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Abstract: The glyoxalase system is a ubiquitous cellular metabolic pathway whose main physi-
ological role is the removal of methylglyoxal (MG). MG, a glycolysis byproduct formed by the
spontaneous degradation of triosephosphates glyceraldehyde-3-phosphate (GA3P) and dihydrox-
yacetonephosphate (DHAP), is an arginine-directed glycating agent and precursor of the major
advanced glycation end product arginine-derived, hydroimidazolone (MG-H1). Extracellular vesicles
(EVs) are a heterogeneous family of lipid-bilayer-vesicular structures released by virtually all living
cells, involved in cell-to-cell communication, specifically by transporting biomolecules to recipient
cells, driving distinct biological responses. Emerging evidence suggests that included in the EVs
cargo there are different metabolic enzymes. Specifically, recent research has pointed out that EVs
derived from human amniotic fluid stem cell (HASC-EVs) contain glycolytic pay-off phase enzymes,
such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Since GAPDH catalyzes the sixth
step of glycolysis using as a substrate GA3P, from which MG spontaneously origins, we wanted to
investigate whether MG-derived MG-H1, as well as glyoxalases, could be novel molecule cargo in
these EVs. By using immunoassays and spectrophotometric methods, we found, for the first time
ever, that HASC-EVs contain functional glyoxalases and MG-H1, pioneering research to novel and
exciting roles of these eclectic proteins, bringing them to the limelight once more.

Keywords: glyoxalases; methylglyoxal; MG-H1; extracellular vesicles; human amniotic fluid; stem cells;
D-lactate; GSH

1. Introduction

Glyoxalases are highly conserved and ubiquitously expressed metabolic enzymes,
responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of
energy metabolism, into non-toxic D-lactic acid [1]. Glyoxalases, comprising glyoxalase
1 (Glo1) and glyoxalase 2 (Glo2), have been long considered part of the glyoxalase sys-
tem, working sequentially to remove MG. In particular, Glo1 catalyzes the formation of
S-D-lactoylglutathione (SLG) from the hemithioacetal formed non-enzymically from MG
and reduced glutathione (GSH), while Glo2 catalyzes the hydrolysis of SLG to D-lactic
acid and regenerates the GSH consumed in the Glo1-catalysed reaction [2]. Additionally,
indeed, this seems to be true in several biological settings [1,3]; however, in other scenarios,
emerging evidence suggests that both enzymes may play distinct, novel, and indepen-
dent roles [4–7]. MG is mainly formed as a glycolysis byproduct by the spontaneous
degradation of the triosephosphates, glyceraldehyde-3-phosphate (GA3P), and dihydroxy-
acetonephosphate (DHAP) and is a highly reactive cellular metabolite that glycates lysine
and arginine residues to form post-translational modifications (PTM), known as advanced
glycation end products (AGEs) [8]. The major MG-dependent arginine-derived AGE is the
hydroimidazolone MG-H1 [1]. MG-derived dicarbonyl adducts exert complex pleiotropic
effects, including modulation of protein biological activity [9] and stability [10,11]. In gen-
eral, targeted proteins are differently vulnerable to MG-dependent glycation so that their
functionality can be impaired [11] or enhanced [12,13]. Interestingly, modifications were
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recently observed on the active site residues of glycolytic enzymes that could alter their
activity [8] and in pivotal stress-inducible proteins implicated in cellular recovery, including
heat shock protein 27 (Hsp27), increasing their functionality [12,13]. Moreover, there is
also evidence that some MG-derived AGEs are endowed with antioxidant properties [14].
Notably, MG can also nonenzymatically modify lipids and nucleic acids [15–18]. Finally,
MG and MG-derived AGEs are associated with free radical production, the increased
activity of prooxidant enzymes, the decrease in antioxidant activities, and mitochondrial
dysfunction [7].

Extracellular vesicles (EVs) are nanometer-sized membranous vesicles secreted by
cells, with crucial roles in physio-pathological processes [19]. EVs play an important role
in intercellular communication by transferring a heterogeneous biological cargo made of
proteins, including misfolding proteins, lipids, and nucleic acids [20,21].

