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A new five-parameter transmuted generalization of the Lomax distribution (TGL) is introduced in this study which is more
flexible than current distributions and has become the latest distribution theory trend. Transmuted generalization of Lomax
distribution is the name given to the new model. This model includes some previously unknown distributions. The proposed
distribution’s structural features, closed forms for an rth moment and incomplete moments, quantile, and Rényi entropy, among
other things, are deduced. Maximum likelihood estimate based on complete and Type-II censored data is used to derive the new
distribution’s parameter estimators. The percentile bootstrap and bootstrap-t confidence intervals for unknown parameters are
introduced. Monte Carlo simulation research is discussed in order to estimate the characteristics of the proposed distribution
using point and interval estimation. Other competitive models are compared to a novel TGL. The utility of the new model is

demonstrated using two COVID-19 real-world data sets from France and the United Kingdom.

1. Introduction

Many generators have been studied in recent years by
expanding some effective classical distributions. Many ap-
plied fields, including dependability, demographics, engi-
neering, economics, actuarial sciences, biological research,
hydrology, insurance, medicine, and finance, have employed
such created families of distributions for modeling and
evaluating lifetime data. However, there are still a lot of real-
world data occurrences that do not fit into any of the sta-
tistical distributions. Shaw and Buckley [1] introduced a new
class of distributions known as transmuted distributions
with cumulative distribution function (CDF) as

Fr(x)=h(x)[1+p-Br(x)]; |BlI<], (1)

By differentiating equation (1), we get the probability
density function (pdf) as follows:

fr(x) =R)[1+p-2pn(x)], (2)

where R (x) and % (x) are the base distribution’s pdf and
CDF.

There are various transmuted distributions suggested.
Aryal and Tsokos [2] proposed the transmuted Weibull
distribution as a new generalization of the Weibull distri-
bution. Merovci [3] devised and explored the varied
structural properties of the transmuted Rayleigh distribu-
tion. Khan and King [4] obtained the transmuted modified
Weibull distribution. The transmuted Lomax distribution
was presented by Ashour and Eltehiwy [5]. Transmuted
Pareto distribution is introduced by Merovci and Puka [6].
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The transmuted generalized linear exponential distribution
was introduced by Elbatal et al. [7]; among others. Pobokova
and Michalkovd [8] proposed a transmuted Weibull dis-
tribution. Ali and Athar [9] have created a new generalized
transmuted family of distributions (TD). They utilized
Weibull distribution to generalized transmuted families of
distributions (TWDn).

The Lomax distribution is a heavy-tail pdf popular in
business, economics, and actuarial modeling. In some cases,
it is also known as the Pareto Type-II distribution. In the
event of a business failure, Lomax used it to fit data. It is

Im){1-[1-1 -
Fx: 9 7) = 1 = @/M0-0-0I7,

flx9;m) = IR ()1 - h(x)] " @RI,

where 9 and 7 are extra form parameters that change the tail
weights. R (x) and #(x) are the parent (or baseline) dis-
tribution’s pdf and CDF, respectively.

Now, if the density from (3) and (4) is replaced into (5)
and (6), Oguntunde et al. [11] introduced a novel
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essentially a Pareto distribution with a 0-support level. The
pdf is as follows:

R(x;y;8) =yd(1+ yx)f(‘m), x>0,8andy > 0. (3)
The CDF for (3) is
h(x;y;&)z[l—(1+yx)75], x>0,8andy >0, (4
where § and y are the shape and scale parameters,
respectively.

The CDF and pdf of Gompertz-generalized G-family of
distribution are given by Alizadeh et al. [10] as

x>0,7rand 9 >0, (5)

x>0,mand 9> 0, (6)

generalization of the Lomax distribution known as the
Gompertz Lomax distribution (GoLom) with vector pa-
rameters A where A = (4, 9,9, m); the CDF and pdf are

F(x;A) = h(xR) = 1 - @000 550,78, pand 9> 0. (7)

The corresponding pdf is created by inserting the den-
sities from (3) and (4) into (6) in the following order:

FR) = R(xA) = 9y (1 +yx)°™ e OMU-193] 50,75, and 9> 0. (8)

The transmuted generalized Lomax (TGL) distribution is
a new five-parameter transmuted generalization of the
Lomax distribution presented in this article. This general-
ization stems from a fundamental motivation as follows:

(i) Providing a very flexible life distribution that in-
cludes several new existing distributions as
submodels

(ii) Making a significant difference in data modeling

One of the advantages of this distribution is that it works
on modeling COVID-19 data. In COVID-19, a new coro-
navirus disease has expanded worldwide since December
2019, producing over 218 million cases and over 4.5 million
deaths, reported by the World Health Organization (WHO).
There have been about 6.5 million cases of COVID-19 in
France as of September 2021, with over 112850 deaths. There

have been about 6.8 million cases of COVID-19 in the
United Kingdom as of September 2021, with over 132740
deaths. Therefore, we decided to find the best mathematical-
statistical model for modeling the data of the countries of
France and the United Kingdom. There were also many
researchers who worked on finding a model for these data,
such as Almetwally [12], Almetwally [13], Almetwally [14],
and others.

The following is a representation of how this article is
structured. In Section 2, we define the new distribution. The
new distribution’s structural features are discussed in Sec-
tion 3. The maximum likelihood estimators (MLEs) of pa-
rameters under complete and Type-II censored samples are
investigated in Section 4. Section 5 describes the various
bootstrap confidence intervals. Section 6 describes a Monte-
Carlo simulation analysis using entire sample sizes and
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Type-1I censored samples to estimate point and interval
estimation of TGL distribution parameters. In Section 7, two
real-world data sets are introduced, and at the end of the
article, there is a conclusion.

2. Transmuted Generalized Lomax Model

The TGL distribution and its submodels are shown here. The
CDF of the TGL distribution with vector parameters Z
where Z = (6,y,9, 7, 8) can be derived by substituting (7)
and (8) in (1) and (2) as

Flx:2) = [1 B e9/n[1—(1+yx>“]] [1 +/369/n[1—(1+yx)6”]], 9)

and its pdf is as follows:
f(x:2) = 89y (1 + )™l
[1 — B+ 2pe -] ]; (10)
x>0, m,f3,0,yand 9> 0.

As a result, the pdf (10) is defined as X~TGL
(8,7,9,m, ). Table 1 lists the TGL distribution’s special
submodels.

The survival (reliability) function F (x; Z) and the hazard
rate function /i (x; Z) have the following definitions:

F(x; 2) = & [-0007] {1 + g D019 }

89'}/(1 + yx)8ﬂ71 [1 _ ﬁ + 2ﬁ€9/n[17(1+yx)6”]:|

h(x;Z) =
(X, ) (1 _ﬁ +/389/n[1—(1+yx)5”])

(11)

For specific parameters selections, the pdf of TGL model
is shown in Figure 1.

