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mesenchymal stem cells via STAT3-
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Abstract

Background: Endometriosis, characterized by the presence of functional endometrial tissues outside the uterus, is
one of the most common gynecological disorders. Endometrial mesenchymal stem cells (MSCs) are crucial for the
occurrence and development of endometriosis. Ectopic endometrial MSCs exist in the peritoneal cavity. Thus, the
bioactive factors in endometriotic peritoneal fluid may regulate the biological behaviors of endometrial MSCs.

Methods: In this study, after assessing the concentration of Activin A in peritoneal fluid using ELISA, we isolated
and cultured endometrial MSCs and investigated whether Activin A stimulated endometrial MSCs to differentiate
into myofibroblasts and clarified the underlying mechanisms by quantitative real-time PCR, Western blot analysis,
immunofluorescent staining, RNA interference and Chromatin immunoprecipitation. We also employed the
inhibitors of Activin A to explore the possibility of suppressing the development of fibrosis in endometriosis using
primary endometrial MSCs cultures and a mouse model of endometriosis.

Results: Here, we revealed that Activin A significantly elevated in endometriotic peritoneal fluid and activin receptor-
like kinase (ALK4), the specific receptor for Activin A, obviously enhanced in ectopic endometrial MSCs compared with
eutopic endometrial MSCs from women with or without endometriosis. Next, we found that Activin A drived
myofibroblast differentiation of endometrial MSCs, with extremely enhanced expression of connective tissue growth
factor (CTGF). CTGF was shown to be required for Activin A-induced expression of ACTA2, COLIAT and FNT in
endometrial MSCs. CTGF induction by Activin A in endometrial MSCs involved the activation of Smad2/3, as evidenced
by the phosphorylation and nuclear translocation of Smad2/3 as well as the binding of Smad2/3 to CTGF promoter.
Furthermore, Smad/CTGF pathway in endometrial MSCs required activation of STAT3 while independent of PI3K, JNK
and p-38 pathways. In addition, we also demonstrated that inhibition of Activin A pathway impeded myofibroblast
differentiation of endometrial MSCs and ameliorated fibrosis in endometriosis mice.

Conclusions: Activin A promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-
dependent Smad/CTGF pathway. The results provided the first evidence that STAT3 acted as a crucial Activin A
downstream mediator to regulate CTGF production. Our data may supplement the stem cell theory of endometriosis
and provide the experimental basis to treat endometriosis-associated fibrosis by manipulating Activin A signaling.
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Background

Endometriosis, histologically characterized by dense
fibrosis in and surrounding the endometriotic lesions, is
one of the most common gynecological disorders affecting
10-15% of all women of reproductive age [1]. Although the
definitive mechanism in the etiology of endometriosis re-
mains uncertain, considerable evidences indicate that endo-
metrial stem cells, which have been identified in menstrual
blood and as clonogenic cells in ectopic lesions, are crucial
for the occurrence and development of endometriosis [2].
Endometrial mesenchymal stem cells (MSCs), which can be
isolated as Sushi Domain containing-2 (SUSD2) positive
cells, reconstitute endometrial stroma when xenografted
under the kidney capsule of mice, indicating their regenera-
tive potential [3]. Endometrial MSCs derived from endo-
metriosis patients express increased extracellular matrix
proteolysis genes in comparation with normal women [3].
Ectopic endometrial MSCs exhibit higher proliferation
potential than matched eutopic samples [4].

We recently found that ectopic endometrial MSCs
expressed elevated fibrotic proteins, including collagen I,
a-smooth muscle actin (a-SMA), fibronectin, and con-
nective tissue growth factor (CTGF), compared with
eutopic endometrial MSCs from women with or without
endometriosis and that endometriotic peritoneal fluid
promotes myofibroblast differentiation of endometrial
MSCs (In Press). Myofibroblasts are the main source of
extracellular matrix in fibrosis. Accordingly, myofibro-
blast differentiation of endometrial MSCs potentially
contributes to fibrogenesis in endometriosis. Actually,
MSCs derived from various tissues, such as lung, kidney
and bone marrow, have been reported to promote the
development of fibrotic diseases by differentiating into
myofibroblasts [5-8]. Dense fibrosis in and surrounding
the endometriotic lesions, a prominent histological fea-
ture of endometriosis, may lead to scarring, chronic
pain, and altered tissue function [9]. Studies aimed at
clarifying the underlying mechanisms of myofibroblast
differentiation of endometrial MSCs are expected to pro-
vide a novel strategy for treatment of endometriosis.

