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Abstract: Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary 
muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage 
of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to 
monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and 
motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan 
(CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic 
dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early 
disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be 
a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify 
performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured 
three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters 
of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, 
even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical 
manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic 
dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD 
or other muscle disorders.
Key words: accelerometry, canine X-linked muscular dystrophy in Japan (CXMDJ), Duchenne muscular dystrophy, 
osteopontin, outcome measure

Introduction

duchenne muscular dystrophy (dMd) is an X-linked 
muscle disorder characterized by primary muscle degen-
eration [1]. its prevalence in the population is estimated 
to be 1 in 5,000 male newborns. a mutation in the DMD 
gene results in the absence of dystrophin, a structural 

protein in muscle fibers, which leads to weakened mus-
cle fibers following contractive force [2]. The histo-
logic features of DMD include muscle fiber degeneration 
with secondary cellular inflammation and ineffective 
muscle fiber regeneration, with the muscle eventually 
being replaced by fibrous and adipose tissue [3]. Patients 
with dMd manifest progressive muscle weakness and 
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contracture [4, 5]. The early symptoms of dMd, which 
include gait disturbance, frequent falls, and difficulty 
climbing stairs, usually appear by 2–5 years of age, with 
loss of ambulation occurring between 9 and 12 years of 
age. respiratory or cardiac failure causes death in the 
third decade.

Steroid therapy for muscle weakness is currently ap-
plied in the clinical setting to prolong muscle strength 
and ambulation; however, it is not a cure for dMd [5–7]. 
Various therapeutic strategies, such as pharmaceuticals 
and gene and cell therapy, have been proposed and ex-
plored in human trials [8–12]. among these strategies, 
exon skipping and stop codon read-through, which are 
designed to restore dystrophin expression, are the most 
advanced [12]. a morpholino antisense oligonucleotide, 
NS-065/NCNP-01 (viltolarsen), which effectively in-
duces exon 53 skipping in the DMD gene, was recently 
established to be efficacious and safe in human trials 
[13–15] and was approved in Japan and the uSa in 2020. 
in the development of new therapeutic interventions, 
surrogate endpoints have become increasingly important 
to evaluate treatment effects in detail. Therefore, sensi-
tive outcome measures, including biomarkers and motor 
function evaluations, are needed.

Overview of Canine Models for DMD

Golden retriever muscular dystrophy (GRMD)
To explore the efficiency of the different preclinical 

treatments for dMd, there is a need for animal models 
that show the dystrophic phenotypes. Spontaneous ge-
netically homologous dystrophin-deficiency has been 
identified in several species, including mice and dogs. 
The X-linked muscular dystrophy (mdx) mouse is the 
most widely used animal model for dMd, even though 
its mild phenotype does not mimic the severe symptoms 
of human dMd [16, 17]. By contrast, canine dystrophic 
models share the severe myopathy and dMd conditions 
[18–20]. Novel animal models for dMd, such as rats 
[21, 22], rabbits [23], pigs [24], and rhesus monkeys 
[25], have been generated using genome editing methods 
and subsequently examined for their phenotypes [26].

Canine dystrophinopathies have been reported in a 
number of canine breeds [27–29]. Canine X-linked mus-
cular dystrophy, which is compatible with degenerative 
myopathy, was documented in golden retrievers in the 
1980s [18, 30–32] and recognized as a genetic homo-
logue of dMd due to the lack of dystrophin protein [33]. 
GrMd has been established in a breeding colony of 
golden retrievers by reproducing dystrophic dogs ac-
cording to an X-linked pattern of inheritance [28, 32, 
34]. Dogs with GRMD are dystrophin deficient because 

of a splice-site mutation resulting from a single base 
change in the 3’ consensus splice site of intron 6 [35]. 
exon 7 is then skipped, which is predicted to result in a 
termination of the dystrophin reading frame within its 
N-terminal domain in exon 8.