A growing body of evidence suggests that EVs contain different metabolic
enzymes [22–26].

Interestingly, it has been very recently pointed out that EVs derived from human
amniotic fluid stem cell (HASC-EVs) contain glycolytic pay-off phase enzymes, including
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [27]. Since GAPDH catalyzes the
sixth step of glycolysis using as a substrate GA3P, from which MG spontaneously and
inevitably originates, we wondered whether glyoxalases, that metabolize MG, could be
molecule cargo in these EVs, and whether their presence was paralleled by MG-derived
MG-H1, the major MG-dependent arginine-derived AGE is the hydroimidazolone MG-
H1 [1].

Interestingly, we found, for the first time to our knowledge, that HASC-EVs contain
functional glyoxalases and MG-H1, pioneering research to novel and exciting roles of these
eclectic proteins.

2. Materials and Methods
2.1. Materials

All the reagents used in the present study were of analytical grade from Sigma-Aldrich
(Milan, Italy), unless otherwise specified. The bicinchoninic acid (BCA) kit for protein
quantification was from Thermo Fisher Scientific (Monza, Italy).

2.2. HASC Isolation and Culture

HASCs were previously obtained from human amniotic fluid of 16–17 weeks pregnant
women (35–40 years) who underwent amniocentesis. Women had no gestational diabetes
or other previous diseases and were homogeneous for age. The study was approved by
the University of Perugia Bioethics Committee. Written informed consent was obtained
from each woman. HASCs were isolated and cultured as previously described [26–28].
Briefly, fresh amniotic fluid (3–5 mL) was centrifuged and the cell pellet cultured in 18%
Chang B/2% Chang C media (Irvine Scientific, Ireland, UK) for 6–7 days to allow adher-
ent cells to form colonies. Cells with a predominantly fibroblast-like morphology and a
colony shape similar to dermatoglyphics, appropriately characterized, represented HASCs
and were cultured in MSCGM medium (Lonza, Gaithersburg, MD, USA). Since HASCs
characterization in all the cases showed similarity in all the parameters considered for their
characterization [26–28], only one HASC cell line was considered to recover EVs.

2.3. HASC-Derived EV Isolation and Culture

EV isolation was performed as previously described [26,27]. Briefly, serum-free condi-
tioned medium (MSCBM Lonza, Milan Italy # PT-3238 with L-glutamine and gentamicin
sulfate/amphotericin B) from 5 × 106 HASCs was pooled 24 h post-culturing, and sequen-
tially centrifuged: 300× g (10 min), 2000× g (20 min), and 10,000× g (45 min). The pellet was
named HASC-P10 fraction. Then, the supernatant was further centrifuged at 100,000× g
(60 min) in an Optima TLX ultracentrifuge with a 60Ti rotor (Beckman Coulter, Brea, CA,
USA) and the pellet named HASC-P100 fraction. Both HASC-P10 and HASC-P100 pel-
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lets were washed at 100,000× g (60 min) with PBS containing 1% penicillin/steptomycin.
The pellets were suspended at 1 mg/mL concentration with endotoxin-free PBS (Merck,
Darmstadt, Germany) added with 1% penicillin/streptomycin to avoid potential microbial
contamination and stored at −80 ◦C until further use. All samples were tested for their
endotoxin level with Pierce™ LAL Chromogenic Endotoxin Quantitation Kit (Thermo
Scientific, San Jose, CA, USA). All the samples used in the study had endotoxin levels
below the detection limit.

2.4. HASC-Derived EV Characterization

Nanoparticles tracking analysis (NTA), Scanning Electron Microscopy (SEM), Trans-
mission Electron Microscopy (TEM) analyses as well as specific EVs markers were per-
formed to characterize HASC-derived EVs as previously described [27].