We can deduct from Figure 1 plots of the TGL distri-
bution’s pdf can be unimodal, normal, or right-skewed.

We may derive from Figure 2 that the TGL distribution’s
hazard function can take the form of a decreasing, in-
creasing, or upside-down shape.

Lemma 1. The TGL density function’s limit is provided as
limOf(x; Z) =0,

(12)
xll’noof(x; Z)=0.

Proof. The density function’s conclusion is easy to illustrate
(10).

o1 I [1-1er0%]

y;:é‘f)yj X (1+yx)" e
0

TasLE 1: The TGL distribution’s special submodels.

No. Distributions y 9 & p = Author
1 LOM y 1 6§ 0 1 Lomax [15]
2 GOLOM y 9 6 0 m Oguntunde et al. [11]
3.0
2.5 4
2.0
&)
“~ 1.5 4
1.0
0.5
0.0
T T T T
0.0 0.5 1.0 1.5

X

— 71=0.5 $=0.5 6=0.5 y=1.5 6=0.5
— 71=0.5 f=—0.5 §=3.5 y=2.5 6=0.5
— 7=1.5 f=0.5 6=2.5 y=1.5 6=0.35
— 7=1.5 f=-0.85 §=2.5 y=1.5 6=0.35
— 7=1.5 $=0.65 §=0.5 y=2.5 6=3.5

FiGure 1: Plots of the TGL distribution’s pdf.

Furthermore, the TGL hazard function’s limit as x—0
is 0 and x— 00 is co as shown as follows:

lim0 h(x;Z) =0,

(13)
lim h(x;Z) = oo.
X—>00
This statement is simple to demonstrate. O

3. Statistical Properties

The statistical aspects of the TGL distribution are examined
in the following subsections, including moments, mode,
quantile function, Rényi entropy, and order statistics.

3.1. Moments. The v instant near 0 is calculated. We can
write as follows from (10).

1 - B+ 2B - g - 1 41,
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— 71=0.5 f=0.5 §=0.5 y=1.5 6=0.5
— 71=0.5 f=—0.5 §=2.5 y=3.5 6=0.5
— 7=1.5=0.5 =9.5 y=0.15 6=0.35
— 7=1.5 f=—0.85 6=2.5 y=1.5 6=0.35
— 7=1.5 f=0.65 6=0.5 y=2.5 6=3.5

F1GUrE 2: Plots showing the TGL distribution’s hazard function.

First, to obtain I, as a result, we use binomial expansion.

o) 1/6n r
I, =V"(1—/3)J0 [(gy+l> —1] e 7dy. (15)
So, I; is given by
rooo [T o\ W) (r=i-j /1
L=y "(1-p) (-D'(= [(—@r-i)—j+1) (16)
e ()" G ea-in)

In a similar way, I, is as follows:

1
rooo T\ [ 52 (r=1 e\ () (i) j
12=/3V’ZZ< > o (—1)’(2—7;) ! ]r<$(r—i)—j+1). (17)

Then, y, can be expressed as
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8

= AG Y

where

(1/87) (r=i)—j
AUJ)=P1—ﬁK%) ’

3.2. Mode. The mode of the TGL distribution was obtained
in this subsection. The In f (x) is as follows:

In f(x)=In(dy 9+
(87 = DIn (1 +yx) + 9/m[1 - (1+ yx)°"]
+In[1 — B+ 2Be”1= (419”1} The mode is the solution of
the following equation:

2B(ay = D [(or - 1) - 09(1 +y0) "] 1

=0,
(19)

3.3. Quantile and Median. By inverting cdf (9) as follows, the
TGL distribution can be easily simulated: on (0, 1), if U
follows a uniform distribution, then

9= (1 _ ()] ) [1 i pe ()] ] (20)

J 1V (x) = (89yp)" ro [1+ Yx]ww"_l)e(S/”)‘”[l_(”V’C)M]
R 0

The binomial expansion is then used as follows:

wa(x)dx— ZZ( )(V/(a ]1)+bl)( >( 1)l+]yl+2u/ a(1+[5)u/ ’[/3(a+b)]

i,j=0 1=0

0yl d
« J ¥ ey
0

As a result, the TGL distribution’s Rényi entropy is

859 y—-1 co oo v
I () _ (0%y) ZZ( >
v i=0 j=0 \ i

3.5. Order Statistics. In this part, we will look at single-order
statistics for the TGL distribution. Let us say xi,...,x,;
there are n TGL random variables that are both independent

5
1 ;
r o1 (r—1i) e ) )
“)T(—(r—-i)-j+1
i= ]—0<1> . ( ) <87T(r l) J+ )
(18)
7\ (Uom) (r=i)-j
+F(35) ]
Special Case f = 1:
1 T 1/6m
xasz;“uﬁln(z)] —1}. (21)

3.4. Rényi Entropy. The variance of the uncertainty is
measured by the Rényi entropy of a pdf f (x) with random
variable X of TGL distribution. The Rényi entropy is defined
as for any real parameter ¥ >0 and y # 1:

In(y) = 1logJRfW(x)dx, y>0andy+#1.  (22)

We can extract the integrated component using the
density function (10) as follows:

7V
1— B+ 2pe @ [-0a™ 7 (23)

(24)
(- ! 1)
-Vl —- 1= B (28) j
o (L=pY QP (WYOy y sy (25)
(1+1)
and identically distributed. Let x ), x5), - - ., X, stand for

the order statistics derived from these # variables. The pdf of
the r*" order statistic, say f,.,(x), is then calculated as
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() =C [FOT ()1 = F)™, (26)  where C,.,, = nl/(r — 1)! (n - r)! The binomial expansion is
fr ol RAC ] used in this case; then, r™ order statistic of TGL distribution

is
fen® = o i 1)’7’(’1 )'[1 - Il (gl )] 00y (14 ya)™ 10109
-D!(n-r)!
(27)
ﬁ " zﬁeS/n (1+yx)™] :|69/n(n—r)[1—(1+yx)5”]<1 _ﬂ n ﬁeS/n[l—(ny)‘s”])nir
For the TGL distribution, the k™ moments of #™ order
statistics are
89 Tl' r—ln-r i r—1 n-—r i . o
(k) _ Y i n—r—jnj+l
R LS L (-1 (1-p)""Ip
(r—l)!(n—r)!%%%( ; j ]
(28)
k
“k 00 T 1/0m (= r4it j+141) T 1-(1/6m) B 1 T (1/6m)-1
1+= -1 fy[l—] 1—2y—[1—] :
Y JO “ +9y] } tgy [1-B+2pe ]wy tgy dy
By using the binomial expansion,
k—-m
® r-ln-r i k oo r—1 n-—r i k ) T\t
1+m
23S () O o e
=0 j=0 [=0 m=0t= ] m . (29)
(1 _ ﬁ)n—r—jﬁﬁl J yte—(n—r+i+j+l+1)y [1 _ ﬂ + zﬁe—y]dy
0
For the TGL distribution, the k™ moments of # order
statistics are
k-m
-k r-ln-r i k oo r—1 n-—r i k
) nly im (! ner— j jtl
0 o [o(5) -y
sz 28000 ;
; (30)
1- 2
X - ﬁ a7t - /3‘ M]F(t+l).
m—r+i+j+l+1) m—r+i+j+1+2)
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4. Parameter Estimation

The MLEs of the parameters Z = (6,y,9,m, ) under
complete and Type-II censored samples are investigated in
this section. Approximate confidence intervals (ACIs) for
unknown values are also calculated using the Fisher in-
formation matrix.

