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Abstract

Evaluating the effectiveness of malaria control interventions on the basis of their impact on transmission as well as impact
on morbidity and mortality is becoming increasingly important as countries consider pre-elimination and elimination as well
as disease control. Data on prevalence and transmission are traditionally obtained through resource-intensive
epidemiological and entomological surveys that become difficult as transmission decreases. This work employs
mathematical modeling to examine the relationships between malaria indicators allowing more easily measured data,
such as routine health systems data on case incidence, to be translated into measures of transmission and other malaria
indicators. Simulations of scenarios with different levels of malaria transmission, patterns of seasonality and access to
treatment were run with an ensemble of models of malaria epidemiology and within-host dynamics, as part of the
OpenMalaria modeling platform. For a given seasonality profile, regression analysis mapped simulation results of malaria
indicators, such as annual average entomological inoculation rate, prevalence, incidence of uncomplicated and severe
episodes, and mortality, to an expected range of values of any of the other indicators. Results were validated by comparing
simulated relationships between indicators with previously published data on these same indicators as observed in malaria
endemic areas. These results allow for direct comparisons of malaria transmission intensity estimates made using data
collected with different methods on different indicators. They also address key concerns with traditional methods of
quantifying transmission in areas of differing transmission intensity and sparse data. Although seasonality of transmission is
often ignored in data compilations, the models suggest it can be critically important in determining the relationship
between transmission and disease. Application of these models could help public health officials detect changes of disease
dynamics in a population and plan and assess the impact of malaria control interventions.
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Introduction

Evaluating the effectiveness of malaria control interventions on

the basis of their impact on transmission is increasingly important

as countries consider elimination as well as malaria control.

However, direct measurement of transmission, such as by the

entomological inoculation rate (EIR) (a measure of human

exposure defined by the number of infective mosquito bites per

human in a given time period), involves mosquito capture. This is

extremely labor-intensive, and is only reliable in high transmission

areas and seasons [1]. In areas of low transmission, or during dry

seasons, identifying a sufficient number of sporozoite-positive

mosquitoes makes this exercise excessively time- and resource-

intensive, often precluding collection of a full year’s worth of data

and making estimates of seasonality challenging. Alternatives are

to estimate transmission rates from sero-conversion rates [2,3] or

by calculating force of infection (FOI) from combining information

on prevalence and treatment [4]. Estimating both the exposure to

infectious mosquitoes and subsequent FOI from parasite preva-

lence in areas of high transmission is difficult due to superinfection

and immunity. Mathematical models are useful in examining

relationships between malaria indicators, allowing translation of

routine health center data into measures of transmission and

addressing concerns with previously implemented methods of

measuring transmission [5].

Understanding the seasonal pattern of malaria transmission is

important for planning control interventions, for example the

timing of deploying indoor residual spraying (IRS) and seasonal

malaria chemoprophylaxis (SMC) which are implemented ahead

of the peak transmission months. Given the wide range of seasonal

patterns combined with transmission intensities that exist in areas

of the world with malaria transmission, and due in large part to the

absence of robust field data, the effect of seasonality on the

relationship between malaria indicators has not been studied in

great detail. Attempts have been made to define [6,7] and quantify

[8] the relationship between seasonally varying covariates and

transmission based on available studies on malaria transmission

and disease burden, but results for the latter were only found to be

reliable in areas of very high transmission (EIR.100 infectious

bites per person per year) [6].

One approach for quantifying transmission in areas without

EIR data is to use simulation models to analyze how different
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malaria indicators (parasite prevalence, prevalence of uncompli-

cated and severe episodes, mortality) relate to each other, and how

they relate to transmission as measured by EIR [5]. To validate

such models, a straightforward approach would be to compare the

simulated relationships between indicators to those observed in the

field. However, when relationships between indicators differ in

places with disparate patterns of seasonality, such an approach

becomes challenging. This study uses simulation models to analyze

whether relationships between malaria indicators are likely to vary

by intensity and pattern of seasonality. Analysis of these simulation

results can help identify the best way of quantifying transmission

for the purposes of specifying the seasonal patterns to drive existing

models of Plasmodium falciparum dynamics. This in turn will

assist in planning for malaria control by allowing for the selection

of interventions tailored to the level of transmission in a given

location, and monitoring the effectiveness of those interventions by

their impact on transmission.