MSCs, which are highly sensitive to the microenviron-
ment, differentiate into myofibroblasts driven by appro-
priate local factors [10]. It is hypothesized that ectopic
endometrial MSCs exist in the peritoneal cavity exposed
to peritoneal fluid. Numerous soluble factors in endome-
triotic peritoneal fluid are abnormally expressed [11]. A
cytokine array analysis revealed that 74 cytokines
increased and four cytokines decreased with a threefold
change in women with endometriosis. The increased
multiple of activin A, up to 88.74 times, was the highest
[12]. Activin A, originally recognized as an inducer of
follicle-stimulating hormone release from the pituitary,
has been found to play roles in a wide spectrum of
physiologic and pathogenic events, such as cell proliferation,
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differentiation, apoptosis and metabolism dependent on the
cell context [13, 14]. Recently, Activin A has also been
reported to mediate inflammation, immunity, wound repair,
and fibrosis [15]. We therefore speculate that Activin A may
play a role in myofibroblast differentiation of endometrial
MSCs. In this study, we investigated whether Activin A
stimulated endometrial MSCs to differentiate into myofibro-
blasts and clarified the underlying mechanisms. We also
employed the inhibitors of Activin A to explore the possibil-
ity of suppressing the development of fibrosis in endometri-
osis by blocking Activin A pathway.

Materials and methods

Patients and specimens

Thirty-two patients (mean age 34.4 years; range 23-49)
with laparoscopically and histopathologically confirmed
ovarian endometriosis and twenty control patients
(mean age 35.0 years; range 24—47) surgically treated for
benign gynecological conditions such as uterine leio-
myoma and benign ovarian cyst, having no evidence of
endometriosis at laparoscopy, were included in this
study. All of the women had regular menstrual cycles
and none of them had received hormonal treatment for
at least 3 months prior to the surgery. Peritoneal fluid
was aspirated from the cul-de-sac (Douglas) immediately
after the establishment of the pneumoperitoneum and
before any laparoscopic manipulation. Blood-contaminated
peritoneal fluid was excluded. The peritoneal fluid were im-
mediately cleared of cells and cell debris by centrifugation
at 2000rpm for 10min at 4°C, filtered through a
0.22 pm-pore size membrane and stored at — 80 °C. Eutopic
endometrial biopsies were collected using endometrial
suction catheters. Cyst walls of ovarian endometrioma were
collected and ectopic endometrial tissues were carefully
stripped from the lining inner cyst wall. Informed consent
was obtained from all human subjects and the study was
approved by the Institutional Review Board of Jiangsu
Province Hospital on Integration of Chinese and Western
Medicine (No. 2015LW032).

Enzyme-linked immunosorbent assay (ELISA)

The concentration of Activin A in undiluted individual
peritoneal fluid was measured in triplicate using a com-
mercial specific ELISA kit (R&D Systems) according to
the detailed protocol provided by the manufacturer.

Isolation and identification of endometrial MSCs

Endometrial stromal cells were isolated as previously
described [16]. The cells were incubated in ACK lysing
buffer (Thermo Fisher) and then centrifuged to remove
erythrocytes. Cells at passage 1 were harvested to extract
endometrial MSCs by magnetic bead selection as de-
scribed by Ulrich et al. [17]. Briefly, cell suspensions
were labeled with the PE-conjugated SUSD2 (W5C5)
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antibody (Biolegend) in autoMACS running buffer
(Miltenyi Biotec) at 4°C for 15 min. After twice wash-
ing, the cells were incubated with anti-PE microbeads
at 4°C for 15 min. After washing, the cells were applied
onto the column in a magnetic field and SUSD2+ cells
were collected as endometrial MSCs. The isolated
SUSD2+ MSCs accounted for 7.7% + 3.9% of endometrial
stromal cells. Cultured endometrial MSCs at passage 2 to
passage 5 were used for the following experiments. These
endometrial MSCs, with cloning efficiency 0.83-2.92%,
were positive for CD44, CD73, CD90, CD105, and
negative for CD34, CD45 by flow cytometric analysis
(Additional file 1: Figure S1). The multipotency of
endometrial MSCs was confirmed by their ability to differ-
entiate into osteocytes and adipocytes using respective
induction media (Additional file 2: Figure S2).

