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Abstract
Brain oscillations from EEG and MEG shed light on neurophysiological mechanisms of human behavior. However,
to extract information on cortical processing, researchers have to rely on source localization methods that can be
very broadly classified into current density estimates such as exact low-resolution brain electromagnetic
tomography (eLORETA), minimum norm estimates (MNE), and beamformers such as dynamic imaging of
coherent sources (DICS) and linearly constrained minimum variance (LCMV). These algorithms produce a
distributed map of brain activity underlying sustained and transient responses during neuroimaging studies
of behavior. On the other hand, there are very few comparative analyses that evaluates the “ground truth
detection” capabilities of these methods. The current article evaluates the reliability in estimation of sources
of spectral event generators in the cortex using a two-pronged approach. First, simulated EEG data with
point dipoles and distributed dipoles are used to validate the accuracy and sensitivity of each one of these
methods of source localization. The abilities of the techniques were tested by comparing the localization
error, focal width, false positive (FP) ratios while detecting already known location of neural activity
generators under varying signal-to-noise ratios (SNRs). Second, empirical EEG data during auditory steady
state responses (ASSRs) in human participants were used to compare the distributed nature of source
localization. All methods were successful in recovery of point sources in favorable signal to noise scenarios
and could achieve high hit rates if FPs are ignored. Interestingly, focal activation map is generated by LCMV
and DICS when compared to eLORETA while control of FPs is much superior in eLORETA. Subsequently
drawbacks and strengths of each method are highlighted with a detailed discussion on how to choose a
technique based on empirical requirements.
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Significance Statement

State-of-the-art methods of source localization techniques, e.g., current density methods, minimum norm
estimates (MNE) and beamformers report distributed brain activity patterns that are often not in consensus
for a putative task. This article offers ground truth validation of these techniques in the context of different
kind of source detections, e.g., determining the sources underlying key events (evoked potentials) and
steady state brain oscillations (band limited brain activity). The broader goal is to help cognitive neurosci-
entists select the most effective source localization technique that is in sync with the signal processing
needs required for targeting a specific question.

Confirmation

July/August 2019, 6(4) ENEURO.0170-19.2019 1–14

https://orcid.org/0000-0002-3725-0463
https://doi.org/10.1523/ENEURO.0170-19.2019


Introduction
Cortical oscillations play an important role in governing

basic cognitive functions (Edelman and Mountcastle,
1978; Bressler and Kelso, 2001; Buzsáki and Draguhn,
2004). Several researchers have suggested that electro-
magnetic brain activity at specific frequency bands carries
meaningful information about neural function, e.g., alpha
waves at 10 Hz (Llinás et al., 1999; Bollimunta et al.,
2008), beta at 15–30 Hz (Brovelli et al., 2004), and gamma
at 30 Hz and above (Bressler et al., 1993; Varela et al.,
2001; Cheyne and Ferrari, 2013). Concurrently, time-
locked transient responses have been useful for decades
in electrophysiological research, both for understanding
basic neurobiological functions as well as in clinical and
other applications (Picton et al., 1974; Kutas et al., 1977;
Clark et al., 1994; Pantev et al., 1995; Cheyne et al., 2006).
Hence, identifying the neural generators of sustained cor-
tical oscillations and task-specific transient neural re-
sponses from EEG/MEG is an extensive topic of research.
Once identified with adequate reliability, the focal local-
ization of sources will eventually reveal the underlying
large-scale network governing cognitive tasks.

There are several source localization methods in the
literature, commonly known under the umbrella of inverse
methods (Hämäläinen and Sarvas, 1989). Most of these
techniques are based on fitting single/multiple dipolar
cortical source/sources within a defined cortical volume
based on some assumptions about relationships between
the sources (Hämäläinen and Ilmoniemi, 1994; Van Veen
et al., 1997; Ishii et al., 1999; Gross et al., 2001; Liu et al.,
2002; Hillebrand and Barnes, 2003; Sato et al., 2004).
Some methods consider sources to have minimum cor-
relation, e.g., synthetic aperture magnetometry (SAM; Hil-
lebrand and Barnes, 2003), linearly constrained minimum
variance (LCMV) spatial filtering (Van Veen et al., 1997;
Murzin et al., 2011). There are specialized measures that
detect generators of oscillatory brain signals by consid-
ering maximum coherence between prospective sources,
e.g., dynamic imaging of coherent sources (DICS; Gross
et al., 2001) and entropy based metrics (Lina et al., 2014).
DICS is a frequency domain extension of beamforming
methods over the initially developed time-domain beam-
formers, e.g., LCMV and SAM (Ishii et al., 1999), which are
primarily used for determining the sources underlying
time-locked event-related potentials/event-related fields

(ERPs/ERFs) components. In EEG, where deeper sources
can affect scalp potentials, current density techniques
such as minimum norm estimates (MNE; Hämäläinen and
Ilmoniemi, 1994) and exact low-resolution brain electro-
magnetic tomography (eLORETA; Pascual-Marqui, 2007)
have been the method of choice. Although dynamic sta-
tistical parametric mapping (dSPM; Liu et al., 2002) and
sparse Bayesian learning (SBL; Ramírez et al., 2010) have
been developed to improve on the estimates of spatial
filter detection, eLORETA is still by far one of the most
robust methods for EEG source localization. eLORETA
directly estimates current source density, a biophysically
relevant parameter over a grid of plausible cortical loca-
tions for both detection of time-locked activity, e.g., in
ERP/ERF or frequency-locked activity, e.g., spontaneous
frequency bursts or steady state oscillatory responses to
periodic stimuli. Nonetheless, the source estimated by all
methods is broadly influenced by depth, signal-to-noise
strength of the neural activity, as well as the correlation in
the covariance of the signals (Belardinelli et al., 2012) and
redundant informational content of high temporal resolu-
tion data. Often, these manifest in distributed source
activity estimation with diminished statistical power.