Methods

OpenMalaria transmission model simulation
This experiment utilizes an ensemble of simulation models of

transmission of malaria developed by a team at the Swiss Tropical

and Public Health Institute (Swiss TPH) and Liverpool School of

Tropical Medicine. These models form part of the OpenMalaria

platform that makes the considerable code base written in C++
accessible to the public through an online wiki [9]. Based on a

stochastic series of parasite densities for individual infections,

stochastic individual-based models of malaria in humans [10–12]

are linked to a periodically-forced model of malaria in mosquitoes

[13] in order to simulate the dynamics of malaria transmission and

the impact of intervention strategies for malaria control. Details of

the methods to create and parameterize the transmission model

used in this project have been previously published [10–13] and

therefore are not covered in this paper. Models are fitted to 10

objectives using 61 standard scenarios as described in Smith et al.

2008 [11]. The transmission model is calibrated by the seasonal

pattern of the EIR with units of infectious bites per person per

year. Simulations were run for one human life span to induce a

stable level of immunity in the population. Each simulation was

repeated on an ensemble of 14 model variants with varying

assumptions on mass action, heterogeneity of exposure, decay of

acquired immunity, co-morbidities, and access to treatment as

described in Smith et al [12] to address model uncertainty, with

five random seeds to address stochasticity.

Study design
The overall objective of estimating transmission in areas without

EIR data was addressed by applying the OpenMalaria modeling

platform to simulate malaria with different levels of transmission

and patterns of seasonality observed in malaria-affected locations,

and deriving outputs for all other malaria indicators. Table 1
describes the indicators chosen as simulation outputs that were

evaluated in this study. Relationships between all indicators for the

different values of EIR and different seasonality profiles were

estimated from simulation results (described below) using Stata v12

(College Station, TX). For this process the indicators were

calculated for the whole population, with the exception of the

relationships involving mortality which were limited to children

under five due to a lack of data in older age groups for validation

purposes.

Scenario design
The baseline scenario used in these experiments was based on a

scenario previously parameterized for the Rachuonyo South

district in the highlands of western Kenya [14]. The model

assumes no interventions beyond case management through the

health system as described in Tediosi et al. [15], a main vector of

A. gambiae s.s., and artemisinin combination therapy (ACTs) as

the first line antimalarial. Simulations were run on a population of

100,000 individuals over three years with monthly surveys of

malaria outcomes.

Seasonality index
To quantify the ‘‘amount’’ of seasonality in a location a

seasonality index (Q) was defined in order to describe the variations

in transmission within one year in a given location. The

methodology presented here is general and can be used for any

measure of transmission, but the example below is used with EIR.

We let T denote the period (1 year) and let f (t) be a positive

continuous periodic function that denotes transmission at time t,
with f (t+T) = f (t).0 for all t$0. The mean level of transmission

(over 1 year) is,

H~
1

T

ðT

0

f (t)dt

In a similar manner to the coefficient of variation in statistics,

we define Q as the normalized square root of the integral of the

squared difference between f(t) and its mean,

Q~
1

TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

(f (t){H)2dt

vuuut

This seasonality index, Q, allows us to quantify the level of

seasonality of transmission in a given location with one positive

real number, differentiating between ‘‘amounts’’ of seasonality for

transmission patterns with the same number of peaks. Because

malarious areas in general have either one or two peak

transmission seasons, there could be seasonality patterns in

Author Summary

While malaria is still a major public health problem in many
parts of the world, control programs have greatly reduced
the burden of disease in recent years and many countries
are now considering the goal of elimination. Unfortunate-
ly, malaria transmission becomes more difficult to measure
when it is low because traditional methods involve
capturing mosquitoes; an expensive and time-consuming
technique. To measure transmission in areas without
adequate field data, we run simulations of a mathematical
model of malaria over a range of transmission intensities
and seasonal patterns to examine how different measure-
ments of malaria (prevalence, clinical disease, and death)
relate to each other, how they relate to transmission, and if
the relationships are likely to vary by seasonal pattern of
transmission. These simulated relationships allow us to
translate easily measured data, such as clinical case
incidence seen at health facilities, into estimates of
transmission. This technique can help public health
officials plan and assess the impact of malaria control
interventions, even in areas without intensive research
activities.