4.1. MLEs under Complete Sample. In the statistical litera-
ture, various approaches for parameter estimation have been
given, with the MLEs method being the most extensively
employed. We explore applying MLEs to estimate the pa-
rameters of the TGL distribution with a complete sample. If
X1, %,,...,X, is a random sample of this distribution of size
n with a set of parameter vectors Z = (8, y, 9, , ), then the
log-likelihood function, say ¢, (Z), may be stated as

€,(Z) =n[In(9) +1n(8) +In(y)] + (d 7 - 1) iln(l +yx;) + g Z v+ iln[l — B+ 2pe V], (31)
i=1 i=1 i=1

where y; = [1 - (1 + yxi)‘s"]. The partial differential equa-
tions ¢, (Z) are calculated as follows:

881(2)_§+
0 o "

1

O/m)y;

0, (Z) n 1y 5 yilne
09 ) ﬂ;llIi+i=ll_ﬁ+2/36(9/n)Wi)

00,(Z) n !

X
o~y OVl

3,(2) _ &

In(1+ yx;) 92(1+yx ln(1+yxl-)—z
-1

692x (1+yx,)"" i

2B9(1 +yx,)" In (1 + yx;)e ¥
AT 1o peape

>

2ﬁ89e(9/ﬂ)w"(xi (1+ yxi)(snfl)
5 1- B +2pe ™%

>

(32)

‘9 n
5 Zln(1+yx) Zn8(1+yxi)8nln(l+yxi)+q/i
n’ i=1

i=1

iZﬁe(S/”)"’"(S(?ﬂ_l (1+yx)" In(1+yx;) - 1//1)

i=1 - B+2pe Ormy;

3,(2) & 2e"V-1

B H1-p+2peImv

The nonlinear equations are numerically solved to de-
termine ML estimators as 0f,(Z)/06 = 0, 0¢,(Z)/oy = 0,
0¢,(Z)/09 = 0, and 0¢, (Z)/or = 00¢, (Z)/9p = 0 using an
iterative technique.

4.2. MLEs under Type-1I Censored Sample. The MLEs of
parameters for TGL distribution based on Type-II censored

k
LZ(Z) ZCHf(xi: k: n)[l

where C is a constant and X|. 1. > X5 k: > - - > Xk & o 1S the
data that has been censored. The log-likelihood function

—k
_F(xi:k:n)]n s XLk nSXp g aS e

samples are investigated in this subsection. The Fisher in-
formation matrix for Type-II censored model is also used to
calculate the approximate confidence intervals for the un-
known parameters Z = (6,9, 9, 7, ). Let x,x,,...,x, be a
random sample of size n, and we only look at the first k-th
order statistics based on the Type-II censored sample.
Likelihood function in this scenario is of the kind

S Xk ke (33)

¢, (Z) is possibly written as follows without constant term
from (15).
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6,(Z) = k[ln(9)+ln(8)+ln(y)]+(87r—1)Zln 1+yx,) +— Zwl+Zln[1—ﬂ+2ﬁe @mvi)
i=1 i=1

(34)
k
+(n-k) Z]n[l _ [1 _ 6(9/71)!//,-] [1 i ﬁe(S/”)‘”f]],
i=1

where x; = X;. 1. ,»i = 1,2,...,k, denotes the time of thek-th ~ Z = (8,y,9,7,5) are the solutions to the following five
failure and x; denotes the time of the k-th failure. The MLEs  equations:

:O,

662 (Z) E 1 i zk: %/n)e—l‘?/ﬂ)w, (n—k) Zk: _(ﬁ'l/i/”)ew/ﬂ)% + (Wi/”)e(%)% + (Zﬁllli/”)e(zem)%
al i

9 & Zﬁ O/m)y; 1- [1 _ e(S/n)w,»] [1 +ﬂe(9/n)wi]

96,(2) k k k 2B9(1 + yx,-)‘s’r In(1+ yxi)e(%)””

% 5+ lzl:ln(1+yx 9; 1+yx;) 1n(1+)/x lz 1_ﬁ+2/36(9/n)1//,- (35)
K 9(1+yx;) ln(l +yx;)e (Ormy; [/3 -1- Zﬁe(‘%)w"]

+(n-— k)z [1 — ‘”'][1 +ﬂe(9/ﬂ)%] =0,

x zﬁe(e/n)w,(g(gﬂ (1+ Yxi) In(1+yx;) - ‘//i)

- ; 1= B+ 28 (39
£ (897 (1+yx)"" In (1+yx) Omvi(g -1 —2/36(9/”"”’)—%)

SRy (1= e ) h

Om)y; om—1
26,(2) k o o1 £ 259" (x; (1+ ;)" ")
5 +(67r )2 o) 59§ x; (1+yx;) ,gl 1_ B+ 280

k 59 9/71)\[/,( i(1+yxi)57r 1)([3_ —/36(9/”)%)
—(n- k); 1 [1 _e(S/ﬂ)t//i] [1 +/3€(9/”>wi] =0, (37)

832 i 2¢Omvi _ " Z e(S/n)w,(e(S/n)w,- _ 1)
A1 pope S1—[1- e [1+ e®¥]
. . [Hyy Hs, Hsg Hs, Hgp T
It is to be noted that equation (16) cannot be solved H-H H.H. H

explicitly. To obtain the MLEs Z = (4, y, 9, m, ), a numerical yo Shyy S8y9 Sym ShyB
approach is required, and a numerical technique is needed. H(Z)=|Hys Hy, Hgy Hy, Hg |. (38)
We obtain the observed Fisher information matrix since its H. H. H. H
expectation requires numerical integration. The 5 x 5 ob- no Simy Sind Sfmm Siap
served information or Hessian matrix H (Z) is | Hpy Hp, Hgy Hg, Hpg |
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The Fisher information matrix H(Z) is given by the
negative expected of second partial derivatives of (15) for the
unknown  parameters Z = (6,y,9,7,) locally at
(8,9,9, 1,8 given in (16). Under some regularity

Hsy Hg
HVS Hy
Hgy Hy
H,y H

Hg, Hpgy

T

Hy

[ Var(g)
Cov(?,g) Var (y)
Cov(9,8) Cov(9,7)

The elements of the observed Hessian matrix are com-
puted using an iterative numerical solution method. Now,
the ACIs Z = (8,7,9,m, 8) can be obtained as follows:

Zl—(a/z)' \,Var (S),
Zl_(a/z). \ Var( ),
Zlf(a/Z)' \’Var (9) s

* 21 (g VVar(m),

| B+ Z1(ap2)- || Var ®,

where z, is the 100 & — th percentile of a standard normal
distribution.