The accuracy of the location of neural activity along
with lower false positives (FPs) should be the expectation
from any source localization technique. In this article, we
evaluate the performance of the key current density tech-
niques: eLORETA and MNE, and beamformer approach-
es: DICS and LCMV, on simulated EEG data. Since LCMV
and DICS belong to the same class of beamformers, they
were compared against eLORETA, to quantify localization
efficiency between beamformers versus current density
measures. We compared the results from eLORETA and
DICS on a paradigm of evoked 40-Hz auditory steady
state responses (ASSRs) and eLORETA, MNE, and LCMV
for detecting the source of N100 activity when the same
data were epoched time locked to the stimulus onset.
Many inverse methods can localize a transient or steady
state response or both. However, the biological relevance
or interpretation of these different information processing
events can be very distinct. There are comparison studies
that evaluate the performance across different methods
(Bradley et al., 2016; Hedrich et al., 2017) or sometimes
the performance of detecting a focal cortical source
across modalities EEG and MEG (Srinivasan et al., 2006;
Mideksa et al., 2015). In this article, our focus was to
compare the specificity and sensitivity of some of the
prominent algorithms primarily chosen based on their
conceptual difference current density estimate versus
beamforming to provide a basis for choosing one above
the other when faced with the issues of transient or steady
state response. Very rigorous comparison metrics, e.g.,
localization error, spatial spread, and FP percentage,
were used to evaluate accuracy and sensitivity of results
along with an evaluation of the performance of these
methods at different depths of dipole placement in the
simulated EEG data. Subsequently, empirical EEG data
during N100 and ASSRs were used to draw comparisons
among distributed nature of source activity patterns gen-
erated by these methods.
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Materials and Methods
Generation of synthetic EEG data

To localize the oscillatory activity, as well as the tran-
sient response, we simulated a time-varying sinusoid at
40 Hz and a mixture of Gaussian pulses, respectively.
Both generated signals were free of noise and were con-
sequently added to the acquired empirical baseline, for
realistic noise simulation. The magnitude of the dipolar
source dynamics in cortical locations are represented by

qi(t) � sin(2�40t) � �(0, �), (1)

where qi(t) is the electric dipole moment at location i and
at time t, � is white noise with zero mean and SD �. We
compared three conditions with respect to number of
sources, by placing single-point dipole, two-points di-
poles, and distributed dipoles in a Montreal Neurologic
Institute (MNI) brain template according to the MNI (Müller
and Weisz, 2012). Single-point source was placed at
around the superior temporal region, in the left hemi-
sphere [MNI coordinates: (–60, –28, 6)]. Two sources
were placed, one in the left hemisphere [MNI coordinates:
(–60, –28, 6)] and the other in the right hemisphere [MNI
coordinates: (64, –24, 6)] around the superior temporal
region. Approximately, 100-point sources were placed
within a spherical volume with radius of 12 mm in the left
hemisphere centered around the superior temporal region
at (–60, –28, 6), according to brain template. Another set
of 100-point sources was placed around the right hemi-
sphere auditory cortex seed area at (64, –24, 6), defining
the distributed source condition. The resolution of the grid
chosen for dipole simulation was 5 mm, and ft_prepare-
_leadfield.m code of FieldTrip toolbox was used for this
purpose. Dipole moment orientations were assumed to be
along the radial direction with respect to the BEM surface,
to retain simplicity. We computed the scalp potentials for
EEG at realistic sensor locations by applying a forward
model (Mosher et al., 1999; Baillet et al., 2001) with real-
istic headshape using ft_dipolesimulation.m of the Field-
Trip toolbox.

vr(t) � LT(r, rq).q(t), (2)

where v is the electric potential at sensor location r, rq

represents all source locations, L represents the “lead
field kernel,” (.)T represents transpose, and q(t) is the
dipole moment. Synthetic EEG data were generated by
varying signal-to-noise ratio (SNR) at the source space.
Physiologic SNR was estimated using a statistical mea-
sure, 10log 10�s / �b�, where s is peak-to-peak amplitude
of EEG data during rhythmic auditory stimulation (see
experimental methods below), and �b is the SD of the
baseline data. We chose a wide range of SNRs (19, 22, 25,
28, 31 dB) to simulate mixture of Gaussian pulses mim-
icking transient response, both above and below the es-
timated physiologic SNR level (25 dB), to allow us to
evaluate the sensitivity of each method. Further, we intro-
duced time lags between the signals generated from the
left and right hemispheres for two and distributed dipole
models. Time delays of 0, 15, 30, 45 ms were added to the

Gaussian pulse generated from the right hemisphere. Fig-
ure 1 shows simulated EEG activity on scalp surface with
bilateral auditory cortical sources. Following Goldenholz
et al. (2009), SNR was computed in dB using the following
equation:

SNRdB � 10log 10[
1
U �

u�1

U vu
2

�u
2
], (3)

where U is total sensor count, and v is the signal on
sensor u��1, 2, · · ·U� provided by the forward model for
a source with unit amplitude. The sensor space variance
is expressed as �u

2 � �2�LLT�u. Subsequently, for each
time lag scenario, we simulated the Gaussian signal of five
SNR values. Additionally, we also simulated sinusoidal
signals mimicking oscillatory activity with different values
of power spectra at 40 Hz. The power values were chosen
with respect to the power spectrum computed for the
empirical binaural condition data, such that the power of
simulated sinusoidal at 40 Hz was 50%, 75%, 100%,
125%, and 150% of the power at 40 Hz of the binaural
condition, illustrated in Figure 1. Further, phase lags were
introduced between the signals generated in left and right
hemisphere: 0, �/2, �, and 3�/2. Therefore, all the power
ratio scenarios were computed for each phase lag condi-
tion.