Relationships between Malaria Indicators and Seasonality
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different locations that lead to the same seasonality index, Q. We

therefore label the seasonality profile with both the seasonality

index and the number of peaks.

Seasonality profiles
The simulations described here treat transmission in the

absence of interventions as periodic with a one year period [13].

One scenario with a seasonality pattern of constant annual

transmission (Q = 0) and five scenarios with varying seasonal

transmission patterns (Q = 1, one peak; Q = 1, two peaks; Q = 0.5,

two peaks; Q = 2, one peak; Q = 2, two peaks) were created,

described in Table 2 and Figure 1.

These six patterns were chosen to represent the range of

seasonal patterns of malaria transmission existing in the

malaria endemic world, namely because there are usually not

more than two peak transmission seasons. The seasonality

profiles with Q = 2 exhibit large variations in seasonality. For

Q = 2 with one peak, 86% of annual transmission is focused in

the three peak transmission months, while for Q = 2 with two

peaks, the peak is narrower with 95% of annual transmission

occurring in the three months of the higher peak. The results

of what this means for prevalence and morbidity over one year

can be found in Figure S1 in Text S1. Seasonality patterns

were repeated for eleven values of annual average EIR from

0.5 to 365. Complete details of the methods behind the

experiment creation can be found in Text S1. The relation-

ships between malaria indicators were estimated using frac-

tional polynomial regression as described in more detail in

Text S2.

Model validation
In order to gauge the model’s ability to reproduce field data, a

validation exercise was completed by comparing simulation results

to data not used in the original process of model fitting from

previously published studies. The relationships for validation, the

datasets used and how they relate to model fitting are described in

Table S1.

While the annual average EIR in the scenarios used for

estimating the relationships between malaria indicators were

capped at a value of 81.4, scenarios for validation were simulated

up to an average of 365 infectious bites per person per year. This

tailors the analysis to low- to mid-range values of annual average

EIR where this tool will be the most applicable, while still allowing

for a more comprehensive range of annual average EIRs that

appear in the validation datasets.

Results

Indicators as a function of entomological inoculation rate
(EIR)

When analyzing the relationship between EIR and other

malaria indicators, the differences between seasonality profiles

are greatest at moderate levels of EIR (Figure 2a–d). Results are

similar between seasonality profiles at both ends of the EIR

spectrum for uncomplicated and severe disease, but seasonality

impacts the relationship with prevalence and mortality more at

higher values of EIR (Figure 2a–d).

The Beier et al. dataset, describing the relationship between

EIR and parasite prevalence in children under five in sites across

Table 1. Malaria indicators described in this study and their definitions for the purposes of this study.

Indicator name Definition Transformation*

Entomological Inoculation Rate (EIR) Annual average number of infectious bites received from a malaria
vector per person

Logarithmic

Parasite prevalence Proportion of the population (all ages) with detectable parasitaemia
(greater than 100 parasites per microliter)

Logit

Uncomplicated episodes Annual average number of uncomplicated clinical episodes of malaria
per person (all ages)

Logarithmic

Severe episodes Annual average number of severe clinical episodes of malaria per
1,000 people (all ages)

Logarithmic

Mortality Annual average number of deaths due to malaria in children under
5 per 1,000 people

Logarithmic

* Transformation used in fractional polynomial analysis.
doi:10.1371/journal.pcbi.1003812.t001

Table 2. Seasonality patterns of transmission observed malaria-endemic areas.

