbital 
part; Post, posterior; R, right; Sup, superior; Tri, triangular part.
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investigation, for instance determining the number of selected voxels. A 
general pattern of Lambda distributions in both FES and HC groups 
supports the assumption that sorting does not compromise spatial de
pendencies in the spatial signal and makes the application of the Largest 
Lyapunov Exponent feasible. Second, the drawback of selecting pa
rameters arose from an assumption made due to computational re
strictions, and efforts should be directed toward overcoming this 
challenge. To assess the effectiveness of the proposed method, com
parisons with classical approaches, including gray matter volume and 
gyrification index were conducted in this study.

5. Conclusions

Following the Chaos analysis approach, the present study reported a 
general pattern of Lambda distributions in both antipsychotic-naïve 
patients with FES and HC, supporting the reliability of Lambda mea
sures. The scattered distribution of altered topological complexities of 
the brain and cortical folding in patients compared with HC suggested 
that alternations in brain topology and cortical complexity might be 
accounted for at the voxel level. Additionally, bidirectional changes in 
certain regions highlighted the redistribution of complexity measures in 
schizophrenia at an early stage.
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