Source localization methods
The basic goal of any source localization technique is to

compute the dipolar source locations and strengths inside
the brain from measurements on the scalp (inverse of
Equation 2). In other words, the objective is to estimate
the spatial filter WS from the relation

q(t) � WS
.V(t), (4)

where q(t) is the dipole moment at time t, WS is the spatial
filter matrix, and V is vector representation of all sensor
time series. Obviously, the system of equations repre-
sented by Equation 4 is ill-posed, as the number of sen-
sors (dimension of vector V) is finite, but the number of
dipoles is unknown. Thus, different source localization
methods attempt to estimate the WS using diverse con-
straints posed by anatomy of the brain and functional
relationships among brain areas during ongoing task.

LCMV
LCMV belongs to the class of “beamformer” methods

that enhances a desired signal while suppressing noise
and interference at the output array of sensors (Barnes
and Hillebrand, 2003). LCMV is built on an adaptive spa-
tial filter whose weights are calculated using covariance
matrix of EEG/MEG time series data. A spatial filter com-
putes the variance of the total source power which is
allowed to vary but the output of the filtered lead field
is kept constant. As a result, the beamformer output is
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maximized for the target source but other source contri-
butions are suppressed. LCMV attempts to minimize the
beamformer output power

P � WS
TCWSS (5)

where C is the data covariance matrix. The entries to
spatial filter matrix can be expressed as

WS �
LTC�1

LTC�1L
, (6)

where L is lead field matrix, and the following constraint is
maintained WS

. LT � 1.

DICS
DICS beamformer (Gross et al., 2001) works with same

constraint assumption of LCMV but extends the computa-
tion of spatial filter to the frequency domain. Here, sensor
level cross-spectral density (CSD) matrix replaces the cova-
riance matrix, and the spatial filter is applied to sensor level
CSD to reconstruct the source level CSD of all combination
of pairwise voxels. Hence, DICS directly estimates the inter-
action between sources at respective frequencies. The weight
function can be written as

WS(f) �
LTC�1(f)

LTC�1(f)L
. (7)
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Figure 1. A, Topoplot of the difference in peak of spectral power at 40 Hz obtained from simulated EEG data where dipolar source
time series was represented by a sinusoidal signal with frequency 40 Hz embedded in empirical resting state EEG and empirical
resting state EEG as baseline. Spatially averaged power spectra obtained from averaging the channel-by-channel spectrum from
hypothetical scalp sensors are plotted in logarithmic scale. The time series on the scalp were obtained by applying forward modeling
techniques on dipolar sources at auditory cortex locations using the Boundary element method (BEM). B, Topoplot of the peak of
difference signal when a mixture of Gaussian pulses was used to simulate ERP and empirical resting state EEG as baseline in BEM
model as described in A. The time series for dipole dynamics are plotted at hypothetical M1 and M2 sensors located near to the
auditory cortices. The positive peak at 400 ms was used for generating the topoplot.
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eLORETA
eLORETA (Pascual-Marqui, 2007) combines the lead-

field normalization with the 3D Laplacian operator under
the constraint of smoothly distributed sources. Compared
to DICS and LCMV, where the constraint equation
WS

.LT � 1 is used, eLORETA seeks to minimize the prod-
uct H � WS

.LT.

WS � [LT(LC�1LT � aH)†L]1/2 , (8)

where a is regularization parameter, and † is the Moore–
Penrose pseudo-inverse, which is equal to the common
inverse if the matrix is non-singular. H is also called the
centering matrix or the surface Laplacian. Low-resolution
imaging results in weak performance for recovering of
multiple sources when the point-spread functions of
sources overlap. Other methods have also tried to com-
bine surface Laplacian with LCMV (Murzin et al., 2013), to
estimate source-level connectivity.

MNE
MNE has been a popular choice to localize evoked

activity and tracking the distribution of the activations
over a period of time. MNE is a distributed inverse solution
that discretizes the source space into locations on the
cortical surface or in the brain volume using a large num-
ber of equivalent current dipoles. It estimates the ampli-
tude of all modeled source locations simultaneously and
recovers a source distribution with minimum overall en-
ergy that produces observed sensor data consistent with
the measurement (Hämäläinen and Ilmoniemi, 1994; Ou
et al., 2009). The current density q can be calculated as

q � [CLT(LCCT � 	C)�1)]. (9)

Measurements used for face validity of inverse
algorithms

Using simulated data to test a method provides mech-
anism for ground truth validation. The exact location of a
putative dipolar source is elusive in nature for real data,
however, one can certainly set-up simulations when per-
formance of a particular method needs evaluation. We
employed three complementary measures to provide
face-validity of the eLORETA in comparison with LCMV
and DICS.