Cell treatment

Cultured eutopic endometrial MSCs from patients
without endometriosis were treated with 25ng/mL re-
combinant human Activin A (R&D System), 25 ng/mL
recombinant human CTGF (Peprotech), 0.18 pg/mL
aActivin (R&D System), 10 uM Stattic, 10 uM SB431542
(Selleck) or 0.18 pg/mL Follistatin (R&D System) for
indicated time. The cells were collected for q-PCR,
Western blot analysis, immunofluorescence staining or
chromatin immunoprecipitation (ChIP).

Western blot analysis

Western blot analysis was performed as previously
described [18]. Specific antibodies against ALK4,
a-SMA, collagen I, CTGE fibronectin, p-Smad3,
GAPDH, Smad2/3, p-Smad2, p-Akt, Akt, p-p38, p38,
p-INK, JNK, p-STAT3, STAT3 and Histone H3 were
used as primary andibodies. Secondary antibodies and
immobilon Western chemiluminescent HRP substrate
(Millipore) were used to visualize immunoactive
bands. Primary antibodies used in this study were
listed in Additional file 3: Table S1.

RNA extraction and quantitative real-time polymerase
chain reaction (qRT-PCR)

Total RNA was extracted using Column Animal RNA-
out kit (Tiandz) according to the manufacturer’s in-
structions. PrimeScript RT reagent Kit with gDNA
Eraser (Takara) was used for reverse transcription-PCR
reaction. Gene expression was quantified by Quanti-
Nova SYBR Green PCR Kit (Qiagen) using the ABI
Prim 7300 Sequence Detection System (Applied Biosys-
tems). The relative expression of mRNA was calculated
by normalization to GAPDH relative to the control.
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Vector construction and transfection

Lentiviral vector packing CTGEF-specific SARNA were con-
structed (GeneChem). The sequence for CTGF-specific
shRNA was 5- CCGGAAATCTCCAAGCCTATCAAGT
CTCGAGACTTGATAGGCTTGGAGATTTTTTTTC-3;
5-  AATTGAAAAAAAATCTCCAAGCCTATCAAGTC
TCGAGACTTGATAGGCTTGGAGATTT-3" [19]. More-
over, LV-NC were purchased from GeneChem. Lentivirus
transfection was performed as previously described [18].

Immunofluorescent staining

Immunofluorescence analysis was performed as described
previously [6]. Rabbit anti-Smad2/3 was used as primary
andibody. Alexa Fluor 488-conjugated goat anti-rabbit
antibody (Invitrogen) was used as secondary antibody.
The nuclei were staining with DAPI (Sigma-Aldrich). The
primary antibody was replaced by isotype IgG in the nega-
tive control. The images were captured using a confocal
fluorescence microscope (Olympus).

ChiP

The binding of Smad2/3 to the promoter of CTGF was
examined using a ChIP assay kit (Thermo Fisher)
according to the manufacturer’s instruction. Briefly, the
crosslinked cells were lysed and the nuclei were digested
in the presence of 25 U/mL micrococcal nuclease at 37 °C
for 15 min. Then the digested chromatin was incubated
with 0.37 pg/mL anti-Smad2/3 or anti-IgG antibody
overnight at 4 °C on a rocking platform. DNA immuno-
precipitated with anti-Smad2/3 or anti-IgG antibody
was subjected to qRT-PCR assay. CTGF promoter-spe-
cific primers were used to amplify the Smad2/3 binding
region. The primers were as follows: sense, 5'- TGGT
GCTGGAAATACTGCGC-3’, antisense, 5'- ACAT
TCCTCGCATTCCTCCC-3’ [20].

Animal and treatment

A total of 42 female BALB/c mice (8 weeks old, 18-21¢g
in weight), including 28 model (recipient) mice and 14
donor mice were used in this study. Endometriosis was
induced using a previously described method [21]. One
week before the endometriosis-inducing procedure, the
mice were subcutaneously injected with estradiol valer-
ate (0.2 mg/mouse). Then the donor mice were killed
and their uteri horns were removed and put into a dish
containing sterile saline. After peeling off the serosa and
myometrium, the endometrium-rich fragments were
finely chopped. The processed fragments were consist-
ently smaller than 1 mm?. Fragments suspended in ster-
ile saline were intraperitoneally injected into the
recipient mice. Endometrial tissue fragments obtained
from one mouse were injected to two mice. One day
after the endometriosis-inducing procedure, animals
were randomly assigned to four experimental groups of
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seven animals each. The mice received a daily intraperi-
toneally injection of recombinant mouse Activin A
(R&D systems, AFL338, 0.7 pg/mouse), aActivin A, a
neutralizing antibody of Activin A, (R&D systems,
MAB3381, 3pug/mouse), Activin A (0.7 pg/mouse)
+ aActivin A (3 pg/mouse) and saline, respectively. The
treatment periods were 4 weeks in duration. Then the
mice were sacrificed and the endometriotic lesions were
harvested. All procedures carried out on animals were
approved by the Animal Care and Use Committee of
Jiangsu Province Academy of Traditional Chinese
Medicine under the animal protocol number SYXK (Su)
2016-0018.