)

I+

=)
I+
=)

(40)

A
<o)

I+

2

5. Bootstrap Confidence Interval

We create two parametric bootstrap confidence intervals
(CI) Z = (6,y,9,m, ) in this section as follows.

5.1. Percentile Bootstrap (Boot-P)

(1) Compute the MLE of Z = (4,y,9,7,3) based on
complete and censored samples

(2) Generate a bootstrap sampleAlll)sing Z to obtain the
bootstrap estimate of Z say Z using the bootstrap
sample

(3) Repeat  step  (2)
(20, 70@ " 7b®)),

(4) Arrange (Z7°W, 7@ 7°®)) in order of as-
cending as (ZzbW, 712, 7PB)),

B times to get

s

ys

U

s

T

COV(S,?) Cov(8,9) Cov(3,7) COV(S,E)'
Cov(3,9) Cov(3,7) Cov(¥,p)

Cov(7,8) Cov(#,7) Cov(#,9) Var(z) Cov(#,p)
[ Cov(B,8) Cov(B,7) Cov(B,9) Cov(B,7) Var(f) I

conditions, (8,7, 9, 7, B) is approximately normal with mean
(8,9, 9, m, ) and covariance matrix H™ ' (Z). Practically, we

estimate H ! (Z) byHX_~__; then
0.y.9.mp)

(8997

Hpg |
(39)

Var(®) Cov(9,7) Cov(3,p) |

(5) A two-side 100 (1 — y)% Boot-P CI for the unknown

parameters  Z = (3,y,9,m,5) is  set by
(25[3(7/2)]) Zb[BU* Y/Z)])
5.2. Bootstrap-t (Boot-t).
(1) The same steps as (1-2) in Boot-p
(2) Compute the t-statistic of

Z= @y 9mPT = (2" -2)\\Var(Z®)  where

Var(Zb) asymptotic variances of Z= (3‘, P, 9,7, B)
and it can be obtained using the Fisher information
matrix

(3) Repeat  steps
TO, 7@, ., T®

(4) Arrange TW, T®, .. T® in ascending order as
O, 7, ., T®

(5) A two-side 100 (1 — )% Boot-t CI for the unknown
parameters Z = (4,9, 9,7, ) is given by

{z + TEOD\Nar(2), 7 + TECYD var (2) } (41)

6. Simulation Study

2-3 B times and obtain

In this section, we discuss the Monte Carlo simulation study
to estimate point and interval estimation of parameters of
TGL distribution based on complete sample sizes and Type-
II censored samples. The simulation results are in
Tables 2—- 5, and concluding remarks of simulation results
are obtained in this section. A Monte Carlo simulation is an
initial task for studying different properties of parameters of
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TABLE 2: Various measures for parameters of TGL distribution TaBLE 3: Various measures for parameters of TGL distribution
based on different schemes of samples: Case 1. based on different schemes of samples: Case 2.

N M Bias MSE L.ACI LBPCI LBTCI CP (%) N m Bias MSE LACI LBPCI LBTCI CP
m 0.0046 0.0499 0.8572 0.0992 0.0979 96.40 (%)

B 0.0190 0.0392 0.7731 0.0815 0.0812 94.60 m 0.0109 0.1883 1.6472 0.1585 0.1567 94.60

30 § 0.0241 0.0211 0.5615 0.0551 0.0547 97.80 B -0.3184 2.3256 4.2623 0.3338 0.3204 99.10

y 03174 0.5989 2.7682 0.2530 0.2498  95.80 30 § 0.1568 0.1692 1.4916 0.1371 0.1378 95.20

9 -0.0138 0.0392 0.7619 0.0830 0.0834 96.20 y 01809 0.6919 3.0693 0.2352 0.2353 97.10

m 0.0050 0.1381 1.4572 0.1465 0.1461  95.80 9 —0.0090 0.0501 0.8773 0.0941 0.0941 94.60

B —0.0752 0.0515 0.8396 0.0841 0.0843 96.30 n 0.0316 0.5118 2.8058 0.2225 0.2250 92.90

30 25 & 0.0777 0.0347 0.6641 0.0620 0.0619  96.90 B —0.4821 4.0856 7.6986 0.4347 0.4033 98.00
y 0.3370 0.7575 3.0897 0.2847 0.2880  95.50 30 25 § 02003 0.2467 1.7824 0.1643 0.1644 95.90

9 -0.0238 0.0565 0.9277 0.0900 0.0910 96.70 y 02844 0.7288 3.1515 0.2746 0.2742 95.00

m 0.0445 0.2580 1.9846 0.1882 0.1852 93.20 9 0.0272 0.0839 1.1311 0.1115 0.1128 94.30

B -0.1213 0.0713 0.9333 0.0970 0.0979  98.00 m 0.0657 0.6546 3.1725 0.3272 0.3284 93.50

20 & 01470 0.0769 0.9220 0.0974 0.0974 94.80 f -0.8510 13.7077 14.1318 1.1032 1.0926 96.90

y 0.3673 0.8658 3.3531 0.3672 0.3640  95.00 20 & 0.2369 0.3087 19713 0.1659 0.1649 96.70

9 -0.0395 0.0624 0.9670 0.0919 0.0919 96.70 y 03023 0.7742 3.2409 0.2864 0.2825 93.70

m 0.0139 0.0354 0.7220 0.0689 0.0678 96.70 9 00342 01215 13639 0.106 01107 94.00

B 0.0250 0.0372 0.7506 0.0622 0.0636  93.20 m 0.0108 0.0817 1.0769 0.1063 0.1059 93.07

50 & 0.0146 0.0117 0.4207 0.0251 0.0252 98.10 B -0.0870 0.0945 1.1618 0.1227 0.1224 93.07

y 0.2688 0.4656 2.4598 0.2680 0.2604  95.30 50 & 0.0485 0.0603 0.9486 0.0939 0.0922 97.03

9 -0.0102 0.0286 0.6449 0.0666 0.0656 96.70 y 01485 0.2533 1.8946 0.1939 0.1925 96.04

m —0.0143 0.1437 1.4834 0.1339 0.1357 94.10 9 -0.0040 0.0389 0.7607 0.0754 0.0768 94.06