Notably, HASC-P10 and HASC-P100 fractions used in the present study represent
aliquots from those used in Mezzasoma et al. [27]. Results on both HASC-EVs fraction
characterization are reported in Mezzasoma et al. [27].

2.5. Western Blot Analysis

Samples were run on 4–15% SDS-PAGE and blotted onto a nitrocellulose mem-
brane (iBlot Dry Blotting System, Thermo Fisher Scientific, Monza, Italy). Membranes
were blocked in Roti-Block for 1 h at room temperature and subsequently incubated
overnight at 4 ◦C with an appropriate dilution of the following primary Abs: anti-Glo1
pAb, E-AB-15072, diluted 1:1000; anti-GLO2 pAb, ab154108, diluted 1:1000; anti-β-actin
mAb, sc-376421, diluted 1:1000; anti MG-H1 mAb, STA-011, dilution 1:1000; anti-RAGE
(A-9) mAb, sc-365154, dilution 1:1000; Hsp27 pAb, PA1-017, dilution 1:500. After washing,
membranes were incubated for 1 h at RT with the appropriate HRP-conjugated secondary
Ab and visualized using ECL (Amersham Pharmacia, Milan, Italy). The primary Ab was
then stripped by incubating membranes in stripping buffer (100 mM 2-ME, 2% SDS, and
62.5 mM Tris-HCl, pH 6.8) and re-probed with an Ab against an appropriate housekeeping
protein as an internal loading control. Original blots are reported in Figure S1.

2.6. Glyoxalase-Specific Activity

Glo1 activity was studied as previously described [29]. Glo2 activity was measured as
previously described [30]. Protein concentration was determined with the BCA kit, using
bovine serum albumin as a standard.

2.7. MG-H1 Detection

MG-H1 levels were detected using an OxiSelect Methylglyoxal Competitive ELISA kit
(DBA Italia, Milan, Italy) [31].

2.8. Immunoprecipitation

Immunoprecipitation (IP) was performed using a Dynabeads Protein G Immunopre-
cipitation Kit (Thermo Fisher Scientific, Monza, Italy) according to the manufacturer’s
instructions and as reported previously [32].

2.9. Glutathione (GSH) Assay

GSH was measured by using the GSH assay kit (colorimetric) from Bio Vision Inc. (Mil-
pitas, CA, USA) according to the manufacturer’s instructions as previously described [33].

2.10. D-Lactate Assay

D-lactate was measured by using the D-Lactate Assay Kit (Colorimetric) from Abcam
(Cambridge, MA, USA), according to the manufacturer’s instructions.
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2.11. Statistical Analysis

Unless otherwise stated, results are expressed as means ± SD from three independent ex-
periments and evaluated by Student’s t-test. A p value less than 0.05 was considered significant.

3. Results
3.1. Glyoxalases Are Cargos of Both HASC-P10 and HASC-P100 EVs

Figure 1 shows Glo1 and Glo2 protein levels in lysed HASC-P10 and HASC-P100 EVs.
As shown, both fractions contain Glo1 and Glo2 proteins (Figure 1a). Interestingly, both
Glo1 and Glo2 were more expressed in HASC-P10 than HASC-P100 EVs, when normalized
against β-actin (Figure 1b).
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Figure 1. Glyoxalases are cargos of both HASC-P10 and HASC-P100 EVs. (a) Representative Western
blot (WB) of Glo1 and Glo2; (b) quantitative histogram of the relative Glo1 and Glo2 protein expression
levels. β-actin was used as internal loading control for WB normalization. The WB bands of Glo1
and Glo2 were quantified by densitometric analysis, normalized against β-actin, and expressed as
relative protein level (fold change). The histograms indicate the mean ± SD of three independent
experiments. * p < 0.05 vs. P10.