in GrMd, the histologic features include widely ob-
served segmental degeneration of muscle fibers (hyaline 
fibers, myophagocytosis) and regeneration (small baso-
philic fibers) [30, 31], following the selective involve-
ment of muscles such as the diaphragm, tongue, and limb 
muscles in the neonatal phase [36, 37]. Progressive 
changes include the development of severe fiber size 
variation, endomysial and perimysial fibrosis, fat infiltra-
tion, and alterations in the fast and slow fiber-type pat-
terns over the disease course [19, 38]. in clinical pheno-
types, a severe, lethal, neonatal form of the disease has 
been recognized in which GrMd pups do not survive 
beyond 2 weeks of age [18, 28, 36, 37]; GrMd pups 
that survive are only mildly affected and tend to stabilize 
at around 2 weeks of age [28]. Clinical signs are com-
monly observed as an onset of generalized muscle weak-
ness and posture and gait abnormalities with selective 
muscle atrophy and hypertrophy at between 6 and 9 
weeks of age; these exacerbations markedly progress 
until 6 to 9 months of age [18, 28, 30, 39]. it has also 
been noted that the pelvic limbs appear stiff and are si-
multaneously advanced (“bunny hopping”), resulting in 
a stiff and shuffling (waddling-like) gait. Other clinical 
features include poor weight gain, kyphosis, splaying of 
the limbs, fatigue with exercise, neck stiffness, resistance 
to jaw opening, enlargement of the base of the tongue, 
pharyngeal and esophageal dysfunction (dysphagia and 
regurgitation), and occasional respiratory and cardiac 
distress.

Canine X-linked muscular dystrophy in Japan 
(CXMDJ)

CXMdJ is a dystrophic model of beagle dogs estab-
lished as a breeding colony by inseminating beagles with 
the sperm of GrMd dystrophic dogs at the National 
Center of Neurology and Psychiatry [40]. CXMdJ dys-
trophic dogs have a mutation in the DMD gene analogue 
to GrMd and lack dystrophin in their muscle tissue 
[40–42]. The clinical and histologic features of CXMdJ 
have been found to be similar to those observed in 
GrMd [20]. The clinical manifestations of CXMdJ can 
be evaluated from clinical signs, such as gait and mobil-
ity disturbances, limb and temporal muscle atrophy, 
drooling, macroglossia, dysphagia, and abnormal sitting 
posture, by classifying the severity on a scale of 1 to 5 
(from grade 1, none, to grade 5, severe) [20, 43]. The 
early clinical signs, including gait disturbance and distal 
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limb and temporal muscle atrophy, are observed at 
around 2 months of age, corresponding to the onset of 
muscle weakness [20]. High mortality of CXMdJ neo-
nates has also been observed (e.g., a mortality of 32.3% 
by 3 days of age in the third generation) [20], confirming 
our results indicating that initial pulmonary respiration 
causes massive diaphragm injury followed by respira-
tory dysfunction [44].

Pathophysiological investigations in CXMDJ
Various studies on CXMdJ have revealed the novel 

characteristics of dystrophic pathology. in the diaphragm 
of CXMdJ, the muscle fiber-type composition is found 
to switch from the fast type to predominantly the slow 
type over the disease course [45]. Matrix metallopro-
teinases (MMPs), which are proteolytic enzymes that 
degrade extracellular matrix components, are upregu-
lated in the dystrophic muscles; MMP-9 and MMP-2 are 
related to degenerating muscle fibers with inflammatory 
cells and regenerating muscle fibers, respectively [46]. 
The cardiac phenotypes of CXMdJ show prominent deep 
Q-waves and increased Q/r ratios in leads ii, iii, and 
aVF on electrocardiography by 6 to 7 months of age [47], 
and they show a decreased peak radial strain rate during 
early diastole in the posterior segment of the left ven-
tricle on echocardiography after 8 months of age [48]. 
Selective vacuolar degeneration of Purkinje fibers is 
found as early as 4 months of age, suggesting an asso-
ciation between cardiac conduction abnormality and 
fatal arrhythmia [49]. Myocardial fibrosis in the left 
ventricular posterobasal wall has been observed in sev-
eral dystrophic dogs by 21 months of age [47].