B —0.0714 0.0482 0.8141 0.0788 0.0781  95.10 m 0.0183 0.3512 23230 0.2385 0.2367 95.00

50 40 § 0.0763 0.0371 0.6941 0.0603 0.0604 95.30 40 B -0.2663 1.0665 3.9132 0.2870 0.2683 99.20
y 0.2931 0.5376 2.5974 0.2705 0.2643  96.40 50 § 01512 01673 1.4905 0.1475 0.1488 95.60

9 -0.0198 0.0505 0.8783 0.0739 0.0719  96.40 y 01849 0.3970 2.3623 0.2572 0.2540 94.80

m —0.0153 0.2732 2.0492 0.2223 0.2199 94.30 9 0.0100 0.0540 0.9104 0.0840 0.0817 95.10

B —0.0980 0.0587 0.8695 0.0867 0.0875 98.20 m —0.0344 0.7091 3.2999 0.4086 0.4018 93.60

30 & 0.424 0.0679 0.8562 0.0953 0.0960 95.10 30 B -0.5091 4.3847 7.9660 0.4242 0.4161 98.30

y 0.3750 0.5968 2.8313 0.2948 0.3059  95.60 § 01930 0.2781 1.9247 0.1890 0.1890 96.70

9 -0.0347 0.0548 0.9084 0.0801 0.0798 97.70 y 03312 0.6945 29991 0.2559 0.2592 94.30

7 0.0031 0.0190 0.5275 0.0444 0.0447 96.60 9 00706 0.0991 1.2345 0.1139 01134 9410

B 0.0089 0.0305 0.5867 0.0581 0.0578 93.20 m 0.0094 0.0397 0.7641 0.0725 0.0726 93.53

100 § 0.0054 0.0023 0.1851 0.0163 0.0162 95.60 B —0.0081 0.0623 0.9812 0.0983 0.0986 95.88

y 01932 0.2261 1.7040 0.1498 0.1481 95.00 100 6 0.0309 0.0348 0.7228 0.0663 0.0664 95.88

9 -0.0103 0.0149 0.4653 0.0476 0.0480 97.00 y 0.0541 0.1002 1.2261 0.1169 0.1169 94.71

m 0.0044 0.0490 0.8679 0.0984 0.0982 95.20 9 -0.0106 0.0082 0.3495 0.0338 0.0340 94.71

p -0.0284 0.0312 0.6836 0.0647 0.0645 93.80 n -0.0102 0.0911 1.1829 0.1255 0.1258 95.20

100 90 & 0.0275 0.0052 0.2603 0.0242 0.0243  95.00 B -0.0726 0.0746 1.0323 0.1064 0.1061 98.10
y 02084 0.3174 2.0528 0.1766 0.1782  95.10 100 90 § 0.0405 0.0500 0.8625 0.0962 0.0975 95.00

9 -0.0127 0.0227 0.5874 0.0512 0.0524 96.30 y 0.0876 0.1327 1.3866 0.1314 0.1314 95.40

n —-0.0750 0.1673 1.5771 0.1576 0.1573  94.60 9 0.0136 0.0158 0.4898 0.0517 0.0507 94.60

B —0.0488 0.0409 0.7697 0.0850 0.0846 98.70 n -0.0106 0.2094 1.7942 0.1858 0.1806 95.10

70 § 0.0869 0.0277 0.5562 0.0572 0.0562  94.90 p -0.1500 0.1102 1.1617 0.1116 0.1120 96.50

y 0.2216 0.4024 2.3311 0.2574 0.2514 96.10 70 & 0.0757 0.1098 1.2650 0.1282 0.1294 96.00

9 -0.0177 0.0366 0.7499 0.0684 0.0681 97.70 y 01398 01782 1.5624 0.1573 0.1573 94.50

9 0.0151 0.0230 0.5924 0.0522 0.0522 96.00

the TGL model based on different sample schemes; we can

h ] Case 3:
use these steps: =035 =-04,8=045y=075 9=085
1) C.}enera}te ?andom sample from a uniforrp distribu- Case 4: m =15 =-068=14,9y=2.7,9=138
ggn wcllthl(;gtervals 0 and 1 and sample size 7 as 30, (3) We use the inverse CDF method to transform the
> an CDF in terms of u and get the sample of TGL
(2) Determine different actuals values of parameters of distribution

TGL distribution as (4) Sort sample and select the first m failures as 20 and 25

Case 1: 1=0.3,3=0.3,=0.5,y=0.6, 9=0.5 where n =30, 30, and 40 where n =50 and 70 and 90
Case 2: m=12,$=04,0=08,y=0.759=19 where n=100
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TABLE 4: Various measures for parameters of TGL distribution
based on different schemes of samples: Case 3.
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TABLE 5: Various measures for parameters of TGL distribution
based on different schemes of samples: Case 4.