Localization error estimation
Inverse methods estimate a cluster of point dipolar

sources. To measure how much error is involved in source
localization, we first computed the z-scores for all voxels.
Further, we thresholded the z-scores at 99.99th percentile
and identified the cluster closest to the dipole location. Then
we measured the Euclidean distance between the voxel with
the maximum z-score of the nearest cluster source points
and the actual source/dipole coordinates, to give us the
localization error. This was done for each hemisphere, sep-
arately. Consequently, the net localization errors are com-
puted by summing up across two hemispheres and
compared for eLORETA, MNE, LCMV, and DICS.

Degree of focal localization
The size of a cluster in terms of sum of distances of all

points from the voxel with the maximum z-score, gives a

measure of focal localization of sources. After finding the
z-scores of all voxels, we thresholded the scores at
99.99th percentile and identified the cluster of source
points closest to the dipolar location. Further, we com-
puted the total sum of distances of each voxel in the
nearest cluster, from the voxel in the cluster with the
maximum z-score, as a measure of the spatial distribution
of the estimated source. This gave us a quantitative ap-
proach to evaluate the degree of focal source localization.
For practical reasons, cluster width computation was
done for each hemisphere separately (Murzin et al., 2013).

Performance evaluation at various depths
The localization of deep sources has been the main

factor limiting detection of true sources from MEG/EEG
data. This is important, since deep cortical areas consti-
tute 30% of the cortical sources (Hillebrand and Barnes,
2002). We studied the effects of depth by positioning the
dipoles at different distances from the auditory cortical
locations mentioned earlier. The depth was varied along
the x-axis, from 0 to 20 mm in steps of 1 mm, towards the
center of the brain, in both hemispheres. Further, we
computed the localization error and the focal width of the
significant voxels obtained by localizing the dipoles
placed at each depth. This was executed using the dis-
tributed dipolar method only. All simulated signals were
added to the empirical baseline to retain the physiological
SNR for the Gaussian pulses and the physiological power
spectrum for the sinusoidal. The signals simulated were
phase-locked (sinusoidal) and no time lags were added
(Gaussian)

Performance evaluation with various correlation
Correlation in the data covariance is an important

variable which can influence localizing capabilities of
beamformers (Belardinelli et al., 2012). Therefore, we
simulated multiple signals using the distributed dipolar
model, consequently adding with the empirical base-
line, such that there are various phase lags between the
signal simulated in the left hemisphere and the right
hemisphere. Four phase lags chosen for frequency do-
main analysis were 0, �/2, �, 3�/2. The power ratios
were matched as per the acquired empirical power
ratios. Four time lags chosen for time domain analysis
were: 0, 15, 30, 45 ms.

FP percentage
We compared the “sensitivity” and “specificity” of

eLORETA, LCMV, and DICS, using ROC analysis (Metz,
1978). Here, we calculated the probability of incorrectly
detecting an activation, also called FP. Ideal detection
should suppress FP. After thresholding the z-scores,
we identified the number of significant clusters in each
hemisphere, visually. Further we ran k-means clustering
over significant voxel locations in each hemisphere and
identified the nearest cluster to the true dipole location.
Defining the nearest significant cluster/s from the dipo-
lar location/s as the true positive/s, we further defined
the FP percentage by computing the ratio of number of
significant voxels not present in the true positive (or
nearest cluster) and the total number of significant
voxels. We also compare the performance of all meth-
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ods under parametric variation of SNR at the source
level and different kinds of source configurations, e.g.,
single-point dipole, two-point dipoles, and distributed
dipoles.

Hit rate
To evaluate the accuracy of localizing algorithms, we

computed the hit rate or true positives for each method.
After thresholding the z-scores and obtaining the signifi-
cant clusters (using k-means), we identified the number of
significant source points in the nearest cluster within a
distance of 15 mm from the simulated dipole location.
These source points were defined as hits. The hit rate
corresponds to the ratio of number of hits and total num-
ber of significant source points in the nearest cluster. Hit
rates were calculated across all SNRs and power ratios,
including lags and different phase differences, respec-
tively, for single-point, two-point, and distributed dipoles.

Code accessibility
All codes used for simulation of data and source local-

ization algorithms is available at the following GitHub
repository https://github.com/arpan-toolboxes/Quantita-
tiveSourceImaging. The reader is encouraged to contact
the authors in case of implementation issues.

Empirical EEG recordings
Participants

Ten healthy volunteers (eight males, two females) aged
between 22 and 39 years (mean 28 years old) participated
in the study after giving informed consent, following the
guidelines approved by Institutional Human Ethics Board
at National Brain Research Center. All participants were
self-declared normal individuals with no history of hearing
impairments and had either correct or corrected-to-
normal vision and no history of neurologic disorders.

Stimuli
Volunteers had to remain stationary in a seated position

within a sound-proof room and hear auditory stimuli
through 10-� insert earphones with disposable foam ear-
tips, binaurally for 200 s while fixating at a visual cross.
Additionally, they had a baseline block where they fixated
at the visual cross for 200 s without any sounds being
played. Sounds were pure tones of 1000-Hz frequency
and 25-ms time duration, with 5% rise and fall times and
were repeated with a frequency of 40 Hz during an ON
block of 1-s duration interspersed between two OFF
blocks where no auditory stimuli were presented. Stimuli
were made using in STIM2 stimulus presentation system
with audio box P/N 1105 at 85 dB.