Seasonality pattern ID Seasonality index (Q) Number of peaks Description

0, 0 0 0 No seasonality – constant transmission throughout the
year

1, 1 1 1 Medium seasonality, one transmission season

1, 2 1 2 Medium seasonality, two transmission seasons

0.5, 2 0.5 2 Low seasonality, two transmission seasons

2, 1 2 1 High seasonality, one transmission season

2, 2 2 2 High seasonality, two transmission seasons

doi:10.1371/journal.pcbi.1003812.t002

Relationships between Malaria Indicators and Seasonality
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Africa, has been applied for a previous validation of the

OpenMalaria model [16]. One site out of 31 as published

separately was used to fit the model for incidence of asexual blood

stage infection, as indicated in Table S1. Compared to the results

presented in Beier et al. [17], simulation results are within the

range of observed values for low and medium values of EIR, but

predict a slightly lower prevalence in extremely high EIR settings,

especially in a setting with no seasonality (Figure 3). Perhaps this

is because observed results reach up to 1,000 infectious bites per

person per year while the simulated scenarios were capped at 365.

While the observed relationship is fitted as log-linear, the

simulated relationship starts levelling off at an EIR of 100.

Indicators as a function of parasite prevalence
The relationship between parasite prevalence and uncompli-

cated episodes is non-monotonic (Figure 4a) for all values of Q. It

can be noted that the simulated relationship between parasite

prevalence and severe disease shows more stochasticity than the

other relationships with parasite prevalence in areas of lower

prevalence (Figure 4b). This variation can be attributed to model

uncertainty, in particular differing assumptions about access to

treatment, rather than to the effect of seasonality. For uncompli-

cated disease, severe disease and mortality, the effect of seasonality

Figure 2. Relationship of parasite prevalence (a), uncomplicated episodes (b), severe episodes (c), and mortality (d) to annual
average EIR by seasonality index (Q). Triangles represent simulated results. The lines show the estimated relationship between indicators from
the simulation runs, fitted using fractional polynomial regression, for each pattern of seasonality as described by (the seasonality index Q, number of
peaks) (Figure 1). Unbroken red line represents (0, 0). Brown dashed line represents (1,1). Orange dotted-dashed line represents (1,2). Green dotted
line represents (2,1). Black dotted-dashed line represents (2,2). Blue dashed line represents (0.5, 2).
doi:10.1371/journal.pcbi.1003812.g002

Figure 1. Annual pattern of transmission, defined as the
simulated daily EIR, for each seasonality profile as described
by (the seasonality index Q, number of peaks). Unbroken red line
represents (0, 0). Brown dashed line represents (1,1). Orange dotted-
dashed line represents (1,2). Green dotted line represents (2,1). Black
dotted-dashed line represents (2,2). Blue dashed line represents (0.5, 2).
doi:10.1371/journal.pcbi.1003812.g001

Relationships between Malaria Indicators and Seasonality
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is greater in areas of higher parasite prevalence; the variation

increases once prevalence reaches 40% (Figure 4a–c).

Compared to the results presented in Okiro et al. [18] the model

is able to reproduce the general pattern of the relationship between

severe pediatric malaria and prevalence in children aged 2–10 in

children under 1 year as well as in children aged 5–9, with the

burden of malaria moving to older age groups as prevalence is

reduced (Figure 5).

Compared to the results presented in Korenromp et al. [19],

which describes the relationship between parasite prevalence and

both malaria-specific and all-cause mortality in children under 5,

the model is able to capture the general pattern for the relationship

between malaria-specific mortality in children under five for low

and moderate prevalence settings (Figure 6). There appears to be

variation across sites in the observed data that may be explained

by the ability of verbal autopsy to capture indirect deaths due to

malaria in different settings [20]. Nine sites (for which EIR

estimates were available) out of the 28 sites included in the study

were used to fit the model of direct malaria mortality in relation to

EIR, as indicated in Table S1.

Indicators as a function of uncomplicated episodes
At lower numbers of uncomplicated episodes per person per

year, seasonality does not play a role in the relationship with severe

episodes (Figure 7). The curves separate at levels above 1.25

uncomplicated episodes per person per year with two-peak

scenarios Q = 1 and Q = 2 diverging from the other values of Q
(Figure 7). The scatter plot of simulation results showed no

discernible relationship between mortality and either uncompli-

cated or severe episodes, and are therefore not shown here.