3.2. Glyoxalases Are Functional in Both HASC-P10 and HASC-P100 EVs

In order to investigate whether glyoxalases were functional in HASC-P10 and HASC-
P100 EVs, the specific activity of both enzymes was measured by spectrophotometry. We
found that both glyoxalases were active in HASC-P10 and HASC-P100 EVs (Figure 2). In
line with the results from WB, both Glo1 and Glo2 specific activity was higher in HASC-P10
compared with HASC-P100 EVs. Exposure of HASC-P10 and HASC-P100 EVs to proteinase
K (PK), which degrades proteins localized on the EV surface, confirmed the presence of
glyoxalases inside EVs (data not shown).
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Figure 2. Glyoxalases are functional in both HASC-P10 and HASC-P100 EVs. (a) Glo1 and (b) Glo2
specific activity (s.a.), measured by specific spectrophotometric methods as described in Materials
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3.3. HASC-P10 and HASC-P100 EVs Contain MG-H1

It has been recently shown that the HASC-EVs used in the present study contain,
among other proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [27], the
glycolytic enzyme catalyzing the oxidation of GA3P, from which MG spontaneously and
inevitably originates [1]. This observation, together with the finding that Glo1, the major
scavenger of MG, was housed in HASC-EVs, prompted us to investigate whether HASC-
EVs could contain also MG-derived MG-H1, the most abundant MG-dependent arginine-
derived AGE [1]. Indeed, we found that both vesicles contained MG-H1, whose levels were
higher in HASC-P10 than in HASC-P100 EVs (Figure 3a,b).
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3.4. The Receptor for Advanced Glycation End Products (RAGE) Is not Present in HASC-P10 and
HASC-P100 EVs

It is known that MG-H1 can act through the receptor for AGEs, RAGE [34]. By using
an Ab specific for a region of the protein common to both full-length cell surface or soluble
RAGE, we did not find RAGE expression in both HASC-P10 and HASC-P100 EVs (Figure 4).
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3.5. Heat Shock Protein (Hsp)27 Is a MG-H1-Modified Protein in HASC-P10 and
HASC-P100 EVs

Among the proteins preferentially modified by MG, there are those belonging to the
Heat Shock protein (Hsp) family [35,36]. Since a qualitative proteomic analysis previously
performed in the same HASC-P10 and HASC-P100 EVs that we used in the present study,
identified, among others, Hsps, including Hsp27 [27], and one of the major bands in our
MG-H1 WB sized approximately around 27 KDa (Figure 3a), we wanted to see whether



Antioxidants 2022, 11, 1524 6 of 11

this protein was indeed modified by MG also in EVs. As shown in Figure 5a, we found that
Hsp27 was a MG-H1-modified protein. Densitometric analysis of MG-H1-Hsp27 levels
relative to total Hsp27 in IP samples showed that MG-H1-Hsp27 levels were higher in P10
compared with their expression in P100 EVs (Figure 5b), paralleling the trend of MG-H1
levels (Figure 3a).
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Blots were then stripped and re-probed with anti-HSP27 antibody (WB: anti-Hsp27) to ensure equal
immunoprecipitation of HSP27 proteins. IgG was used as negative control for immunoprecipitation;
(b) the histogram indicates mean ± SD of MG-H1-Hsp27 relative to total Hsp27 in IP samples, as
quantified by densitometric analysis of WB bands. Normalized optical density values were expressed
as relative protein level units. * p < 0.01 vs. HASC-P10.

3.6. HASC-P10 and HASC-P100 EVs Contain GSH and D-lactate

To further characterize the glyoxalase pathway in HASC-EVs, we measured in both
HASC-P10 and HASC-P100 the levels of GSH and D-lactate. We found that both HASC-
EVs contained GSH and D-lactate and that their levels were higher in HASC-P10 than in
HASC-P100 EVs (Figure 6).
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4. Discussion