Data collection and pre-processing
EEG data were acquired in an acoustically shielded

room with 64 channels NeuroScan (SynAmps2) system
with 1-kHz sampling rate. Brain Products abrasive elec-
trolyte gel (EASYCAP) was used to make contact with
scalp surface and the impedance was maintained at val-
ues less than 5 k� for all volunteers. Baseline EEG data
were recorded for 200 s with eyes open, no tone, and a
fixation cross on a monitor in front of the participants.
Baseline and binaural stimuli were presented while par-

ticipants were asked to maintain fixation on the cross all
along to reduce eye movements.

Recorded raw data were re-referenced with average
reference and were detrended to remove linear trends
from the signal. Epochs of 5-s duration were constructed
by concatenating ON blocks of 1 s each after removal of
an initial 50 s of the 200-s-long session. This was done to
capture ASSRs. Data were band pass filtered with cutoff
frequencies 5–48 Hz, to concentrate on sources underly-
ing ASSR.

For an evoked wave form analysis, after average re-
referencing, epochs of 1-s duration of ON blocks were ex-
tracted from the raw data during stimulus condition, then
filtered with cutoff frequencies 0.5–48 Hz, detrended, and
averaged across trials to generate the evoked potential.
Thresholds of –100 and 100 
V were used to reject blink-
corrupted trials, meaning if at any point within the epoch the
voltage exceeded the threshold values, the entire trial was
deleted from the subsequent analysis.

Sensor locations were taken from the template given in
the fieldtrip toolbox. Colin 27 structural T1 was used for
co-registration with the sensor locations for accurate source
localization. A forward model was computed using bound-
ary element method (BEM) from the respective T1 image.
For localization using the algorithms, we considered 0%
regularization for all methods. The ratio of source power
between stimulus and baseline condition was calculated in
each voxel, using (Power(Stimulus)–Power(Baseline))./Pow-
er(Baseline) for the current density measures and (Power-
(Stimulus)–Power(Baseline)) for the beamformers. After
computing the source intensities in each volunteer, the indi-
vidual grids were interpolated to the T1 image. The averaged
voxel intensities across all participants were evaluated using
non-parametric statistics, and z-scores were computed for
each hemisphere. The top 0.05% voxels were identified as
sources.

Results
Simulated EEG data

Simulated EEG data were computed by placing electric
dipolar sources at auditory cortical locations, according to
single dipole, two-point dipoles and distributed dipole
configurations, using Equation 1 and projecting the source
activity at realistic sensor locations of a Neuroscan (Com-
pumedics Inc) EEG cap using a realistic head model
(Equation 2; Baillet et al., 2001). We considered two types
of temporal profiles for source activity, a sinusoidal signal
mimicking the band-specific frequency response ob-
served in typical EEG signal such as ASSR and a mixture
of Gaussian pulses representing the time-locked ERPs.
Baseline data were acquired empirically on which both
the aforementioned signals were added. Two prototype
examples of simulated scalp activity during task and
baseline are illustrated in Figure 1. To observe the effects
of correlation in the CSD matrix on source localization,
phase lags were introduced to the simulated sinusoidal
signals generated from each hemisphere (two-point and
distributed dipoles), as well as, time delay was added to
the Gaussian pulses to the signal from the right hemi-
sphere in two-point and distributed models.
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We applied eLORETA and DICS to perform frequency-
locked source analysis on the sinusoidal data. Keeping
the empirical baseline intact, we scaled the sinusoidal
signal such that, we obtained different ratios of power of
the sinusoidal at 40 Hz, comparable to the values we
found in our empirical data. Figure 2A, illustrates com-
bined results from eLORETA and DICS algorithms on a
brain surface rendered by the MNI brain, at power ratio of
1 (realistic SNR), for the distributed dipole model.

The algorithms were employed for localizing the
sources of the peak negative response in mixture of
Gaussians signal, by selecting a time segment constitut-
ing of points �25 ms around the peak (Fig. 1B). For
plotting activations, the source locations in the 3D voxel
space was projected to a surface plot using customized
MATLAB codes.

The localization error was computed by first defining
each voxel as point in a cluster and thereby determining
the distance of the voxel with the maximum z-score from
the true dipole source in each hemisphere. For distributed
dipolar sources, the center of the spherically distributed

source was considered as the true dipole location. The
average of sum of distances from all such points to the
voxel with the maximum z-score, normalized by the total
number of points was used to quantify the focal localiza-
tion of sources, in each hemisphere. All voxels were then
transformed to their nearest projections on the cortical
surface and identified as possible source locations in
Figure 2. The quantitative evaluation of the performances
of the inverse methods are addressed as follows.

Accuracy
Frequency analyses using eLORETA and DICS yielded

similar localization errors with respect to different power
ratios, in one dipole condition giving 0 FPs (Fig. 3). How-
ever, eLORETA provided much lower localization error
than DICS for two-point and distributed dipole conditions.
This was observed at lags: 0, �/2 , and 3�/2, where DICS
performed comparatively poorly. Interestingly, DICS per-
formed better than eLORETA at phase lag of � in terms of
accuracy, at which eLORETA’s accuracy deteriorated.
Overall, the most significant observation was linked to the

RightLeft Front

LCMV

MNE

eLORETA
DICS

eLORETA

Simulated Dipole Position

Simulated Dipole Position

Overlap: eLORETA and DICS

A

B

Figure 2. A, eLORETA (red) versus DICS source localization (green) using frequency-lock analyses on distributed dipolar source
generated signals. Overlapping regions from both analyses are depicted in yellow and locations used for simulated dipole placements
are depicted in blue. eLORETA was applied to the simulated sinusoidal signal embedded in resting state EEG, where the simulated
signals generated from each hemisphere had 0 phase lag. For DICS, the simulated signal from the right hemisphere had a phase lag
of � with respect to the signal from the left hemisphere. The ratio of power spectrum at 40 Hz between the sinusoidal embedded in
EEG and resting state EEG was chosen similar to the ratio found in our empirical results. B, eLORETA (red), LCMV (green), and MNE
(purple) generated sources using time-lock analysis. No overlapping regions were found. The results indicate 0 time-lag scenario
between the Gaussian pulses from each hemisphere. Physiologically realistic SNR 25 dB for simulated dipolar sources was chosen
for this illustration.
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consistent performance of the algorithms regardless of
the power spectra at 40 Hz.