N M Bias MSE L.ACI LBPCI L.BTCI CP (%) N M Bias MSE L.ACI LBPCI L.BTCI CP (%)
m 0.0937 0.1825 1.6349 0.1569 0.1576  99.89 m 0.0457 0.8716 3.6572 0.3452 0.3467 93.10
B —0.9293 1.0697 4.0882 1.2977 1.3166 93.69 B —0.7394 29165 3.1121 1.0574 1.0499 95.00
30 § 0.0507 0.0593 0.9339 0.0523 0.0519 97.01 30 & 0.2040 0.219 1.1113 0.1042 0.1047 93.80
y 0.7467 2.3515 5.2533 0.7690 0.7595  95.90 y 0.0972 1.1947 4.2698 0.3181 0.3179 94.70
9 -0.0886 0.1389 1.4201 0.1467 0.1464 98.45 9 -0.0600 0.5720 2.9403 0.2416 0.2414 94.00
m 0.0675 0.2530 1.9547 0.2090 0.2062  98.60 m —0.0546 1.4718 4.7532 0.4506 0.4508 91.50
B —1.0851 2.8773 4.3929 2.0501 1.9617 95.10 B —0.8497 3.0780 3.2331 1.1783 1.1561 93.00
30 25 & 0.0922 0.0619 0.9060 0.0849 0.0850 94.80 30 25 & 0.2697 0.3005 1.8717 0.1570 0.1558  96.80
y 0.8103 2.5817 5.4576 0.4411 0.4389  96.50 y 0.2684 1.5735 4.8057 0.4081 0.4142  92.60
9 -0.0643 0.1778 1.6342 0.1544 0.1553 97.20 9 —0.0657 0.9053 3.7228 0.3539 0.3501  95.40
m 0.0563 0.3745 2.3900 0.2332 0.2358  98.50 n —0.1183 1.8618 5.3313 0.5021 0.5052  95.60
B —-1.4870 3.2350 5.2192 1.9231 19180 94.50 B —0.9115 3.5046 3.9777 1.1938 1.1806 93.60
20 & 01298 0.0896 1.0575 0.1038 0.1037 95.30 20 § 0.3144 0.3758 2.0640 0.2992 0.2867  96.30
y 0.9029 2.7732 5.4879 0.5950 0.5936  95.20 y 0.3536 2.0095 5.3839 0.5360 0.5328 93.50
9 —0.0555 0.2429 1.9205 0.1908 0.1920 97.00 9 —0.0967 1.1029 4.1143 0.3862 0.3746 96.30
m 0.0748 0.1549 1.5154 0.1457 0.1476  99.60 m 0.0714 0.5478 2.8490 0.3028 0.3013  96.90
B —0.3842 0.9235 3.6210 0.5458 0.5468 94.40 B —0.1603 1.8194 2.5870 0.6000 0.5338 98.00
50 § 0.0510 0.0486 0.8415 0.0648 0.0651 96.30 50 § 0.1516 0.0740 0.8855 0.0822 0.0830 94.00
y 0.4395 0.9975 3.5173 0.3065 0.2983  94.70 y —0.0048 0.3142 2.2536 0.1978 0.1976  96.90
9 -0.0925 0.1053 1.2198 0.1239 0.1228  98.50 9 -0.1249 0.3481 2.2389 0.2402 0.2411 97.40
m 0.0557 0.2313 1.8735 0.1751 0.1735 98.20 m 0.0800 0.7323 3.3415 0.3160 0.3159 96.10
B —0.9798 1.1929 4.0658 1.3002 1.2948 94.80 p -0.3022 2.0353 2.9569 1.0054 0.8703 97.70
50 40 § 0.0855 0.0769 1.0348 0.0723 0.0728 95.70 50 40 § 01595 0.0794 09111 0.0966 0.0970 95.20
y 0.6323 1.8210 4.6755 0.3789 0.3788 95.60 y —0.0053 0.3584 2.3478 0.2355 0.2312 96.30
9 -0.1014 0.1360 1.3908 0.1445 0.1457 98.10 9 -0.1345 0.4580 2.6940 0.2957 0.2946 97.20
m 0.0307 0.3267 2.2384 0.2249 0.2275  98.60 m 01254 0.9918 3.9046 0.3661 0.3689 95.10
B —-1.0355 3.2609 4.9372 2.1615 21135 94.00 B —0.6051 2.1776 3.0807 1.1412 1.0517 96.70
30 § 01278 0.0792 0.9260 0.0974 0.0974  95.50 30 § 01817 0.2014 1.6094 0.1155 0.1167 97.50
y 0.6536 1.9676 4.8675 0.5197 0.5227 94.30 y 0.0084 0.5461 2.8893 0.2832 0.2732  96.00
9 -0.0765 0.1560 1.5196 0.1469 0.1522 97.00 9 -0.1449 0.5641 2.8903 0.3036 0.3074 96.00
n 0.0770 0.0972 1.1846 0.1112 0.1113 97.70 m 0.0796 0.2255 1.8359 0.1756 0.1770 97.10
B -0.0124 0.5159 2.8165 0.3334 0.3336  98.50 B 00607 0.1229 13542 0.1123 0.1117 98.30
100 § 0.0237 0.0152 0.4742 0.0470 0.0468 94.30 100 § 0.0620 0.0165 0.4407 0.0405 0.0401 95.20
y 02246 0.4043 2.3330 0.1685 0.1660 97.40 y -0.0551 0.0639 0.9675 0.1007 0.1005 94.90
9 -0.0733 0.0549 0.8724 0.0847 0.0855 96.10 9 -0.1031 0.1754 1.5918 0.1555 0.1543 96.00
m 0.0788 0.1203 1.3248 0.1411 0.1409 97.00 m 0.0965 0.3391 2.2524 0.2311 0.2307 96.70
B -0.0530 0.5808 2.9817 0.2731 0.2639 98.20 B 0.0668 0.1273 1.3743 01092 0.1095 99.30
100 90 & 0.0311 0.0179 0.5107 0.0523 0.0512 94.90 100 90 & 0.0788 0.0233 0.5124 0.0461 0.0462 95.30
y 0.2587 0.5089 2.4834 0.2217 0.2187 97.50 y —0.0468 0.0696 1.0182 0.0878 0.0872  96.40
9 -0.0816 0.0613 0.9170 0.0852 0.0854 96.30 9 -0.1320 0.2347 1.8281 0.1765 0.1761  98.10
m 0.0427 0.1847 1.6773 0.1740 0.1747  96.70 m 0.0949 0.4762 2.6806 0.3019 0.3017 97.00
B —0.1007 0.6838 3.2191 0.3718 0.3522 97.70 B 0.0006 1.3674 4.5861 0.4831 0.4145 99.30
70 § 0.0656 0.0326 0.6602 0.0657 0.0654 93.80 70 & 0.0968 0.0389 0.6739 0.0468 0.0470  96.60
y 02924 0.5365 2.6340 0.2452 0.2441 96.60 y —0.0358 0.1282 1.3972 0.1466 0.1461 96.90
9 —0.0840 0.0855 1.0983 0.0993 0.0991 98.30 9 -0.1416 0.2931 2.0494 0.2083 0.2070 98.70

(5) By using different programs as Mathcad, R-software,
Mable, and Mathematica, we can obtain the results of
the simulation

(6) We use 10000 iterations in the summation generator

(7) In point estimation, we obtain bias and the mean
squared error (MSE) of parameters of TGL
distribution

(8) In intervals estimation, we obtain a length of CI for
ACI denoted as L.ACI, length of percentile bootstrap
CI can be denoted as L.BPCI, length of bootstrap-t CI

can be denoted as L.BTCI, and coverage probability
(CP) of ACI

7. Concluding Remarks of Simulation Results

Tables 2-5 show the simulation results of point and
interval estimates of TGL distribution parameters using
Type-II censored samples and entire sample sizes. Based
on these Tables, the following concluding remakes are
noticed.
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TaBLE 6: The TGL model’s and other competing models’ analytical results using COVID-19 data of France.
s B 0 y 9 KS P value w* A*
Estimates 8.3588 0.9078 0.2296 106.5058 0.1131
TGL SE 3.3853 0.1102 2.2730 1.7397 1.3473 0.0660 0.7348 0.0795 0.4964
Estimates 1.5895 0.7072 52.8189 1.4050 1.7894
KEBXIL SE 1.1360 0.3115 6.6434 0.2670 1.0125 0.0719 0.6327 0.1013 0.6654
Estimates 2.8707 1.5466 1.0213 0.1104 —
WL SE 20.4928 0.3118 0.9636 0.4204 0.0711 0.6466 0.0968 0.6432
Estimates 3.7914 0.6310 0.8663 0.1134 —
OEPIV SE 22,6007 0.1039 12677 0.3183 0.0721 0.6281 0.1024 0.6726
Estimates 3171.2439 0.6122 0.0026 0.1791 —
MOAPIW SE 1410.3818 0.0414 0.0004 0.0317 0.1100 0.1462 0.4416 2.7501
Estimates 7.7493 1.0168 21276 0.0244 —
MOAPW SE 26.4113 0.3237 27080 0.0155 0.0663 0.7292 0.0909 0.5547
Estimates 3.2759 0.8594 6.2503 18.8847 23.6501
MOAPEW SE 6.4510 0.3284 7.5313 1.5417 36.6454 0.0673 07118 0.0944 0-5600
Estimates 1.0858 29.2003 7.7492 0.5695
MOAPL SE 49184 552298 17.9049 11921 0.0667 0.7223 0.0941 0.5544
Estimates 0.6174 — 6.5887 5.1836 0.3340
GOLOM SE 0.3285 3.6730 27694 0.2097 0.0912 0.3299 0.0798 0.5392
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FiGure 3: TGL model pdf and CDF estimates, as well as a PP-plot using COVID-19 data of France. Data set (2): COVID-19 of the

