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The default removal of low-abundance (rare) taxa from microbial community analyses may lead to an
incomplete picture of the taxonomic and functional microbial potential within the human habitat.
Publicly available shotgun metagenomics data of healthy children and children with cystic fibrosis (CF)
were reanalysed to study the development of the rare species biosphere, which was here defined by
either the 15th, 25th or 35th species abundance percentile. We found that healthy children contained
an age-independent network of abundant (core) and rare species with both entities being essential in
maintaining the network structure. The protein sequence usage for more than 100 bacterial metabolic
pathways differed between the core and rare species biosphere. In CF children, the background structure
was underdeveloped and random forest bootstrapping based on all constituents of the early airway meta-
genome and host-associated factors indicated that rare taxa were the most important variables in decid-
ing whether a child was healthy or suffered from the life-limiting CF disease. Attempts failed to make the
age-independent CF network as robust as the healthy structure when an increasing number of bacterial
taxa from the healthy network was incorporated into the CF structure by computer-based model simu-
lations. However, the transfer of a key combination of taxa from the healthy to the CF network structure
with high species diversity and low species dominance, correlated with a more robust CF network and a
topological approximation of CF and healthy graph structures. Rothia mucilaginosa, Streptococci and rare
species were essential in improving the underdeveloped CF network.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last two decades and with the fast development of high-
throughput sequencing technologies, a large number of studies
gave evidence that both the human and microbial gene repertoires
are essential in shaping human health and disease [1–4]. But
despite the enormous growth of knowledge in this research area,
it remains challenging to define the microbial features that univer-
sally characterise a healthy human microbiome to date [5,6]. One
reason for this lasting uncertainty is that no two humans harbour
the same microbial community signature in terms of species com-
position and abundance pattern. The large inter-subject variability
is, among other factors, influenced by age, environment, genetics,
lifestyle, socioeconomic status, ethnicity, and geography [7–9].
Another reason is that during the culture-independent taxonomic
classification of microbes, publicly available reference-based align-
ment pipelines count the number of reads mapping to a reference
sequence without considering the distribution of reads across the
genome [10–15]. As a consequence, the low-abundance taxa (rare
species) are filtered out by default during the read alignment pro-
cedure or downstream data analysis. They cannot be distinguished
from the high DNA background noise that is routinely observed
with high-throughput sequencing applications [16–18]. By focus-
ing on the abundant (core) species for which an acceptable genome
coverage was obtained, pipelines can circumvent the low
methodological-based signal-to-noise ratio and ensure a robust
analysis of the core microbial communities inhabiting the environ-
ments of interest. However, the removal of rare taxa leads to an
incomplete picture of the microbiome, because bacterial species
within complex microbial communities follow a power law distri-
bution with a higher number of rare species than core species [19–
21]. Thus, neglecting the rare species biosphere leads to a loss of
potentially disease- or health-associated variables before the com-
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munity analysis has been initiated. Thereafter, data analyses and
interpretations are limited to the small subsection of the core spe-
cies biosphere.

In the past, a key role of rare species in providing the microbial
community with functional flexibility and ecological stability has
been described for various ecological habitats [20–25]. We there-
fore assumed that rare species of healthy and diseased human air-
ways in the early years of life occupy a similar pivotal role in their
microbial community. With the objective to investigate the devel-
opment of the rare species biosphere and unravel the yet unknown
contribution of rare species to healthy or chronically diseased air-
way habitats, we re-analysed publicly available cross-sectional
metagenome data obtained from deep cough swabs of 46 healthy
children, 41 children with cystic fibrosis (CF) and negative controls
[26]. Our recent software publication raspir in combination with
gapseq, a tool introduced by Zimmermann et al. (2021) facilitated
the taxonomic and functional identification of core and rare spe-
cies from shotgun metagenomic sequencing data and reference
genomes, respectively, with reduced false discovery and omission
rates [27,28]. Since previous reports have demonstrated that meta-
genome investigations are affected by the reference database of
choice [29] and the normalisation strategy of count data for
addressing the compositional behaviour of microbiome sequencing
data [30–33], we tested our model simulations, random forest
bootstrapping aggregations, ecological network analysis and
kernel-based machine learning applications on infant metagenome
datasets, generated from read alignments towards either a pan-
genome or a one-strain-per-species reference database. Moreover,
we generated datasets based on three different read count normal-
isation strategies, namely variance-stabilising transformations
(VST), relative log expression (RLE) and bacterial to human cell
ratios (BCPHC) and worked with three distinct rarity thresholds
(15th, 25th and 35th species abundance percentile) to define the
core and rare species biosphere. This approach was essential for
extracting the method-independent biological effects of the rare
species biosphere on CF or healthy airway microbial communities
in infancy, considering that the type of data normalisation may
affect species abundance estimations and hence distort which spe-
cies are classified as ‘‘core” or ‘‘rare” according to the 15th, 25th or
35th species abundance percentile.