In time domain analysis, eLORETA performed better in
all dipole configurations in contrast to MNE and LCMV
(Fig. 4). eLORETA consistently provided localization error
of around 1 cm or less for all time lags. LCMV’s accuracy
with respect to SNR’s and time lags was not consistent as
no trend could be observed. In contrast, MNE was ob-
served to be better than LCMV at almost all scenarios with
consistent errors across all SNRs. Therefore, it can be
pointed that SNR and time lags affect the performance of
the beamformers and minimal effects can be found in the
current density measures, in terms of accuracy.

Localization spread
eLORETA performance is observed to be comparable

(similar focal localization) to DICS across all dipole con-
ditions as well as power ratios (Fig. 3). Apart from slightly
higher values of focal localization for DICS at �/2 lag, both
algorithms are efficiently focal.

The focal localization of eLORETA on time-locked sig-
nal was observed to reduce for single- and two-dipole
condition, across different SNRs, however, not varying

across time lags (Fig. 4). MNE and LCMV performance
was comparable and also did not vary across time lags.
However, the focal width of eLORETA deteriorated in the
distributed dipole condition and varied heavily across
time lags, in contrast to unperturbed performance of
LCMV and MNE. Additionally, the focal width of eLORETA
increased with increasing SNR. However, it was noted
that there was minimal effect of SNR on the focal width of
the other algorithms.

Depth
To quantitatively measure the localizing capabilities of

eLORETA, DICS, MNE, and LCMV, source localization
was executed for distributed dipoles at different depths.
The localization error and the focal width were computed
for the significant voxels, illustrated in Figure 5. The depth
of dipolar locations was varied along the x-axis according
to the MNI template, 1 mm apart for each localization
iteration. The deepest positions were selected as [–40,
–28, 6] in the left hemisphere and [40, –24, 6] in the right
hemisphere. The locations closest to the surface were
chosen as [–60, –28, 6] in the left hemisphere and [60, 28,
8] in the right hemisphere.
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Figure 3. Localization error, focal width, FP, and hit rate percentage for (A) single dipole, (B) two-point dipole, and (C) distributed
dipole conditions measured for eLORETA (red) and DICS (blue). Source localization was done for all power ratios (x-axis) across
different simulated phase lags of 0, �/2, �, and 3�/2.
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The localization error for DICS declined and per-
formed favorably as the depth of the dipoles decreases.
A difference of 10 mm was observed between the
deepest and the most superficial source for DICS. How-
ever, eLORETA gave consistent low localization errors
across all depths. It is observed to be more focal than
DICS across all depths, except for comparable focal
width for superficial sources.

For the time-locked condition, the current density
measures performed better than the beamformer, for
localizing the Gaussian signal at all depths (perfor-
mance of eLORETA�MNE�LCMV). Although LCMV
was found to be more focal at certain depths, eLORETA
and MNE were found to be focal across varying depths.
eLORETA proved to be slightly more focal than MNE at
deeper depths, in contrast to MNE being more focal the
eLORETA at smaller depths. Therefore, eLORETA can
be credited to have a higher degree of focal localization
in comparison to MNE, LCMV, and DICS, for localizing
sinusoidal, as well as Gaussian, pulse, especially at
deeper depths.

FP percentage
To evaluate specificity, we computed the FPs after

applying DICS, LCMV, and eLORETA in different SNR
scenarios, for all phase/time lags across different dipole
conditions. All source points except the cluster of points
nearest to the dipole location were considered as FPs (for
details, see Materials and Methods, Measurements used
for face validity of inverse algorithms).

With 0 FPs for one-dipole condition, the FPs of DICS
increased with increasing number of dipoles (Fig. 3). With
the percentage ranging from 30–70%, eLORETA pro-
vided a very high rate of true positives across all SNRs
and phase lags. Unsurprisingly, eLORETA gave a very low
FP fraction on localizing the Gaussian, similar to localizing
the sinusoidal (Fig. 4). MNE and LCMV gave high and
comparable but consistent FPs fraction across all time
lags in single- and two-dipole condition. However, in the
distributed dipole case, the FPs of MNE and LCMV in-
creased with varying time lags.

Table 1 classifies the performance of all the methods
based on accuracy, localization, and sensitivity across all
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Figure 4. Localization error, focal width, FP, and hit rate percentage for (A) single dipole, (B) two-point dipole, and (C) distributed
dipole condition measured for eLORETA (red), LCMV (blue) and MNE (pink). Source localization was done for all SNRs (x-axis) across
different simulated time lags where 25 dB refers to the realistic scenario.
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dipole conditions for localizing 40-Hz sinusoidal signal
(frequency analysis) and Gaussian pulse response (time
lock), respectively.