Figure 3. The relationship between prevalence (defined as the maximum recorded parasite prevalence rate in any given age group)
and EIR from Beier et. al [17] (3.1 a, 3.2 a–b) and OpenMalaria simulations (3.1 b, 3,2 d). In 3.1 the mean value is shown as a line inside the
box, the 25th to 75th percentile is shown by the box, and the range of values is shown by the lines outside the box. In 3.2 grey triangles represent
simulation results without (light gray) and with (dark gray) seasonality as described by (the seasonality index Q, number of peaks) (Figure 1). The
lines show the estimated relationships with seasonality (2, 2) (dashed) and without seasonality (0, 0) (unbroken) using fractional polynomial
regression. Figures 3.1a and 3.2a–b have been reproduced from Beier et al [17] with permission.
doi:10.1371/journal.pcbi.1003812.g003

Relationships between Malaria Indicators and Seasonality
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Age prevalence curves by indicator
Age prevalence curves are validated by comparing simulation

results to those presented in Carneiro et al, which report on the

age distribution of children with clinical malaria, hospital

admissions with malaria and malaria-diagnosed mortality for

different categories of intensity and seasonality of malaria

transmission identified from a systematic review epidemiological

studies [6].

It should be noted that there are differences in the classification

of degree of seasonality between the observed and simulated data.

Carneiro and colleagues describe settings with marked seasonality

as those with greater than or equal to 75% of episodes

concentrated less than or equal to 6 months of the year. In the

OpenMalaria simulations, marked seasonality is defined as the

setting with Q = 2.

The reported estimated median ages and inter-quartile ranges

(defined as the 50th percentile of the best-fitting distribution for

each outcome and transmission scenario) from these fitted models

for each level of transmission and level of seasonality are compared

to estimates from fitted OpenMalaria simulation results to validate

age prevalence curves of the malaria indicators mentioned above.

In all cases, the results of the OpenMalaria simulations are

comparable to the previously published results (Figure 8).

Discussion

Due to the lack of understanding of the relationship between

EIR and other malaria indicators based on challenges in

measuring EIR from entomological studies, modeling is able to

further define the relationships between indicators and help clarify

details of what cannot measured from field studies but is

nonetheless necessary knowledge about malaria indicators. This

is of value for malaria control program managers because it

provides insight on transmission without substantial field studies.

These models can be used to simulate the likely range of values in

areas without access to adequate field data.

Empirical studies of the relationships between different malaria

indicators are challenging because these relationships may in

principle be affected by many, often poorly characterized,

contextual factors, with the degree of seasonality being possibly

Figure 4. Relationship of uncomplicated episodes (a), severe episodes (b), and mortality (c) to parasite prevalence by seasonality
index. Triangles represent simulated results. The lines show the estimated relationship between indicators from the simulation runs, fitted using
fractional polynomial regression, for each pattern of seasonality as described by (the seasonality index w, number of peaks) (Figure 1). Unbroken red
line represents (0, 0). Brown dashed line represents (1,1). Orange dotted-dashed line represents (1,2). Green dotted line represents (2,1). Black dotted-
dashed line represents (2,2). Blue dashed line represents (0.5, 2).
doi:10.1371/journal.pcbi.1003812.g004

Figure 5. Relationship between the proportion of paediatric
severe malaria in children under 1 year (a) and children aged
5–9 years (b) and parasite prevalence in the 2–10 age group
from Okiro et. al, [18] (black circles) and OpenMalaria
simulations (grey triangles). Triangles represent simulation results
with (dark gray) and without (light gray) seasonality. Lines show the
estimated relationships with (dashed) and without (unbroken) season-
ality using fractional polynomial regression.
doi:10.1371/journal.pcbi.1003812.g005

Relationships between Malaria Indicators and Seasonality
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one of the most important. The original fitting of the OpenMalaria

model parameters to multiple field datasets used a standard

pattern of seasonality of transmission from Namawala, Tanzania;

effects of seasonality observed in these results are thus not an

artifact of the fitting process. Simulations suggest that with equal

levels of average annual transmission, the level of seasonality, i.e.

whether malaria transmission is fairly constant over the course of a

year versus peaks in certain months, affects the relationship

between malaria indicators. An increase in the degree of

seasonality has a greater impact on outcomes with moderate

levels of EIR and prevalence. There is greater stochasticity in

simulation results for scenarios with higher amplitude of the

annual cycle compared to scenarios with a constant level of

transmission.