Histology and immunohistochemistry

Masson trichrome stain and immunohistochemistry
were performed according to common protocols [6]. For
Immunohistochemistry, the primary antibodies were
employed as follows: rabbit anti-CTGE, rabbit anti-a-SMA,
rabbit anti-collagen I and mouse anti-fibronectin. The sec-
ondary antibodies incubated were horseradish peroxidase-
conjugated goat anti-rabbit/mouse immunoglobulin G
(Boster). The primary antibody was replaced by isotype IgG
in the negative control. All the slides stained in the same
staining were analyzed for histological quantification using
Image ProPlus (version 6.0, Media Cybernetics) as de-
scribed previously [22].

Statistical analysis

In vitro data represent at least three independent experi-
ments using cells from a minimum of three separate
isolations. Data that followed a normal distribution were
presented as means * SD and analyzed by One-way
ANOVA with LSD post hoc test. Data that were not nor-
mally distributed were presented as boxplots, in which
the bottom and top of the box represent the lower and
upper quartiles, respectively, the band near the middle
of the box represents the median, and the ends of the
whiskers represent the smallest and the largest non-outlier
observations, and subjected to Mann-Whitney U-test. All
these tests were performed using the statistical package
SPSS 17.0. A p value of less than 0.05 was considered sta-
tistically significant.

Results

Activin a elevated in endometriotic peritoneal fluid and
ectopic endometrial MSCs expressed elevated level of
activin receptor-like kinase (ALK4)

Hou et al. reported that Activin A increased to 88.74
times in peritoneal fluid of women with endometriosis
when compared to women without based on a cytokine
array analysis [12]. Because their samples for microarray
analysis were from sample pools with three samples of
each group, we expanded the sample size and determined
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the concentration of Activin A in individual peritoneal fluid
using ELISA in this study. As shown in Fig. 1a, the concen-
tration of Activin A significantly elevated in peritoneal fluid
of women with endometriosis (7 =32 for endometriosis
group and 7 =20 for control group). We then compared
the expression of ALK4 (also known as ActRIB), the
specific receptor for Activin A, in cultured paired eutopic
and ectopic endometrial MSCs derived from patients with
endometriosis as well as eutopic endometrial MSCs derived
from patients without endometriosis. The results showed
that the expression of ALK4 obviously enhanced in ectopic
endometrial MSCs compared with eutopic endometrial
MSCs from women with or without endometriosis
(Fig. 1b), implying the highly activated state of Activin A
pathway in ectopic endometrial MSCs.

Activin a induces myofibroblast differentiation of
endometrial MSCs

To determine the effect of Activin A on myofibroblast
differentiation of endometrial MSCs, we measured the
expression of four fibrotic markers, including a-SMA,
collagen I, fibronectin and CTGE, in cultured endometrial
MSCs after treatment with recombinant human Activin A.
As shown in Fig. 2b, d, Activin A (25 ng/mL-200 ng/mL)
significantly promoted the expression of collagen I, a-SMA,
CTGF and fibronectin at both mRNA and protein levels.
25 ng/mL Activin A induced the expression of collagen I,
a-SMA, CTGF and fibronectin in a time-dependent
manner (Fig. 2a, c). Interestingly, we found that the
same-concentration Activin A up-regulated the expression
of CTGF robustly while relatively weakly for collagen I,
a-SMA and fibronectin at mRNA level (Fig. 2a, b),
although collagen I and fibronectin proteins seemed to
increase more than CTGF in endometrial MSCs in the
time course (Fig. 2c).