Preclinical investigations of therapies and outcome 
measures in CXMDJ

Preclinical studies of new therapies for dMd have 
been conducted in CXMdJ. Multi-exon skipping using 
morpholino antisense oligonucleotide cocktails, which 
induce exon 6 and 8 skipping in the DMD gene of CX-
MdJ, has been found to restore the dystrophin reading 
frame [42, 50–52]. The systemic injection of antisense 
drugs has been shown to induce therapeutic levels of 
dystrophin expression and improve the dystrophic phe-
notypes, including histology, clinical manifestations, 
motor dysfunction, and cardiac conduction abnormalities 
[42, 50, 53–55]. recombinant adeno-associated virus 
(raaV) vectors transduce the microdystrophin gene into 
muscle fibers and ameliorate the dystrophic phenotypes 
of CXMdJ [56–60]. although host immune responses 
result in low and transient expression of transgene prod-
ucts, the efficiencies have been improved in rAAV-
treated CXMdJ by co-administration of immunosuppres-

sants [56], raaV serotype selection [57, 60], immune 
tolerance [59], and injection of multipotent mesenchymal 
stromal cells (MSCs) [60]. The injection of MSCs, which 
are mesoderm-derived multipotent cells derived from 
bone marrow and dental pulp that have immune-modu-
lating effects [61], results in the formation of myofiber-
like tissue and downregulates severe inflammation in the 
dystrophic muscles of CXMdJ [61–63].

Novel outcome measures have been concomitantly 
developed in CXMdJ. Noninvasive evaluation methods, 
such as magnetic resonance imaging (Mri) and serum 
biomarkers, are used to examine the resulting temporo-
spatial pathological changes. dystrophic muscle lesions 
can be precisely assessed using conventional Mri se-
quences; chemical shift selective T2-weighted imaging 
has been shown to be sensitive for detecting muscle 
necrosis and inflammation by selectively canceling fat 
signals [64]. MicrorNas (mirNas), noncoding small 
rNas, are considered candidate serum biomarkers for 
dMd. among mirNas, mir-1, mir-133a, mir-188, 
and mir-206 are elevated in serum and muscle tissues 
of CXMdJ, and mir-188 and mir-206 have been found 
to play roles in muscle regeneration [65–67].

Osteopontin (OPN) as a Serum Biomarker 
in Dystrophic Pathology

Serum biomarkers for DMD
Clinical biomarkers are necessary for the diagnosis of 

the disease, classification of its severity, and evaluation 
of therapeutic effects. Serum creatine kinase (CK) is a 
primary biomarker for a sensitive diagnosis of dMd that 
reflects muscle damage [68, 69]. However, serum CK is 
not sufficient for the evaluation of therapeutic effects, 
because its levels decrease with the progression of dys-
trophic disease, which corresponds to the wasting away 
of skeletal muscle. New candidate serum biomarkers 
have been explored to develop an evaluation method for 
dystrophic conditions [70]. MMP-9 and its endogenous 
inhibitor, tissue inhibitor of metalloproteinase (TiMP)-1, 
are strongly suggested to be dMd biomarkers [71, 72]. 
Serum mirNas such as mir-1, mir-133, and mir-206 
have been shown to be elevated in human dMd, as ob-
served in CXMdJ [66, 73, 74]. The levels of various 
cytokines and growth factors in the blood have also been 
found to be elevated in association with dystrophic pa-
thology, including tumor necrosis factor-α, interleukin 
(IL)-1, IL-6, IL-13, interferon-γ, transforming growth 
factor-β, and basic fibroblast growth factor [70, 75–79]. 
Serum levels of several proteins are correlated with the 
clinical severity in ambulatory and nonambulatory pa-
tients with dMd [71, 76, 80].
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OPN in dystrophic pathology
oPN, a phosphorylated glycoprotein synthesized in 