There have been previous attempts to create a measure for the

seasonality of malaria transmission [21–23], mainly relying only

on rainfall and/or vector abundance to describe the proportion of

transmission occurring within a certain number of months. The

approach to developing the seasonality index presented here is in

response to the need to provide a quantitative metric for

differences between seasonal patterns. Results indicate that this

index does not distinguish well between patterns that have a

different number of peaks (Figure 2); therefore the number of

peaks should also be noted in any analysis of studies that employ

this index. Areas with seasonal malaria transmission typically have

substantial variation in rainfall and transmission with numerous

small peaks, but normally only have one or two main seasons. The

total number of peaks can thus be assumed to be limited to a

maximum of two.

The difference in results for different patterns within the same

seasonality index calls into question the assumptions behind the

drivers of the relationships between malaria indicators. Scenarios

with a higher degree of seasonality, regardless of number of peaks,

return lower levels of prevalence, disease and mortality for a given

level of transmission. An important driver is multiple concomitant

events; when two illness episodes occur at the same time they are

only considered as one, which may occur more frequently in high

seasonality scenarios. At more mild patterns of seasonality, this

phenomenon is only seen at higher levels of transmission. These

results also potentially indicate an effect on acquisition of

immunity in these settings, a consideration when modeling the

Figure 6. Relationship between mortality in children under 5 and average all-age parasite prevalence as described in Korenromp
et. al [19] (black circles) and OpenMalaria simulations (triangles) for all deaths (light gray) and direct deaths only (dark gray). Lines
show the simulation-based estimated relationships with seasonality (Q = 2, 2 peaks) (dashed) and without seasonality (Q= 0, 0 peaks) (unbroken)
using fractional polynomial regression. The observed values from Korenromp et. al are results of verbal autopsy which do not specify direct malaria
deaths as opposed to indirect malaria deaths.
doi:10.1371/journal.pcbi.1003812.g006

Figure 7. Relationship of severe episodes to uncomplicated
episodes by seasonality index. Triangles represent simulated
results. The lines show the estimated relationship between indicators
from the simulation runs, fitted using fractional polynomial regression,
for each pattern of seasonality as described by (the seasonality index Q,
number of peaks) (Figure 1). Unbroken red line represents (0, 0).
Brown dashed line represents (1,1). Orange dotted-dashed line
represents (1,2). Green dotted line represents (2,1). Black dotted-dashed
line represents (2,2). Blue dashed line represents (0.5, 2).
doi:10.1371/journal.pcbi.1003812.g007

Relationships between Malaria Indicators and Seasonality
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relationship between transmission and the acquisition of immunity

in a population. Several model variants differ in their assumptions

about immunity [12], and while outside the scope of this paper, an

important question for future investigation would be the impact of

this aspect of the models variants and the effect, if any, that occurs

for different seasonal patterns of transmission.

Results indicating the impact of seasonality on the relationship

between malaria indicators is relevant to malaria epidemiology

and control because, as has been described in Carneiro et al [6],

areas with similarly high average annual prevalence result in less

frequent cases of malaria in highly seasonal settings. A focused

empirical analysis of this effect would be another welcome addition

to the understanding of the subject.

Access to treatment has the potential to impact the relationships

between transmission and other malariological indicators such as

severe disease and mortality. The higher the proportion of malaria

cases that are treated with effective antimalarials the more the

parasite reservoir in the human host population is suppressed, the

fewer gametocytes are available, and the less likely it is that

mosquitoes are infected. The authors are not aware of any

empirical studies of the relationship between access to treatment

and population-level health outcomes. However, recent work by

Briët and Penny investigates the impact of access to treatment on

the OpenMalaria model [24]. The relationships between severe

episodes and other indicators (Figures 2c, 4b, 7) may depend

more on access to effective case management, indicated by the

variance in simulation results which is due to model uncertainty

rather than the effect of seasonality.

There are direct implications on control programs for the

relationship between seasonality and the expected number of

uncomplicated cases for a given level of parasite prevalence.