Independent of the normalisation method, reference database
of choice, and rarity threshold, we found that healthy children har-
boured an age-independent background network of core and rare
bacteria, which were equally important in maintaining the net-
work structure. In CF children, the airway metagenome was
defined by non-persisting core and rare species that were only
detected at a particular developmental stage. The presence or
absence of rare species was found to be the key variable in differ-
entiating between the healthy and CF airway metagenome in the
early years of life.
2. Materials & methods

2.1. Data acquisition

We re-analysed our previously published shotgunmetagenomic
sequencing data obtained from deep cough swabs of 41 CF and 46
healthy children between zero and six years of age (ENA
PRJEB38221) [26]. As previously reported, the clinical study was
approved by the ethics committee of MHH (No. 7674) and the par-
ents or legal guardians gave written consent prior to sample collec-
tion. Sampling was accompanied by an obligate cough of the
participant. The samples were immediately stored at �80 �C until
further processed with negative controls and sequenced on the
176
Illumina NextSeq 500/550 platform to generate short (75 bp)
single-end reads [26].

2.2. Data preparation and normalisation

The whole metagenome sequencing alignment pipeline (ver-
sion 1.8.0) of Davenport and colleagues [34] was utilised for the
removal of read duplicates and low-complexity reads as well as
for read trimming and alignments towards a pan-genome or a
one-strain-per-species reference database with the Burrows-
Wheeler Aligner [35]. For each sample, the rare species identifier
tool (raspir, version 1.0.2) [27] was run to filter out microbial spe-
cies with non-uniform read distributions towards the reference
genome. Raw read counts were normalised to human reads (bacte-
rial cell per human cell, BCPHC), in which case the length of the
diploid human genome was divided by a million to account for
the bacterial count scale. The quotient was multiplied by the nor-
malised bacterial read count (normalised to a million reference
base pairs) and the final product was divided by the human read
count [36,37]. For the same dataset of raw read counts, a
variance-stabilising transformation (VST) was calculated from fit-
ted dispersion-mean relations to generate approximate
homoscedastic data [38]. As previously described by McMurdie
and Holmes (2014), negative normalised values were set to zero
and a pseudo count of one was applied to raw count data [39].
Thirdly, raw reads counts were normalised by relative log expres-
sion (RLE) [38], in which case the geometric mean across all sam-
ples was calculated, the median ratio of each sample to the median
library was taken and read counts per million were computed. The
samples were then grouped according to their disease state
(healthy versus CF) and based on the following age groups: the first
year of life (0 years), the toddlers (1–3 years of age) and the pre-
school children (4–6 years of age). While the 25th species abun-
dance percentile is commonly used as the threshold to define the
rare species biosphere in ecological applications [25], we per-
formed parts of the data analysis with three different cut-off values
(15th, 25th and 35th species abundance percentile) aiming to
avoid working with one rigid threshold definition.

2.3. Data analysis

2.3.1. Investigations of the age-dependent and age-independent
bacteria

Taxonomic overlaps of the taxa in the core and rare species bio-
sphere per age group (0 years, 1–3 years, 4–6 years) in CF and
healthy children were studied with Venn Diagrams [40] and paired
line plots. The statistical comparison of species numbers between
healthy and CF children in different age groups was based on the
Fisher’s Exact test for count data. Disease state-specific ‘back-
ground species’ as well as ‘non-persisting species’ were defined
to differentiate between the early colonisers present in all age
groups, starting from the first year of life (0 years) up to the pre-
school age (4–6 years) and the fluctuating colonisers that were
solely detected at certain developmental stages of the children,
respectively.