Hit rate
eLORETA and DICS proved to be reliable in localizing

single dipole, by yielding 100% hit rates at SNRs of
biological level and higher. However, DICS indicated
varied results with respect to the different power ratios
at 40 Hz between the simulated and empirical data. In
both, distributed and two-point dipolar model as the hit
rates plummeted at phase difference of �. In contrast,
eLORETA had high hit rates irrespective of phase differ-
ences and further increased with higher number of di-

poles. For algorithms localizing the temporal features of
the signal, the beamformer LCMV’s performance was
influenced by SNR, i.e., hit rates increased with increasing
SNR’s across all models. However, this was not true for
the current density measures, since they were minimally
influenced by SNR. Despite almost perfect localization
of single dipole by current density measures, eLORETA
yielded higher hit rates compared to MNE in two point
and distributed dipole models. Similar to DICS, the hit
rates corresponding to LCMV varied with respect to
different temporal lags. To summarize, eLORETA’s hit
rates were superior among beamformers and current
density measures.
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Empirical EEG data
Source localization underlying 40-Hz EEG activity

The Fourier spectrum of each EEG channel time series
was computed by multi-taper method with number of
tapers � 2, using Fieldtrip function ft_freqanalysis.m.

Power spectral density of empirical EEG data and the ERP
time locked to the onset of a single tone stimulus are
shown in Figure 6. In Figure 6A, the topoplot of the
difference in power between binaural and baseline con-
ditions at 40 Hz is shown along with the log of power

Table 1. Outcome of source localization performance based on different metrics for frequency analyses (eLORETA, DICS) and
time domain analyses (eLORETA, LCMV, MNE)

Frequency analysis
Dipole condition Localization error Focal width False positives (FPs)
Single dipole eLORETA/DICS eLORETA/DICS eLORETA/DICS
Two-point dipoles eLORETA(0, �/2, 3�/2)/ DICS(�) eLORETA eLORETA
Distributed dipoles eLORETA(0, �/2, 3�/2)/ DICS(�) eLORETA eLORETA

Time-lock analysis
Single dipole eLORETA MNE/LCMV eLORETA
Two-point dipoles eLORETA MNE/LCMV eLORETA
Distributed dipoles eLORETA MNE/LCMV eLORETA

If similar performance was achieved, both methods are mentioned with “/.”
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in binaural and the baseline conditions. Power spectral density was calculated for 5-s windows after rejecting an initial 50 s out of total
duration of 200 s for which the rhythmic tones were played. B, ERP responses of channels M1 and M2 across trials and participants for
binaural and silent baseline conditions and the topoplot for the difference signal at the peak of N100 response (at 110 ms).
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across all trials. There are peaks at alpha band 8–12 Hz in
both binaural and baseline conditions the difference be-
tween which was not significant (two-sample t � –0.018,
p � 0.95), whereas the binaural condition had a sharp rise
in power at 40 Hz, which was significant (two-sample t �
0.18, p � 0.0001). The t tests were performed on loga-
rithm of power spectrums from two conditions within a
frequency bands, 8–12 Hz for alpha and 39.8–40.2 Hz for
evoked 40 Hz. Localization results are illustrated in Figure
7A. The left, top, and right views of activation are shown
where red regions represent sources from eLORETA anal-
ysis while green regions represent activation plots gener-
ated by DICS.

Acknowledging the absence of ground truth concerning
true sources that exist in empirical data, we evaluated the
focal width of all the significant clusters after thresholding
the z-scores. One such cluster was found in each hemi-
sphere around the auditory cortex for eLORETA, provid-
ing a mean focal width of 3.958 mm. In contrast, DICS
yielded one cluster at the auditory cortex in the left hemi-
sphere and seven distributed clusters in the right. The
mean focal width across DICS clusters was 2.8324 mm,
lesser than that of eLORETA. Understanding that the
thresholding can vary focal width and number of clusters,
we maintained the same threshold for both the algorithms
for a fair comparison. It is to be noted that the mean focal
width of two clusters of eLORETA can be decreased with
higher thresholding.

Source localization of N100 response
In Figure 6B, we show the ERP responses to the bin-

aural tone and the ERPs in baseline condition, averaged
across all trials and participants (grand average). A neg-
ative peak around 100 ms after onset of tone stimulus
(N100) was observed in the binaural condition with a
latency of around 110 ms. The topoplot represents the
spatial map of the difference in relative changes of am-
plitude between ERPs from the binaural and baseline
conditions across all channels and trials.

Next, we computed the underlying source activation
during the N100 response using LCMV and eLORETA. In
Figure 7B, we plot the source activations (top 0.05%
voxels similar to 40-Hz case) in epochs of duration 50 ms,
within which the 25th millisecond corresponds to the peak
of N100. The beamformer localized bilateral auditory cor-
tices, along with other distributed significant clusters. It
can be noted that LCMV may localize the underlying
activity, however, has higher probability of yielding FPs,
due to its distributed activations. In contrast, the current
density measures localized the left auditory cortex
(eLORETA) and left posterior superior temporal sulcus
(MNE). Computing only one cluster for each hemisphere,
eLORETA and MNE yielded a significant cluster in the
right frontal regions. The focal width of LCMV (2.1706 mm)
was lesser than current density measures (3.1–3.3 mm),
similar to the case in the frequency domain analysis.

Figure 7. Left, Top and right view of significantly active cortical sources underlying for (A) 40-Hz ASSR and (B) N100 component of
the ERP. The red colored regions show estimated sources from eLORETA while green regions show estimated sources from (A) DICS
and (B) LCMV analysis. The pink regions in B show MNE source localization results.