The glyoxalase pathway, composed of Glo1 and Glo2 with GSH as cofactor, plays a
crucial role in the chemical detoxification of MG, a highly reactive agent, inevitably formed
as a by-product of glycolysis during the conversion of triose phosphate isomers (GA3P and
DHAP), in all living organisms. Accumulation of MG can lead to the formation of AGEs.
In particular, MG is an arginine-directed glycating agent and precursor of the major AGE
arginine-derived MG-H1. Since preventing increased intracellular MG and/or MG-H1
is mandatory for the viability of a cell, the glyoxalase pathway is a key mechanism in
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maintaining MG and/or MG-H1 physiological levels, with Glo1 being in the top 10% most
abundant cytosolic proteins [37]. While MG can be released from healthy or injured cells,
glyoxalases, unless released by damaged cells, are typically intracellular enzymes. In the
present study, we found, for the first time to our knowledge, that glyoxalases and the
whole system (MG-H1, GSH, D-lactate), are contained in HASC-EVs, thus, suggesting
novel unexploited roles for these polyhedric proteins, not only in the context of amniotic
fluid, where HASC-EVs were obtained from, but potentially also in broader contexts.
Moreover, while we were completing our study, it has been published that circulating
neuronal EVs from mild cognitive impairment and different stages of Alzheimer’s disease
patients contain Glo1 [38].

In particular, our results show that both Glo1 and Glo2 proteins are enveloped in HASC-
P10 and HASC-P100 EVs and are functional, as shown by their specific activity detection.

Moreover, both HASC EVs contain Glo1-dependent MG-derived MG-H1 and D-lactate,
the latter specifically generating by Glo2-catalysed reaction, thus, further supporting Glo1
and Glo2 functionality. Curiously, Glo1 specific activity in HASC-P10 EVs was higher than
in HASC-P100 EVs and positively correlated with Glo2 activity, MG-H1, and D-lactate
levels. The correlation between Glo1 and Glo2 activity suggests that the two enzymes
traditionally work in these EVs as part of the glyoxalase system, which is not always so [1,5].
The correlation between Glo1 activity and MG-derived MG-H1 probably indicates a major
Glo1 functionality demand to modulate the higher intra-vesicle MG-derived MG-H1 levels
and guarantee an adequate amount of this MG-AGE for the role it plays in these EVs, which
is all to be explored. In other words, Glo1 seems to be adequately fitted to handle MG and,
consequently, MG-H1 levels. Moreover, the hormetic potential of MG has been previously
proposed in a specific ambit [39], which does not exclude that it may occur also in other
contexts. On the other hand, we speculate that the presence of a higher amount of MG-H1
in the HASC-P10 EVs fraction could be related to the lower GAPDH expression, previously
detected in the same EVs fraction used in this study [27]. In fact, GAPDH converts GA3P,
from which MG spontaneously and inevitably originates [1], to 1,3-bisphosphoglycerate.
For more, GA3P is the product of aldolase-catalyzed reaction, another glycolytic enzyme
identified in the proteomic analysis of the HASC EVs used here [27]. Hence, in HASC-P10
EVs where GAPDH is less expressed, it is plausible that its substrate GA3P accumulates
and spontaneously degrades to MG that, consequently, generates MG-H1. Neither Glo1
nor Glo2 transcript levels were detected in HASC EVs, which suggests that both enzymes
are synthesized inside HASC and subsequently released through EVs.

Emerging evidence indicates the presence of mitochondrial components in EVs [40]. As
known, Glo2 is also located in the mitochondrion [7], which might suggest a mitochondrial
origin for EV-embedded Glo2. However, since no mitochondrial protein has been detected
in our EVs [27], this hypothesis seems to be hardly plausible.

MG-derived AGEs, including MG-H1, exert complex pleiotropic effects, including
control of protein functionality [9] and stability [10,11]. In general, targeted proteins
are differently vulnerable to MG-dependent glycation so that their functionality can be
impaired [11] or enhanced [12,13]. Interestingly, modifications were recently observed on
the active site residues of pivotal stress-inducible proteins implicated in cellular recovery,
including heat shock protein 27 (Hsp27), increasing their functionality [12,13]. Here, we
found that a major MG-H1-modified protein in HASC-P10 and HASC-P100 EVs was just
Hsp27, already identified by the qualitative proteomic analysis previously performed in the
same HASC EVs [27]. Hsp27 is a multifaceted intracellular protein. Inter alia, it responds to
stress and behaves as a chaperone [41]; it acts as an antioxidant to scavenge reactive oxygen
species; it regulates actin polymerization during cellular stress conditions [42]. Recently,
Hsp27 have been found to be exported by exosomes, playing a key role in cell-to-cell
communication, signaling, immunity, and inflammation. Interestingly, Hsp27 also plays
a pivotal role in the biogenesis of exosomes [40]. We speculate that MG-modified Hsp27
may be endowed with a major functionality in performing the above-mentioned biological
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roles, which remain to be demonstrated. Of course, additional MG-modified proteins must
be identified to further explore alternative functions for MG-H1 in HASC EVs.