CTGF is essential for Activin A-induced expression of
collagen |, a-SMA and fibronectin in endometrial MSCs
CTGE, a pro-fibrotic cytokine, has been recognized as an
important player in the induction of matrix genes, such
as collagen I, collagen III and fibronectin, to promote
the development and maintenance of fibrosis [23, 24].
We then examined whether CTGF stimulated the
expression of collagen I, a-SMA and fibronectin in
endometrial MSCs and whether the expression of colla-
gen I, a-SMA and fibronectin induced by Activin A in
endometrial MSCs was dependent on CTGF. We added
recombinant human CTGF (25ng/mL) and/or recom-
binant human Activin A (25 ng/mL) into the cultures of
endometrial MSCs and found that CTGF remarkably
raised the expression of ACTA2, COLIAI and FNI even
greater than Activin A (Fig. 3a). Intriguingly, CTGF also
increased the expression of its own mRNA although
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Fig. 1 Activin A elevated in endometriotic peritoneal fluid and ectopic endometrial MSCs expressed elevated level of ALK4. a The concentrations
of Activin A in the peritoneal fluid of women with (n=32) and without (n = 20) endometriosis were measured by ELISA. ##P < 0.01 versus the
control group. b The expression of ALK4 in paired eutopic and ectopic endometrial MSCs (passage 3) derived from patients with endometriosis
(n =3) and eutopic endometrial MSCs (passage 3) derived from patients without endometriosis (n = 3) was analyzed by Western blot. The
expression levels of proteins were quantified by densitometry and normalized to the expression of GAPDH. The data were presented as means +
SD. ***P < 0.001 versus eutopic endometrial MSCs from control women (C-Eutopic). ###P < 0.001 versus eutopic endometrial MSCs from petients
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the up-regulation effect is not as strong as Activin A
(Fig. 3a).

Subsequently, lentiviral (LV) transfection of shCTGF
was used to determine the role of CTGF in Activin
A-induced expression of collagen I, a-SMA and fibro-
nectin in endometrial MSCs. As shown in Fig. 3b, Acti-
vin A did not induce the expression of ACTA2, COL1AI
or FNI in LV-shCTGF transfected cells although the
expression significantly increased in cells transfected
with negative control virus (LV-NC) after treatment with
Activin A, implying that CTGF was essential for Activin
A-induced expression of collagen I, a-SMA and fibro-
nectin in endometrial MSCs.

Activin A-induced CTGF expression in endometrial MSCs
involves activation of Smad2/3

When Activin A pathway is triggered, ALK4 phosphory-
lates Smad2/3 in cytoplasm and then Smad2/3 translo-
cates into the nucleus to drive gene transcription [25].
In our study, Activin A induced phosphorylation of
Smad2/3 (p-Smad2 and p-Smad3), both peaking at 1h
(Fig. 4a, b), in endometrial MSCs. Immunofluorescence
showed that Activin A strongly induced nuclear translo-
calization of Smad2/3 (Fig. 4c). These results demon-
strated that Smad signaling was activated in response to
Activin A in endometrial MSCs. ChIP assays showed
that Activin A promoted the binding of Smad2/3 to
CTGF promoter substantially (Fig. 4d), consistent with
the results that Activin A treatment up-regulated CTGF
mRNA levels (Fig. 2a, b). The addition of aActivin A, a
neutralizing antibody of Activin A, almost abolished the

binding induced by Activin A (Fig. 4d). Our results indi-
cated that Activin A promoted the transcription of
CTGF through Smad2/3 in endometrial MSCs.

STAT3 regulates Activin A-induced CTGF expression in
endometrial MSCs through Smad2/3

It has been reported that Akt, p-38, JNK and STAT3 sig-
naling pathways also regulates the expression of CTGF
[26-29]. In order to clarify the mechanism of Activin A
induction of CTGF in human endometrial MSCs, we
further examined the effects of Activin A on activation
of Akt, p-38, INK and STAT3. As shown in Fig. 5a,
Activin A induced STAT3 phosphorylation while had no
obvious effect on activation of Akt, p-38 or JNK path-
ways. oActivin A prevented phosphorylation of STAT3
caused by Activin A. Next, we used Sattic, a small-mol-
ecule inhibitor of STAT3, to evaluate the impact of
STAT3 on the expression of CTGF stimulated by Activin
A. The results revealed that Stattic significantly inhibit
Activin A-induced up-regulation of CTGF expression
(Fig. 5b, c). Given the fact that phosphorylated Smad2/3
could translocate into the nucleus and bind to the pro-
moter of CTGF to facilitate the transcription (Fig. 4d),
we then used Stattic to investigate whether STAT3
exerted an effect on activation of Smad2/3. We found
that Stattic remarkably inhibited phosphorylation of
Smad2 and Smad3 induced by Activin A in endometrial
MSCs (Fig. 5d). These results indicated that Activin
A-induced expression of CTGF via Smad pathway was
STAT3-dependent.
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Inhibition of Activin a pathway impeded myofibroblast
differentiation of endometrial MSCs and ameliorated
fibrosis in endometriosis mice