Confirmation 12 of 14

July/August 2019, 6(4) ENEURO.0170-19.2019 eNeuro.org



Discussion
Identifying the sources underlying key events of infor-

mation processing such as ERP peaks or oscillatory brain
activity such as spontaneous gamma oscillations are the
objectives of many research studies. However, different
inverse methods provide different solutions leading to no
agreement of which algorithm is the “best method,” as we
illustrated in this manuscript with simulated and empirical
EEG data. Although the selection of the best method can
be guided by the nature of the hypothesis in a putative
experimental design, a systematic comparative account
of the efficacies of few prominent methods is currently
missing in the literature. To address this issue we com-
pared methods, eLORETA (Pascual-Marqui, 2007), LCMV
(Van Veen et al., 1997), MNE (Hämäläinen and Ilmoniemi,
1994), and DICS (Gross et al., 2001) using the metrics that
evaluates accuracy, sensitivity, and specificity across
three dipolar models (single, two-point, and distributed)
for the simulated sinusoidal signal (mimicking the steady
state 40 Hz) and a mixture of Gaussian pulses (represent-
ing the time locked ERP). Furthermore, we chose an
empirically observed baseline which is a key ingredient for
every inverse method. The models were simplistic, how-
ever, since we knew the exact location of dipole/s, ground
truth validation was possible. All methods are able to
retrieve the location of the true dipolar sources for a
physiologically relevant SNR and frequency power ratio
(Fig. 2, blue areas). Nonetheless, the study was con-
ducted across different SNRs and frequency power spec-
tra to test each method’s sensitivity and specificity to
noise. Furthermore, performance of all methods was eval-
uated with respect to dipolar depth, phase lags among
sources, accuracy and localization spread over space.
Also, we conducted source localization by collecting em-
pirical EEG data exhibiting 40-Hz ASSR (Fig. 7). DICS and
eLORETA were used to compute the sources underlying
the 40-Hz activity, and LCMV and eLORETA were used to
compute the sources underlying the N100 response (Fig.
7). Thus, we could outlay the hallmarks of each method in
an organized framework. The key finding of our study is
that although high hit rates and focal localization are
achieved with both current density and beamformer ap-
proaches, the FPs and focal width of sources needs to be
carefully considered while choosing a specific method,
and this is where eLORETA scores above most of the
other methods.

A general consensus emerges from comparing the al-
gorithms that there is no clear winner (Table 1) if accuracy
as well as sensitivity and specificity are all taken together
as guiding parameters. DICS gives better accuracy than
eLORETA in single- and two-point dipole conditions even
at low SNRs; however, the focal width of eLORETA gen-
erated sources is always slightly better most likely due to
the minimization of the surface Laplacian component
while estimation of the spatial filter. For distributed dipole
scenario, focal width of eLORETA results were very similar
to DICS, in fact getting better with higher SNR. Interest-
ingly, eLORETA shows significant control on the FP ratio
in the distributed dipole condition, proving to be the
method of choice for estimating sources underlying fre-

quency response in a more exploratory setting. This is
indeed a very important point to note for increasing num-
ber of studies studying resting state functional connectiv-
ity (Canuet et al., 2011; Custo et al., 2017). Once a
hypothesis is put in place with some prior knowledge
about the involvement of prospective brain networks, one
can go for DICS that can produce more accurate results
(Tan et al., 2016). Interestingly, DICS results in lowest
localization error with maximum phase lag of �, whereas
the effect was reverse for eLORETA.

For source localization of ERP peaks, eLORETA majorly
yielded better accuracy and specificity (in terms of favor-
able FPs) than LCMV and MNE, although the focal width
of eLORETA sources were considerably larger than LCMV
and MNE. The pitfalls and advantages of each method are
summarized in Table 1. As in the case of frequency do-
main analysis, we would recommend eLORETA for an
exploratory level analysis, whereas LCMV or MNE for
more hypothesis-driven identification of sources.

An alternative solution to increase the probability of
isolating an active source is to combine two or more
methods and take the overlap of sources detected from
them as the plausible source configuration. We provide a
blueprint of these using our empirical and simulated data.
Both spectral domain eLORETA and DICS were able to
pinpoint the left auditory cortex, the location of one true
source (Fig. 2). The number of FPs obtained with two
methods combined is drastically low. This gives us the
confidence that ASSR involves strong activity in primary
sensory regions of auditory processing, e.g., bilateral mid-
dle temporal gyrus as reported by earlier studies (McFad-
den et al., 2014; Tan et al., 2016) and as we observe in
Figure 7. However, for current empirical data, we did not
find overlapping regions from different techniques, valida-
tion from two or more methods will give a strong confi-
dence in the result of source localization. Proof-of-
concept illustration is available for time-lock analysis as
well (Fig. 7), where we present combined eLORETA,
LCMV, and MNE to identify the sources underlying N100
peak.

In future, we think an overlap-approach might result in
focal localization with minimum number of FPs. This will
particularly benefit the identification of sources whose
activity may be relevant for a particular context. For ex-
ample cross-frequency coupling (CFC) between alpha
and gamma rhythms are being postulated to be important
for gating of attention (Klimesch, 2012). How to identify a
cortical subnetwork whose nodes show CFC out of the
whole alpha and gamma networks is an important meth-
odological challenge. We believe a conjunction of meth-
ods strategy to identify the potential sources will be
crucial from the perspective of reliability as well as accu-
racy. In summary, our study provides a blue print for
employing source-localization techniques to isolate more
subtle features of signal processing.
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