Locations with poor monitoring and surveillance systems resulting

from complex emergencies or insufficient reach of the public

sector may have readily-available parasite prevalence data as a

result of research activities. These results may impact how routine

data from the case management system in these locations are able

to be used to inform study design for the implementation of

seasonality-dependent interventions such as IRS and SMC.

Two sources mentioned in this model validation were also used

in the original model fitting [12]. However, as indicated in the

Results section and in Table S1, the relationships used here for

validation were not the same relationships (Korenromp et al.) or

subsets of data (Beier et al.) used for fitting. Although both help

parameterise the model, because this process was independent to

the relationships being validated, they can therefore be treated as

available for validation.

Each simulation result is a point in multidimensional space with

each dimension corresponding to one malaria indicator. However,

to determine the relationship between any two indicators, all

simulation points are projected onto a two-dimensional space

where the relationship is estimated through fractional polynomial

regression. Due to this projection, when two indicators have a

monotonically-increasing relationship with a third indicator, they

may not necessarily have a monotonically-increasing relationship

with each other. For example, while simulated parasite prevalence

and mortality both increase with increasing annual average EIR,

the same effect will not necessarily be seen on mortality in

conditions of increasing prevalence. Similarly, the effects of

seasonality appear to decrease as EIR increases, but increase as

prevalence increases.

While the range of transmission levels and patterns represented

in this study are designed to cover a large proportion of malaria

endemic areas, there are areas with contexts that will fall outside

the scope of this work. There remain areas with extremely high

transmission beyond an annual average EIR of 81.4 at which this

analysis is capped, but these programs are unlikely to be at a stage

of malaria control to benefit from applying the methods described

in this paper for fine-tuning malaria control interventions as

Figure 8. Median ages and inter-quartile range age prevalence curves in months of age by annual average EIR levels of ,10 (a, d),
10–100 (b, e), and .100 (c, f), and seasonality patterns Q = 2, 2 peaks (a–c) and Q = 0, 0 peaks (d–f) for uncomplicated episodes,
malaria hospitalizations, and mortality as observed in Carneiro et al. [6] (circles, unbroken lines) and simulated by the OpenMalaria
model (triangles, dashed lines).
doi:10.1371/journal.pcbi.1003812.g008
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vector control interventions can be effectively utilized to

substantially reduce malaria transmission to moderate levels

and transmission can be adequately measured with entomological

methods.

Simulated results were limited to annual average EIR values

greater than 0.5. In very low transmission settings infections are

sporadic and could be better captured with epidemic models. At

very low annual average transmission rates malaria can be

sustained by regular importation or the presence of hotspots.

The relationships between malaria indicators then depend

critically on the degree of transmission heterogeneity and

interactions between sub-populations. In these settings, estimating

transmission through using serology to estimate EIR or force of

infection may be more suitable. Although not currently available

in the OpenMalaria transmission model, force of infection and

serology will be important components to add to future versions to

better simulate the current practice of measuring transmission at

low values of EIR. With the inclusion of these indicators, the new

model can be calibrated with data on incidence but validated with

other indicators (i.e. prevalence or serology).

Because of the strong effect of seasonality on the relationships

between malaria indicators, it follows that obtaining accurate

estimates of transmission across a range of seasonal patterns, not

just transmission intensities, is critical for tailoring malaria control

and elimination programs to specific country contexts. An

accurate map describing seasonal patterns of transmission to

attach to maps of transmission intensity and other indicators

would be a useful tool. While obtaining this information may not

be straightforward, there is a need for research studies designed

with measuring not only transmission but also other malaria

indicators to ensure the annual pattern of transmission is

accounted for. Therefore, goals for reduction in transmission

and burden of disease can be further tailored to specific sites.

The methods described here will be able to be compiled into a

lookup tool that will allow malaria control professionals to enter

the data they have on one index and see the range of likely results

for other measures of malaria. In addition to estimates, an essential

requirement would be providing a means to display the

uncertainty of simulation results. Examples of how this might be

achieved are discussed in Text S3 and shown in Figures S2–S5
in Text S3. Such a tool could aid in the planning process of

tailoring malaria control interventions to the appropriate level of

transmission.
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