various tissues and cells that are involved in inflamma-
tion, tissue remodeling, and tumorigenesis [81, 82], has 
been reported to be a potential new candidate for a dMd 
biomarker. as an immobilized matricellular protein and 
a soluble molecule with cytokine functions, the secreted 
form of oPN is capable of interacting with Cd44 and 
various integrins to mediate cell–cell and cell–matrix 
interactions and activate intracellular signaling pathways 
[81, 83]. The effects of OPN binding to target cells, such 
as promoting cell attachment, proliferation, migration, 
and chemotaxis, are modulated through cleavage by 
thrombin, as well as MMP-3, MMP-7, and MMP-12 
[84–86].

in injured or dystrophic muscles of rodent models, 
oPN is expressed in immune cells, myoblasts, and dam-
aged or regenerating muscle fibers [87–90]. OPN defi-
ciency in the muscles of mdx mice leads to reduced in-
flammatory cell infiltration and skewed M1/M2 
macrophage polarization, as well as the subsequent al-
leviation of fibrosis via TGF-β signaling [88, 91, 92]. 
Therefore, oPN could be a therapeutic target as a pro-
inflammatory and pro-fibrotic molecule. Meanwhile, 
oPN also plays important roles in aiding the fusion and 
differentiation of myoblasts, primarily during the early 
phases of myogenesis, leading to the promotion of 
muscle regeneration [83, 90, 93–95].

in patients with dMd, oPN is detected in mononu-
clear cell infiltrates, on some muscle fiber surfaces, in 
regenerating fibers, and in calcified fibers [96]. among 
human oPN isoforms, including oPN-a, oPN-b, and 
oPN-c, oPN-a is especially abundant and functionally 
active in the skeletal muscle microenvironments [97]. in 
addition, OPN may influence the severity of disease in 
patients with dMd, because single-nucleotide polymor-
phism (SNP) in the SPP1 (OPN) promoter (rs28357094) 
has been shown to be correlated with dMd severity in 
a number of clinical trials [98–100] and with muscle size 
in healthy females [101]. The rare G allele of rs28357094 
reduces its transcriptional activity compared with the 
ancestral T allele [102] but, conversely, enhances mrNa 
expression responsive to glucocorticoid drugs and estro-
gen [100, 101, 103].

Investigations of OPN in CXMDJ
in CXMdJ dystrophic dogs, we have previously found 

that oPN has been upregulated in dystrophic diaphragms 
before initial pulmonary respiration at birth, suggesting 
the participation of oPN in a dystrophic muscle environ-
ment, even in the early phase [44]. it is therefore ex-
pected that oPN could potentially be a new biomarker 