To test whether blocking Activin A pathway could
suppress myofibroblast differentiation of endometrial
MSCs, we used the following three inhibitors of Activin
A signaling. SB431542, inhibitor of ALK 4 and 5, was
able to inhibit extracellular and intracellular Activin A
signaling. aActivin A, neutralizing antibody of Activin A,
and follistatin, endogenous antagonist of Activin A, were
used to block extracellular Activin A signaling. Human
recombinant Activin A was added to simulate the abnor-
mally increased Activin A in endometriotic peritoneal
fluid. As shown in Fig. 6a, all the three inhibitors
prevented myofibroblast differentiation of endometrial
MSCs by profoundly attenuating the expression of
CTGE, a-SMA, collagen I and fibronectin. Moreover, the
inhibitors could impair the phosphorylation (Fig. 6b)
and nuclear translocalization (Fig. 6¢, d) of Smad2/3.
These results indicated that blocking Activin A signal

notably impeded myofibroblast differentiation of endo-
metrial MSCs along with the inactivation of Smad2/3.

Having demonstrated the antifibrotic effect in vitro,
we next explored whether blocking Activin A signal
could modulate fibrosis in endometriosis in vivo. To
address this question, we established a mouse model of
endometriosis. As shown in Fig. 7, the fibrosis extent of
ectopic endometria in Activin A group was obviously
higher than that in control group, indicating that Activin
A promoted the development of fibrosis in endometri-
osis in vivo. However, aActivin A significantly inhibited
the excessive collagen deposition in ectopic lesions. The
results of immunohistochemistry analyses showed that
the expression levels of collagen I, a-SMA, fibronectin
and CTGF in ectopic endometria were increased in Acti-
vin A group but decreased in aActivin A group com-
pared with the control group. Meanwhile, aActivin A
suppressed the up-regulation of collagen I, a-SMA, fi-
bronectin and CTGF in ectopic endometria induced by
Activin A.
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g-PCR. The data were presented as means + SD. *** represents P < 0.001

Discussion

In this study, we have demonstrated that Activin A in-
duces myofibroblast differentiation of endometrial MSCs
via STAT3-dependent Smad/CTGF pathway and that
blocking Activin A signal impedes myofibroblast differ-
entiation of endometrial MSCs in vitro and ameliorates
fibrosis in endometriosis in a mouse model.

Patients with endometriosis possess altered peritoneal
environment with numerous cytokines increased in peri-
toneal fluid [30]. A previous cytokine array analysis
showed that the increase of Activin A was the most dra-
matically in endometriotic peritoneal fluid [12]. In the
present study, we expanded the sample size to validate
the result using ELISA. Our results demonstrated that
the concentration of Activin A significantly elevated in
peritoneal fluid of women with endometriosis though
Florio et al. reported that peritoneal Activin A concen-
tration was not significantly different between healthy
women and patients with endometriosis [31]. The incon-
sistent results were perhaps caused by different types of
endometriosis studied. Patients with ovarian endometri-
osis were included in our study while the specific type of
endometriosis was not indicated in Florio et al’s study.
It has been reported that the concentration of Activin A
in cystic fluid is higher than in peritoneal fluid in pa-
tients with ovarian endometriotic cysts [32]. Moreover,
Activin BA subunit is strongly expressed in ovarian
endometrioma [32, 33]. Ovarian endometriosis therefore
may exhibit a higher concentration of Activin A in peri-
toneal fluid than other types of endometriosis. Activin

A, a member of TGF-f superfamily, is involved in a var-
iety of physiological and pathological processes. It is
documented that Activin A stimulates the secretion of
estradiol by improving the expression of aromatase P450
in eutopic endometrial stromal cells from patients with
endometriosis [34]. Activin A increases invasion of
endometrial stromal cells and epithelial cells into mod-
eled peritoneum [35]. These findings suggest that Acti-
vin A is probably involved in the pathogenesis of
endometriosis.