United Kingdom.

(i) As sample size increases and fixed other values of
the model, the various measures for the parameter
of TGL distribution estimates decrease

(ii) As the number of units to be failed increases and
fixed other values of the model, the various mea-
sures for the parameter of TGL distribution Type-II
censored samples estimates decrease

(iii) The bootstrap is the shortest length of CI for interval
estimation of parameter TGL distribution

8. Real Data Analysis

The relevance and potentiality of the TGL distribution are
demonstrated in this section through the application of two
real data sets.

8.1. Data Set (1): COVID-19 of France. The COVID-19 data
in question is from France, and it covers a period of 108 days,
from March 1 to June 16, 2021. This data was formed by
using daily new deaths (ND), daily cumulative cases (CC),
and daily cumulative deaths (CD) as follows:

ND;
x 1000.

X;=—————
CCi_

Do (42)

The data are as follows: 0.0024 0.0025 0.0027 0.0045
0.0045 0.0062 0.0109 0.0113 0.0123 0.0123 0.0126 0.0129
0.0130 0.0139 0.0152 0.0160 0.0160 0.0161 0.0164 0.0169
0.0173 0.0174 0.0188 0.0219 0.0225 0.0226 0.0248 0.0260
0.0284 0.0303 0.0315 0.0318 0.0320 0.0323 0.0327 0.0329
0.0332 0.0343 0.0345 0.0346 0.0346 0.0347 0.0347 0.0352
0.0359 0.0365 0.0366 0.0370 0.0371 0.0376 0.0384 0.0392
0.0396 0.0419 0.0421 0.0443 0.0445 0.0462 0.0492 0.0506
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TaBLE 7: The TGL model’s and other competing models’ analytical results using COVID-19 data of The United Kingdom.
s B ) y 9 KS P value w* A*
Estimates 0.3759 0.7269 3.7995 197.6717 0.0110
TGL SE 0.1098 0.2824 1.0761 81.6337 0.0052 0.0579 0.9313 0.0520 0.3666
Estimates 9.2969 0.0223 45.1190 5.8785 1.7442
KEBXIL SE 4.9136 0.0133 13.0012 0.0024 0.0329 0.0686 0-8093 0.0574 04058
Estimates 209.1293 1.2386 87.0044 253.2098 —
WL SE 427.5093 0.0999 267.0487 985.0169 — 0.0589 0.9221 0.0573 04038
Estimates 344.2589 0.7995 4.5559 13.9408 —
OEPIV SE 39,5478 0.0553 2 5642 1.9995 . 0.0600 0.9120 0.0557 0.3935
Estimates 8.3728 0.6544 4.8152 0.0067 —
MOAPW SE 11.2011 0.0629 32705 0.0020 . 0.0620 0.8912 0.0614 0.4256
Estimates 12.7782 0.6446 3.6328 7.3977 11.8345
MOAPEW SE 14.6837 0.2803 7.6985 11.0566 12.0845 0.0643 08646 0.0562 0-3930
Estimates 1.4935 - 1.4072 5.3373 3.1370
GOLOM SE 75715 3.0245 17.3575 13.6175 0.1003 0.3574 0.0719 0.4967
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FIGURE 4: TGL model pdf and CDF estimates, as well as a PP-plot using COVID-19 data of the United Kingdom.

0.0525 0.0536 0.0539 0.0540 0.0568 0.0569 0.0592 0.0600
0.0603 0.0606 0.0617 0.0619 0.0621 0.0629 0.0632 0.0657
0.0665 0.0675 0.0678 0.0683 0.0684 0.0691 0.0693 0.0707
0.0708 0.0719 0.0722 0.0727 0.0771 0.0773 0.0773 0.0774
0.0791 0.0832 0.0837 0.0845 0.0865 0.0897 0.0907 0.0910
0.0946 0.0961 0.0972 0.1010 0.1056 0.1123 0.1149 0.2153.
In Table 6, the TGL distribution is fitted to COVID-19 of
France country. The TGL model is compared with other
competitive models as Mead and Afify [16] proposed the
Burr-XII model (KEBXII) with Kumaraswamy expo-
nentiated, Weibull-Lomax (WL) distribution, Odds Expo-
nential-Pareto IV (OEPIV) distribution proposed by
Baharith et al. [17], Marshall-Olkin Alpha power Weibull
(MOAPW) by Almetwally et al. [18], Marshall-Olkin Alpha
power extended Weibull (MOAPEW) by Almetwally [19],
Marshall-Olkin alpha power inverse Weibull (MOAPIW)
by Basheer et al. [20], Marshall-Olkin alpha power Lomax
(MOAPL) by Almongy et al. [21], and Gompertz Lomax
(GOLOM) distribution by Oguntunde et al. [11]. According
to this result, we note that the estimate of TGL has the best
measure where it has the smallest value of Cramer-von Mises
(W*), Anderson-Darling (A*), and Kolmogorov- Smirnov

(KS) statistic along with its P value. The fitted TGL, pdf,
CDF, and PP-plot of the data set are displayed in Figure 3.

The COVID-19 data in question is from the United
Kingdom and spans 82 days, from May 1 to July 16, 2021.
This data is formed by using daily ND, daily CC, and daily
CD as follows:

0.0023, 0.0023, 0.0023, 0.0046, 0.0065, 0.0067, 0.0069,
0.0069, 0.0091, 0.0093, 0.0093, 0.0093, 0.0111, 0.0115, 0.0116,
0.0116, 0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161,
0.0162, 0.0162, 0.0162, 0.0163, 0.0180, 0.0187, 0.0202, 0.0207,
0.0208, 0.0225, 0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255,
0.0255, 0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 0.0302, 0.0312,
0.0314, 0.0326, 0.0346, 0.0349, 0.0350, 0.0355, 0.0379, 0.0384,
0.0394, 0.0394, 0.0412, 0.0419, 0.0425, 0.0461, 0.0464, 0.0468,
0.0471, 0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 0.0597, 0.0628,
0.0679, 0.0685, 0.0715, 0.0766, 0.0780, 0.0942, 0.0960, 0.0988,
0.1223, 0.1343, and 0.1781.