for dMd that is expressed in a unique manner. We then 
monitored and compared serum oPN levels in CXMdJ 
dystrophic dogs over the disease course with the levels 
of other serum markers, including serum CK [43]. Blood 
samples of dystrophic and wild-type (WT) dogs were 
collected before birth by caesarean section, at 1 h after 
a birth, at 3 and 6 weeks of age, at 2, 3, 6, and 9 months 
of age, and at 1 and 2 years of age. Serum oPN levels 
in dystrophic dogs were elevated and revealed a com-
pletely different pattern compared with serum CK, an 
established primary biomarker for muscle injury. Serum 
OPN levels were significantly elevated in dystrophic 
dogs compared with those in WT dogs before birth, at 1 
h after birth, and at 3 months of age; those at 3 weeks of 
age remained higher in dystrophic dogs, but not signifi-
cantly higher, compared with those of the WT dogs. 
Meanwhile, serum CK levels were significantly higher 
in dystrophic than in WT dogs at all age points, and 
post-birth levels were substantially elevated compared 
with those before birth, thus confirming our observation 
that massive diaphragm injury is caused by initial pul-
monary respiration in neonatal dystrophic dogs [44]. in 
dystrophic dogs, serum CK levels transiently decreased 
at 3 weeks of age before progressively increasing again 
until 3 months of age. Serum oPN levels, but not other 
biomarkers, were also significantly correlated with phe-
notypic severity in dystrophic dogs at 2 months of age, 
which corresponded with the onset of muscle weakness. 
immunohistologically, oPN expression was observed in 
infiltrating CD11b- and CD18-positive macrophages or 
granulocytes, but not in Cd3-positive T lymphocytes. 
oPN was also characteristically expressed in develop-
mental myosin heavy chain (dMyHC)-positive immature 
regenerating muscle fibers (Fig. 1A). in particular, the 
number of OPN-positive regenerating muscle fibers in-
creased with active muscle regeneration during the pro-
gressive phase but decreased with inactive muscle re-
generation during the chronic phase, which was similar 
to the serum oPN elevation patterns over the disease 
course. We also noticed that oPN expression, induced 
by cardiotoxin injection, was detected in serum and 
muscle during the synergic muscle regeneration process. 
These observations strongly suggest that oPN is an im-
portant mediator of muscle regeneration in the early 
dystrophic phase. We did not identify any SNPs in CX-
MdJ analogue to rs28357094 in the human OPN gene 
promoter as a genetic modifier (unpublished).

Next, we compared serum oPN levels with those of 
both serum MMP-9, a marker of muscle inflammation 
[46, 71, 104], and its inhibitor, TIMP-1, to confirm 
whether serum oPN is an indicator of muscle regenera-
tion or inflammation [43]. as a result, the serum MMP-
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9 levels were found to be significantly elevated at 1 h 
after birth and 3 months of age in dystrophic dogs com-
pared with WT dogs, and the post-birth levels were 
significantly increased compared with the pre-birth val-
ues. MMP-9 expression was immunohistologically ob-
served in Cd11b- and Cd-18 positive macrophages or 
granulocytes, but not in dMyHC-positive muscle fibers. 
although oPN has been shown to contribute to increased 
amounts of MMP-9 as an immunomodulator [105], the 
serum levels of oPN and MMP-9 are not similarly ele-
vated in dystrophic dogs. MMP-9 appears to reflect a 
rapid inflammatory response by quickly converting the 
latent form (i.e., the form deposited in the extracellular 
matrix) to the active form through a proteolytic cascade 
[106] and immediately being released from storage 
within infiltrating granulocytes [107]. By contrast, serum 
levels of oPN and MMP-9 are consistently elevated at 
3 months of age, which suggests the active reflection of 

a serial change in muscle inflammation and regeneration. 
The elevation pattern of serum TiMP-1 in dystrophic 
dogs was similar to that of serum oPN, but the levels 
were not significant compared with those of the WT 
dogs. TiMP-1 expression was also detected in Cd11b- 
and Cd-18-positive mononuclear cells and dMyHC-
positive muscle fibers. Considering the similar aspects 
of oPN and TiMP-1, these two factors may interact with 
each other in an MMP-independent manner. indeed, in 
addition to inhibiting MMP-9, TiMP-1 has been shown 
to play roles in the processes of cell growth, myogenesis, 
and fibrosis [72, 108, 109].

We therefore suggest that oPN is a promising bio-
marker for muscle regeneration in dystrophic dogs [43]. 
elevated oPN levels in blood have also been reported 
in mdx mice and GrMd dogs, supporting our results 
[88, 110]. The serum biomarkers evaluated in our stud-
ies are summarized in Fig. 1B.