On the other hand, growing evidences have demon-
strated that endometrial stem cells are crucial for the
occurrence and development of endometriosis [2].
Ectopic endometrial MSCs are responsible for the re-
markable proliferative and invasive properties of endo-
metriosis [36]. The increased expression of ALK4 in
ectopic endometrial MSCs implies the highly activated
state of Activin A pathway. Several studies have shown
that Activin A plays an important role in the differenti-
ation of stem/progenitor cells derived from nonendome-
trial tissues, such as cerebrocortical neural progenitor
cells, embryonic stem cells and adipose progenitors
[37-41]. The effect of Activin A on differentiation of
endometrial stem/progenitor cells remains unclear. In
this study, by isolating endometrial MSCs followed by
incubation with Activin A, we found that Activin A
was able to drive the differentiation of endometrial
MSCs into the myofibroblast lineage, evidenced by the ex-
pression of specific molecular markers of myofibroblasts.
Myofibroblast, which when activated serves as the main
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producer of extracellular matrix, is the key cellular medi-
ator of fibrosis [42]. In fibrotic diseases, such as lung fibro-
sis and kidney fibrosis, myofibroblasts are generated from
myofibroblast transition of mesenchymal cells especially
MSCs in addition to epithelial/endothelial-mesenchy-
mal (EMT/EndMT) transition and circulating fibro-
cytes [6-8, 43]. It has been reported that EMT and
fibroblast-myofibroblast transdifferentation (FMT) con-
tribute to the presence of myofibroblasts and the devel-
opment of fibrosis in endometriosis [44]. The findings
in the present study suggest that the pro-fibrotic capacity
of endometrial MSCs in the pathogenesis of endometriosis
deserves much attention. Furthermore, a recent study re-
ports the fibrogenic effect of endometrial MSCs through
paracrine [45]. On the contrary, MSCs derived from vari-
ous tissues including endometrium have been shown to
play a role in alleviating fibrosis [46, 47]. It is noteworthy
that these MSCs are allogeneic or autologous derived from
another healthy tissue [46, 47]. However, tissue-resident
MSC:s in fibrotic diseases often promote the development

of fibrosis [48]. We speculate that the pro-fibrotic micro-
environment may change the biological behaviors of
tissue-resident MSCs. This is consistent with our results
that eutopic endometrial MSCs from patients without
endometriosis differentiated into myofibroblasts in the
presence of Activin A which was aberrantly increased in
endometriotic peritoneal fluid.

Activin A has also been shown to accelerate the prolif-
eration of renal interstitial fibroblasts and lung fibro-
blasts to promote fibrosis [49, 50]. In the present study,
however, Activin A did not affect the proliferation of
endometrial MSCs (data not shown), indicating the cell
selectivity of Activin A. This is in accordance with the
results of our recent study that peritoneal fluid from pa-
tients with endometriosis strongly induced myofibroblast
differentiation of endometrial MSCs but exerted a min-
imal effect on their proliferation (In Press), suggesting
that Activin A may act as a major bioactive factor in
endometriotic peritoneal fluid. In addition to the
fibrogenic effect on endometrial MSCs, Activin A also
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regulates the production of estradiol and inflammatory
cytokines in endometrial stromal fibroblasts [34, 51], im-
plying that Activin A promotes the development of
endometriosis through multiple ways.

In endometrial MSCs, Activin A profoundly enhances
the expression of CTGF. CTGEF, also known as CCN
family protein 2 (CCN2), has been identified as an im-
portant fibrotic marker in endometrial diseases including
endometriosis and intrauterine adhesions [9, 52]. CTGF
plays critical roles in the induction of ECM production.
It has been reported that CTGF increases the expression
of fibronectin by mesangial cells and the production of
type I, type III and type IV collagen by mesangial cells
and fibroblasts [23, 53]. In endometrial stromal fibro-
blasts derived from patients with adenomyosis, CTGF
mediates TGF-f-induced collagen expression [54]. In the
present study, CTGF remarkably raised the expression
of ACTA2, COLIAI and FNI in endometrial MSCs. By
shRNA-mediated CTGF knockdown, CTGF was shown
to be required for Activin A-induced expression of
ACTA2, COL1AI and FNI in endometrial MSCs.

Our results revealed that Activin A mediated the pro-
duction of CTGF in endometrial MSCs through Smad
signaling, which is consistent with previous reports on
liver progenitor cells, hepatocytes and systemic sclerosis
fibroblasts [25, 55, 56]. In addition to canonical Smad
pathway, CTGF can be induced by other bioactive
factors through Smad-independent pathways. PTEN in-
creased CTGF in diabetes mellitus through Akt [28].