2.3.2. Bootstrapping aggregation
A random forest analysis based on bootstrapping aggregations

was applied to identify the key determinants distinguishing
healthy from CF airway metagenomes in the early years of life
[41,42]. All non-random contributing variables with mean
decrease accuracy above zero were extracted and classified in
terms of ‘rare species’ or ‘core species’ as defined by the 15th,
the 25th or the 35th abundance percentile or ‘host-associated’ fac-
tors. Host-associated variables included age, body mass index and
gender. The classification performance was validated with the out-
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of-bag (OOB) estimate of error rate, class errors and the Boruta
algorithm [43]. The Boruta algorithm generates shadow attributes
by randomly shuffling the original input variables and iteratively
comparing random with the corresponding original variables. Con-
sequently, non-random features of importance for the CF versus
healthy classification could be distinguished from random feature
assignments. Random variables were removed from the down-
stream data analysis. Random forest and Boruta wrapper applica-
tion runs were repeated 100 times with different seeds set for
the classification and for the feature selection procedure with the
objective to avoid a selection-based bias.

2.3.3. Functional investigations of age-independent bacteria
The functional gene profile of background core and rare species

(25th abundance percentile) was investigated by running gapseq
(version 1.1) [28]. Here, only those species were included which
were confirmed as ‘background species’ by both read alignments
to the one-strain-per-species (DB1) or pan-genome (DB2) refer-
ence database. As explained by the authors of the tool, metabolic
pathways are often made of several sub-reactions and key
enzymes that together execute a biological process. For the Meta-
Cyc [44] metabolic pathway analysis, gapseq approached a cus-
tomised protein database that stored sequence data of proteins
and enzymes involved in the underlying sub-reactions of 1779 bac-
terial metabolic pathways. The protein reference sequences and
the corresponding metadata used by gapseq were obtained from
UniProt [45], BRENDA [46], and the Enzyme Nomenclature Com-
mittee [28]. The metabolic pathway analysis of gapseq was then
based on a homology search by tblastn [47], in which the DNA
sequence of the reference genome was screened for matching pro-
tein sequences in the reference sequence pools of sub-reactions
with the following cut-off values: Bitscore � 200, coverage � 75%
[28]. Finally, a metabolic pathway was considered to be present
in a reference genome if sequence evidence was found for at least
80% (‘completeness threshold’) of the reactions per pathway [28].
Since we link the absence of sequence evidence based on a manu-
ally curated protein database with the absence of known
sequences with sufficient homology in the corresponding reference
genome and not with the absence of the metabolic pathway within
the bacterial gene repertoire itself, we exchanged the term ‘com-
pleteness threshold’ with ‘functional matching (FM) score’. In other
words, the FM score quantifies the percentage of reactions that
were detected per pathway in the same way as the completeness
threshold [28] but the final interpretation of the output differed.
We then extracted all those metabolic pathways with at least
10% difference in mean FM score between the healthy background
core and rare species biosphere. FM scores of the extracted meta-
bolic pathways were centred and scaled to perform a principal
component analysis and to evaluate the functional cluster beha-
viour of taxa in the core or rare species biosphere obtained from
VST-, RLE-, or BCPHC-normalised data. Afterwards, all variables
were extracted that contributed to the data separation in the first
dimension. MetaCyc pathways were converted into MetaCyc
superclasses [44].

Moreover, we statistically compared the average FM scores of
bacteria in the healthy and CF core and rare species biosphere with
the FM score per pathway of the CF hallmark pathogen Pseu-
domonas aeruginosa PAO1 reference sequence by applying the
non-parametric Mann-Whitney U test. The effect size r was calcu-
lated, which is the Mann–Whitney U test statistics divided by the
square-rooted sample size.

We also searched the reference genomes of background species
for known adhesin protein sequences. The reference protein
sequences were obtained from NCBI with the following command
line: adhesin[All Fields] AND (‘‘Bacteria”[Organism] AND swissprot
[filter]. A blastx search was performed with default settings. Signif-
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icant matches between bacterial reference genomes and the pro-
tein database were extracted (BLAST expectation value < 0.01).
The adhesin profile of background species was compared between
healthy and CF airways in the early years of life to get a first
impression on the potential long-term training of the immune sys-
tem based on the early airway microbial communities in healthy
and CF infants. The reference database of known adhesins is pub-
licly available (see data availability statement).
2.3.4. Ecological species co-occurrence network analysis with graph
kernels