Fig. 1. osteopontin in the dystrophic pathology. (a) osteopontin (oPN) expression in regenerating dystrophic 
muscle fibers. Images are shown of sections of tibialis cranialis muscle of a dystrophic dog immunostained 
for oPN (green) and developmental myosin heavy chain (dMyHC, red) at 5 months of age. a merged image 
co-stained with daPi (blue; nucleus) is shown on the right. Scale bar: 100 µm. (B) Serum biomarkers related 
to the dystrophic pathology. 1) Muscle fiber degeneration. Muscle fibers are shown as elongated tubes contain-
ing many nuclei. Dystrophin-deficient muscle fibers are degenerated because of their fragility with respect to 
mechanical stress. Creatine kinase has leaked from degenerating muscle fibers, and its serum levels are dras-
tically elevated. 2) Secondary inflammation. Inflammatory cells, including macrophages, are attracted and 
promote inflammation; OPN and other factors participate in these events. Matrix components are cleared by 
matrix metalloproteinase (MMP)-9 secreted from macrophages for tissue remodeling. 3) Muscle fiber regen-
eration. OPN is intensely expressed in regenerating muscle fibers, suggesting its role in muscle regeneration.
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The perspective of OPN as a serum biomarker 
for DMD

in patients with dMd, oPN levels in blood are re-
ported to be linearly correlated with muscle function 
[110]; however, oPN levels in blood were not found to 
be significantly different between healthy subjects and 
patients with dMd [71, 110]. a limitation of these pre-
vious studies is that they included two dMd cohorts 
with high mean ages (13.1 ± 6.2 and 16.1 ± 5.6 years), 
and at those ages, muscle regeneration is not expected 
to be active. Muscle regeneration in the skeletal muscles 
of patients with dMd becomes inactive at around 9 years 
of age [111]. Therefore, serum oPN levels should be 
analyzed in younger patients with dMd. Serum oPN is 
also expected to be applicable as an outcome measure 
in clinical trials with muscle regeneration–inducing 
agents [112, 113].

Motor Function Evaluations with 
Accelerometry

Motor function tests in patients with DMD
as patients with dMd progressively manifest abnor-

mal gaits because of muscle weakness, sensitive outcome 
measures to detect even subtle motor dysfunction are 
concomitantly needed with the development of new 
therapeutic methods. Motor function tests, such as the 
6-min walk test (6MWT), the timed up and go test, 10-m 
walk/run velocity, 4-stair climb ascent velocity, and the 
North Star ambulatory assessment, have been applied 
in clinical assessments of dystrophic conditions [80, 
114–116]. The 6MWT, which measures the distance 
walked in 6 min, is a primary outcome measure of motor 
function in dMd [117, 118], but this test is not suffi-
ciently sensitive to measure disease progression in 
younger dMd boys [119]. With the recent development 
of miniature body-worn motion sensors, accelerometry 
has become an efficient method to quantify performance 
in validated tasks and activities of daily living [120–
122]. acceleration parameters indicating the movement 
and orientation of the body and upper limbs have been 
measured to assess physical activities involving both 
ambulatory and nonambulatory conditions in patients 
with dMd [123–126]. accelerometry has also been used 
to monitor disease progression and the effects of corti-
costeroid treatment for informal tasks such as walking 
[127, 128]. When combined with different types of in-
formation, such as angular velocity, accelerometry has 
been shown to be more practical for capturing motion 
[122, 126, 127].

Accelerometric outcomes in CXMDJ
accelerometry has been performed in GrMd dogs, 

and their acceleration parameters during their gaits have 
been found to be attenuated over the disease course 
[129–131]. in our study, gait was longitudinally evalu-
ated in CXMdJ by measuring acceleration and angular 
velocity parameters that have been used to assess the 
relationship with clinical evaluations in dystrophic dogs 
[132]. We used portable wireless hybrid sensors 
(TSNd121, aTr-Promotions, inc., Soraku-gun, Kyoto, 
Japan) to measure three-axis acceleration and angular 
velocity values within a wide range: ± 8 G and ± 1,000 
degrees per second, respectively. These miniature sen-
sors (46 × 37 × 12 mm; weight 22 g) were affixed on the 
dorsal thoracic and lumbar regions of the dogs. The three 
axes were the X-axis (caudal–cranial), Y-axis (medial–
lateral), and Z-axis (ventral–dorsal). The specific ac-
celeration vector indicates the instantaneous inertial 
acceleration for each axis (Ax, Ay, and Az, respectively). 
The instantaneous angular velocity vector indicates the 
instantaneous rotation of the trunk (Gx, Gy, and Gz, re-
spectively). The three-axis acceleration and angular 
velocity vectors on the dog subjects are summarized in 
Fig. 2. These data were recorded from trials in which the 
dogs ran down a 15-m hallway four times. These trials 
and clinical tests were performed in five CXMDJ dys-
trophic dogs and six WT dogs ranging from 2 to 12 
months of age.