STAT3 pathway was required in Thrombin-induced
CTGF expression in human lung fibroblasts [26].
Endothelin-1 induces CTGF synthesis in human lung fi-
broblasts via JNK/AP-1 pathway [27]. Epigallocatechin-
3-gallate completely blocked TGFp1-induced CTGF
production by inhibiting phosphorylation of JNK and
p38 MAPK in buccal fibroblasts [29]. In the current
study, activation of STAT3 was required in Activin
A-induced CTGF expression in endometrial MSCs. A
previous study has shown that STAT3 is involved in
modulating TGFB-induced CTGF production in acti-
vated hepatic stellate cells. The process is independent
of Smad2/3 phosphorylation but additionally modulated
by JNK and PI3K pathways [57]. Although both Activin
A and TGF-$ belongs to TGF-B superfamily, they can
activate different downstream signaling cascades even if
in the same cell [58, 59]. In our study, the effect of
STAT3 on Activin A-induced CTGF expression was still
mediated by Smad2/3 in endometrial MSCs. Moreover,
it was independent of PI3K, JNK and p-38 pathways. To
the best of our knowledge, the present study demon-
strates for the first time that STAT3 acts as a crucial
Activin A downstream signaling mediator to regulate
CTGF production. Taken together, we proposed a model
in which STAT3 was activated in myofibroblast differen-
tiation of endometrial MSCs with the stimulation of
Activin A. Then, Smad2/3 was phosphorylated and shut-
tled into the nucleus where it binded to the promoter
area of CTGF. The excessive CTGF further promoted
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the expression of fibrotic proteins collagen I, a-SMA  ameliorat fibrosis in endometriosis. As expected, all the

and fibronectin (Fig. 5e).

Additionally, our results raise the possibility that in-
hibition of Activin A pathway may impede myofibroblast
differentiation of endometrial MSCs and therefore

three inhibitors of Activin A signaling prevented myofi-
broblast differentiation of endometrial MSCs. In the
mouse model of endometriosis, aActivin A, neutralizing
antibody of Activin A, significantly inhibited the
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excessive collagen deposition and the expression levels
of collagen I, a-SMA, fibronectin and CTGF in ectopic
lesions. In addition, by classifying endometrial tissues
into epithelial and stromal components according to cell
morphology, we found that the expression of CTGF in
ectopic endometrial stromal component decreased more
obviously than that in epithelial component after treat-
ment with aActivin A, suggesting that ectopic endomet-
rial stromal component, in which endometrial SUSD2+
MSCs exist, are more responsive to Activin A-induced
CTGF production. Meanwhile, we have to note the pos-
sibility that Activin A also induced CTGF expression in
cells other than MSCs in ectopic lesions cannot be ruled

out since we failed to track the ectopic endometrial
MSCs.

Conclusions

In summary, our findings reveal that Activin A induces
myofibroblast differentiation of endometrial MSCs via
STAT3-dependent Smad/CTGF pathway and that block-
ing Activin A signal ameliorates fibrosis in endometri-
osis. Thus, our data may supplement the stem cell
theory of endometriosis and provide the experimental
basis to treat endometriosis-associated fibrosis by ma-
nipulating Activin A signaling.
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Additional files

Additional file 1: Figure S1. Endometial MSCs possess MSC phenotypic
characteristics. Paired eutopic (E-Eutopic) and ectopic endometrial MSCs
(passage 5) derived from patients with endometriosis and eutopic (C-
Eutopic) endometrial MSCs (passage 5) derived from patients without
endometriosis were identified for the expression of positive MSC markers
CD44, CD73, CD90 and CD105, and negative MSC markers CD34 and
CD45. Black lines, cells stained with a matched isotype control; Red lines,
cells stained with the indicated antibodies. (TIF 9576 kb)

Additional file 2: Figure S2. Endometial MSCs possess MSC
multipotency. Paired eutopic (E-Eutopic) and ectopic endometrial MSCs
(passage 5) derived from patients with endometriosis and eutopic (C-Eutopic)
endometrial MSCs (passage 5) derived from patients without endometriosis
were cultured in osteogenic differentiation media and adipogenic
differentiation media, respectively. The osteogenic differentiation was
detected with alizarin red, and the adipogenic differentiation was
detected with Qil Red O. (TIF 6845 kb)

Additional file 3: Table S1. Primary antibodies used in this study
(DOCX 17 kb)
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