In Table 7, the TGL distribution is fitted to COVID-19 of
The United Kingdom country. The TGL model is compared
with other competitive models as, KEBXII, WL, OEPIV,
MOAPW, MOAPEW, and GOLOM distributions.
According to this result, we note that the estimate of TGL
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has the best measure where it has the smallest value of W*,
A*, and KS statistic along with its P value. The fitted TGL,
pdf, CDF, and PP-plot of the data set are displayed in
Figure 4.

9. Conclusion

We investigate the so-called five-parameter transmuted
generalized Lomax distribution in this study. Lomax and
Gompertz Lomax (GoLom) distributions are included in the
TGL model. The TGL distribution’s structural properties are
deduced. The maximum likelihood approach is used to
estimate the population parameters based on complete and
Type-II censored samples. We discussed the Monte Carlo
simulation study to estimate point and interval estimation of
parameters of TGL distribution based on complete sample
sizes and Type-II censored samples. The proposed distri-
bution was applied to two COVID-19 real-world data sets
from France and United Kingdom. We compared a new
transmuted generalization of the Lomax distribution (TGL)
with KEBXII, WL, OEPIV, MOAPW, MOAPEW, and
GOLOM distributions. It was shown to provide a better fit
than several other models. We hope that the presented
model will be used in a variety of fields, including engi-
neering, survival and lifetime data, meteorology, biology,
hydrology, economics (income disparity), and others.

Data Availability

All data used to support the findings of the study are
available within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was funded by the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University
through the Fast-track Research Funding Program.

References

[1] W. T. Shaw and I. R. Buckley, “The alchemy of probability
distributions: beyond gram-charlier expansions, and a skew-
kurtotic-normal distribution from a rank transmutation
map,” 2009, https://arxiv.org/abs/0901.0434.

[2] R. G. Aryal and C. P. Tsokos, “Transmuted Weibull distri-
bution: a generalization of the Weibull probability distribu-
tion,” European Journal of Pure and Applied Mathematics,
vol. 4, no. 2, pp. 89-102, 2011.

[3] F. Merovci, “Transmuted Rayleigh distribution,” Austrian
Journal of Statistics, vol. 42, no. 1, pp. 21-31, 2013.

[4] M. S. Khan and R. King, “Transmuted modified Weibull
distribution: a generalization of the modified Weibull prob-
ability distribution,” European Journal of Pure and Applied
Mathematics, vol. 6, pp. 66-88, 2013.

Computational Intelligence and Neuroscience

[5] S. K. Ashour and M. A. Eltehiwy, “Transmuted Lomax dis-
tribution,” American Journal of Applied Mathematics and
Statistics, vol. 1, no. 6, pp. 121-127, 2013.

[6] F. Merovci and L. Puka, “Transmuted Pareto distribution,”
ProbStat Forum, vol. 7, pp. 1-11, 2014.

[7] L. Elbatal, L. Diab, and N. Abdul Alim, “Transmuted gener-
alized linear exponential distribution,” International Journal
of Computer Applications, vol. 83, no. 17, pp. 29-37, 2013.

[8] I. Pobocikova, Z. Sedliackova, and M. Michalkova, “Trans-
muted Weibull distribution and its applications,” MATEC
Web of Conferences, vol. 157, pp. 1-11, 2018.

[9] M. A. Ali and H. Athar, “Generalized rank mapped trans-
muted distribution for generating families of continuous
distributions,” Journal of Statistical Theory and Applications,
vol. 20, no. 1, pp. 132-248, 2021.

[10] M. Alizadeh, G. M. Cordeiro, L. G. B. Pinho, and I. Ghosh,
“The Gompertz-G family of distributions,” Journal of statis-
tical Theory and Practice, vol. 11, no. 1, pp. 179-207, 2017.

[11] P. E. Oguntunde, M. A. Khaleel, M. T. Ahmed,
A. O. Adejumo, and O. A. Odetunmibi, “A new generalization
of the Lomax distribution with increasing, decreasing, and
constant failure rate,” Modelling and Simulation in Engi-
neering, vol. 2017, Article ID 6043169, 6 pages, 2017.

[12] E. M. Almetwally, “Application of COVID-19 pandemic by
using odd lomax-G inverse Weibull distribution,” Mathe-
matical Sciences Letters, vol. 10, no. 2, pp. 47-57, 2021.

[13] E. M. Almetwally, “The odd Weibull inverse topp-leone
distribution with applications to COVID-19 data,” Annals of
Data Science, pp. 1-20, 2021.

[14] E. M. Almetwally, “Marshall olkin alpha power extended
Weibull distribution: different methods of estimation based
on type i and type II censoring,” Gazi University Journal of
Science, vol. 1, 2021.

[15] K. S. Lomax, “Business failures: another example of the
analysis of failure data,” Journal of the American Statistical
Association, vol. 49, no. 268, pp. 847-852, 1954.

[16] M. E. Mead and A. Z. Afify, “On five-parameter Burr XII
distribution: properties and applications,” South African
Statistical Journal, vol. 15, no. 1, pp. 67-81, 2017.

[17] L. A. Baharith, K. M. AL-Beladi, and H. S. Klakattawi, “The
Odds exponential-pareto IV distribution: regression model
and application,” Entropy, vol. 22, no. 5, p. 497, 2020.

[18] E. Almetwally, R. Alharbi, D. Alnagar, and E. Hafez, “A new
inverted topp-leone distribution: applications to the COVID-
19 mortality rate in two different countries,” Axioms, vol. 10,
no. 1, p. 25, 2021.

[19] E. M. Almetwally, M. A. Sabry, R. Alharbi, D. Alnagar,
S. A. Mubarak, and E. H. Hafez, “Marshall-olkin alpha power
weibull distribution: different methods of estimation based on
type-I and type-II censoring,” Complexity, vol. 2021, Article
1D 5533799, 18 pages, 2021.

[20] A. M. Basheer, E. M. Almetwally, and H. M. Okasha,
“Marshall-olkin alpha power inverse Weibull distribution:
non bayesian and bayesian estimations,” Journal of Statistics
Applications & Probability, vol. 10, no. 2, pp. 327-345, 2021.

[21] H. M. Almongy, E. M. Almetwally, and A. E. Mubarak,
“Marshall-olkin alpha power Lomax distribution: estimation
methods, applications on physics and economics,” Pakistan
Journal of Statistics and Operation Research, vol. 17, no. 1,
pp. 137-153, 2021.


https://arxiv.org/abs/0901.0434