The dystrophic dogs showed a bunny hop at the stance 
and swing phases during gallop and changed their gait 
pattern to a trot or walk according to the severity. The 
instantaneous vectors of acceleration (Ax, Ay, Az) were 
calculated as the average of the absolute values for each 
axis. The results showed that all three-axis vectors were 
lower in dystrophic dogs than in WT dogs in both the 
dorsal thoracic and lumbar regions and were progres-
sively attenuated over the disease course. The accelera-
tion magnitude (AM) was then calculated from the three 
acceleration vectors (Ax, Ay, Az) as the square root of 
the sum of the three-axis values (AM = √Ax2 + Ay2 + 
Az2) and averaged for each trial. The results showed that 
the AMs, especially those in the thoracic region, were 
already notably lower in dystrophic dogs than in WT 
dogs at 2 months of age, which is when the onset of 
muscle weakness occurs in dystrophic dogs. AMs in the 
lumbar region were drastically attenuated over the dis-
ease course in dystrophic dogs. These results demon-
strate differences in AMs between the dorsal thoracic and 
lumbar regions. it has been reported that forelimb and 
hindlimb gait movements strongly influence thoracic and 
lumbar motion, respectively [133]. in the standing posi-
tion, the load in the vertical direction is more strongly 
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applied to the forelimb than to the hindlimb, with a ratio 
of at least 6:4 [133–137], which suggests that the fore-
limbs are mainly loaded from the early stage at the ini-
tiation of walking. owing to the strut load, dystrophic 
dogs might experience muscle involvement, especially 
in the forelimb, before the onset of muscle weakness, 
which could lead to reduced acceleration in the thoracic 
region. Thus, the drastic decline in AM in the lumbar 
region is likely related to the progressive involvement 
of the hindlimb muscles during the disease course.

We also analyzed the acceleration ratios (Ax ratio, Ay 
ratio, Az ratio), which are the relative components of the 
AM along the three axes (%), to detect three-axis biases 
for acceleration as a whole. The acceleration ratios were 
calculated by dividing the absolute values of each axis 
by the AM and then averaged in each trial. The Ax ratios 
in the dorsal thoracic and lumbar regions were lower in 
dystrophic dogs than in WT dogs. in dystrophic dogs, 
the Ay ratio progressively increased in the thoracic region 
over the disease course, whereas that in the lumbar re-
gion slightly increased at 10 and 11 months of age. By 
contrast, the Az ratio was slightly higher in the lumbar 
region in dystrophic dogs than in WT dogs at 8 months 
of age. The attenuation of the Ax ratio in dystrophic dogs 
reflects a progressive decay in the forward propulsive 
force, whereas the increase in the Ay and Az ratios might 
be indicative of a heightening motion potentially related 
to a waddling-like gait and a bunny hop, respectively.