MG-H1 can signal by binding to RAGE [34]. Differently from other studies that
detected the presence of RAGE on neuronal derived-exosomes [38,43], RAGE was not
expressed in both HASC EVs, indicating that the function of these EVs, as well as the role
of MG-H1, does not depend on this receptor.

At present, we do not know why the glyoxalase system is a cargo of HASC EVs.
According to the results of the present explorative study, what we can more plausibly
hypothesize is that the system is incorporated in HASC EVs to possibly ensure hormetic
levels of MG and MG-H1, spontaneously originating inside these independent metabolic
units via glycolysis [27], in order to maintain vesicle stability, potentially, through Hasp27
modification. However, of course, a multitude of other hypotheses could be put forward.
Just to mention a few: can the system contribute to ATP production? ATP has been proved
to be produced in the HASC EVs used in our investigations [27]. Or, can Glo2 substrate,
SLG, be an energy source for EVs? It is known that the free energy liberated during the
hydrolysis of the thioester bond of SDL is even greater than that liberated during hydrolysis
of the phosphoanhydride bond of ATP [44]. Or can Glo2 be inside EVs to catalyze protein
S-glutathionylation using SLG as a substrate [45] for whatever reason? Or can the system
be involved in EVs biogenesis? Or can the system be a novel mediator in intercellular
communication from donor to recipient cells? Remarkably, EVs have been shown to affect
several biological processes, such as cell migration, angiogenesis, inflammation, tissue
repair and regeneration through their paracrine cargo [46]. Hence, the glyoxalase system
could be a novel previously undiscovered actor in all these biological responses. In addition,
since EVs derived from stem cells may be envisioned as attractive medicinal therapeutic
products for future cell-free paracrine treatment, also in consideration of their presumed
low immunogenicity [46], the glyoxalase system could also play a role in this fascinating
applicative ambit. Interestingly, since also autophagosomes can be a source of EVs, through
the “secretory autophagy” pathway [47], and autophagy, as well as glyoxalases, participate
to maintain cellular homeostasis and longevity [48,49], it is also fascinating to hypothesize
that glyoxalase-containing EVs might be somehow involved in aging control.

Similarly, we do not know what the glyoxalase system is doing inside EVs from
amniotic fluid-derived stem cells. It could be just one of the protagonists in the maintenance
of EV structure, stability, energy demand, as speculated above, and/or a novel player in
stem-cell-dependent tissue restoration and regeneration [50] during pregnancy or even
parturition, as occurs for other cargos [51]. Or it could represent an additional diagnostic
marker to check molecular transformations of the fetal status, as well as serving as a
predictor of ongoing pregnancy and preterm labor, as described for other EV cargos,
including AGEs [52–54].

At present we do not have the answers to all these questions, but we strongly believe
that our pioneering study may give a positive input to start a novel research field involving
the glyoxalase system.

5. Conclusions

In the present study, we found for the first time that the glyoxalase system is a
novel cargo of amniotic fluid stem-cell-derived extracellular vesicles. Secretion into the
extracellular milieu through vesicles suggests additional or novel exciting functions of this
eclectic system in addition to their intracellular properties. We have just discovered the tip
of a huge iceberg.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox11081524/s1, Figure S1: Whole blots reported in Figures 1a, 3a, 4
and 5a.
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