The instantaneous vectors of angular velocity (Gx, Gy, 

Gz) were calculated as the average of the absolute values 
of each axis. Three-axis vectors were lower in dystrophic 
dogs than in WT dogs in both the dorsal thoracic and 
lumbar regions and, except for Gz in the lumbar region, 
were found to be attenuated over the disease course. Gy 
in the thoracic region was substantially increased in WT 
dogs and drastically different from that in dystrophic 
dogs. Limb behavior during the gait of dogs causes a 
wider sweeping motion of the thorax because of forelimb 
movement in the horizontal and vertical axes [133]. in 
WT dogs, an increase in Gy in the thoracic region re-
flected dynamic forelimb motion during a gallop; there-
fore, greater power was applied to that leg. By providing 
a strong load in the early phase, the intense motion of 
the thorax in dystrophic dogs resulted in forelimb mus-
cle involvement, which, in turn, led to gait dysfunction 
and a reduced Gy in the thoracic region. Gz in the lumbar 
region was lower in dystrophic dogs compared with WT 
dogs, but it showed an increase to that in WT dogs at 8 
months of age. This observation could be the result of 
waddling at the girdle, which suggests the importance 
of motion evaluation in the lumbar region.

Multiple parameters of acceleration and angular veloc-
ity were correlated with the clinical manifestations, as 
determined using a grading scale of clinical signs in 
CXMdJ, which was described earlier. The coefficients 
of the total grading scores for multiple parameters were 
less than 0, except for Gz in the lumbar region. These 
findings revealed that a number of parameters mostly 

Fig. 2. illustrations of the three axes of acceleration and angular velocity in a dog subject. Wireless 
sensors (indicated by S in orange) are affixed to the dorsal region of a dog to detect three-
axis acceleration and angular velocity values. The three axes are indicated as the X-axis 
(blue; caudal–cranial), Y-axis (red; medial–lateral), and Z-axis (green; ventral–dorsal). (a) 
Three axes of acceleration are shown with colored bidirectional arrows, including the iner-
tial instantaneous acceleration for each axis. dense colored arrows for the X-, Y-, and Z-
axes indicate the fore, left, and upper directions, respectively, as vectors with positive values, 
while pale colored arrows indicate the opposite directions as vectors with negative values. 
(B) Three axes of angular velocity are shown with bidirectional arrows and indicate the 
instantaneous rotation of the colored bars for each axis. Clockwise rotation indicates vectors 
with positive values, while the opposite rotation indicates vectors with negative values.
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decreased with exacerbated severity, in contrast to Gz in 
the lumbar region, which increased. among the accel-
eration ratios, the coefficient for the Ay ratio in the tho-
racic region was greater than 0, indicating that accelera-
tion in the medial–lateral direction in the thoracic region 
increased with exacerbated severity. These findings 
suggest that an increased Gz in the lumbar region and a 
higher Ay ratio in the thoracic region are associated with 
a waddling-like gait in the severe phenotype of CXMdJ.

From these results, multiple parameters of acceleration 
and angular velocity can be considered remarkably sen-
sitive for evaluating pathological conditions. We found 
that these parameters also increased in association with 
high spontaneous locomotor activity in dystrophic dogs 
[132], implying a relationship between activities of 
daily living and motor dysfunction similar to that in 
patients with dMd [124, 125, 128]. Cell therapies such 
as MSC treatment in dystrophic dogs have been shown 
to ameliorate the acceleration parameters [62]. acceler-
ometry has been found to provide quantitative, multifac-
eted kinematic indices in combination with conven-
tional motor function tests in clinical trials.

Conclusion

We investigated serum oPN expression and acceler-
ometry in CXMdJ to develop outcome measures for the 
clinical evaluation of dMd. The results in CXMdJ sug-
gested that serum oPN is a promising biomarker for 
muscle regeneration and that multiple acceleration and 
angular velocity parameters are also efficient outcome 
measures for the quantification of motor function ac-
cording to the disease course and severity. it is necessary 
to carefully examine these outcome measures in patients 
with DMD, which shows different pathological condi-
tions depending on symptom onset and disease phase 
from those of canine dystrophic models [28, 138]. it is 
also necessary to define the accelerometric characteris-
tics of dystrophic quadrupedal gaits and to cautiously 
extrapolate this information to the bipedal gaits of pa-
tients. These outcome measures would be potentially 
applicable to patients with hereditary neuromuscular 
disorders, including dMd.
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