Undirected ecological network analysis was based on the best
practice guidelines for species co-occurrence network construction
[26,48]. Spearman’s rank correlation matrices were obtained for
healthy and CF children from BCPHC-, RLE- or VST-normalised
count data of background core and rare species as defined by the
25th abundance percentile and confirmed by both reference data-
bases. All significant positive correlations (p-values < 0.01, Spear-
man’s rank correlation coefficient > 0.20) were extracted and the
continuous graph layout algorithm Fruchterman-Reingold was
applied to CF and healthy co-occurrence data of background taxa
[49,50]. Network robustness and vulnerability were evaluated by
removing network species based on descending degree centrality
of contributing nodes (targeted attack) or by random node removal
(random attack) while tracking the overall network connectivity
[51]. For network simulation runs, an increasing number of healthy
background taxa (n = 1 – 20) was randomly selected with replace-
ment and transferred into the CF network. All simulation runs were
repeated 100 times with different seeds set for the random node
selector. Fréchet-distances were obtained based on Alt und God-
au’s (1995) algorithm with runtime O(pq log(pq)) [52] to measure
the similarity of CF and healthy network attack chains based on
their corresponding edges p and q, respectively. The orientation-
preserving classical Fréchet-distance algorithm was selected
instead of the more commonly used Euclidean or Hausdorff-
distance, because not only the distance between pairs of points,
but also the ordering of points can be biologically relevant when
comparing two-dimensional network attack curves [51]. The topo-
logical similarity between CF and healthy network graph struc-
tures was evaluated with a neighbourhood aggregation graph
kernel. The 1-dimensional Weisfeiler-Lehman subtree kernel
matched neighbourhoods of discretely labelled nodes in the net-
work structures with five iterations (h = 5) and was computed on
a pair of graphs with m edges and h iterations in time O(hm)
[53]. The kernel computations were based on the efficient C++
implementations of the R software package graphkernels (version
1.6) [54]. Null models were used to validate whether the observed
effect of modulated CF networks was significantly different from
the observed effect obtained from 100 randomly generated net-
works per modulated CF network. The corresponding p-values
and z-scores (observed �mean(null)/sd(null)) were obtained. All
non-random modulated CF networks were grouped into the cate-
gories ‘‘stabilisation effect” or ‘‘destabilisation effect”, when a
non-random CF graph structure was more or less similar in its
robustness to a healthy network structure compared to the original
CF network structure. A subset of non-random simulation runs was
selected (70%, training dataset) for running a binominal regression
analysis and for extracting the taxonomic features causing either a
stabilisation or destabilisation event of the original CF network
structure. The model performance was then validated with the test
dataset (30%) by plotting the true positive rate against the false
positive rate and evaluating the area under the curve (AUC). Data
analysis was performed in R [55].
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3. Results

3.1. The taxonomic overlap of core and rare species in different
developmental stages of the early human life

In healthy airways, the majority of rare (35%, Fig. 1A) and core
species (44%, Fig. 1B) were detected across all age groups (‘back-
ground species’). Some rare taxa (13%) were only found in toddlers
(1–3 years, Fig. 1A) and another 23% were solely detected in pre-
school children (4–6 years, Fig. 1B). Core and rare species numbers
increased with age (Fig. 1B, Supplementary Fig. S1A-B). In CF air-
ways however, a minority of rare (4%, Fig. 1C) and of core species
(10%, Fig. 1D) were found from early on and up to the pre-school
age. Most of the rare species (41%) were solely recovered in the
toddler’s age group (1–3 years). Higher core and rare species num-
bers were observed in the CF toddlers compared to the CF infants
in the first year of life and CF pre-school children. The age-
Fig. 1. Venn Diagrams reveal the taxonomic overlap of bacterial species in the core or ra
children. (A) Representation of the least abundant (rare) species in healthy airways per a
shared between all age groups and are hence ‘age-independent’ because they were pres
most abundant (core) species in healthy airways per age group. The majority of healthy
species in CF airways between all age groups. Most of the rare species were found in the to
age group. Most bacterial taxa were only transiently present in one age group of CF child
and 3 years of age and 16 children between 4 and 6 years of age. In the healthy cohort, the
14 preschool children were between 4 and 6 years of age. The Venn Diagrams were const
all three normalisation strategies (BCPHC, RLE, VST) were merged to generate a global o
from Supplementary Table S1 and raw count data is available from Supplementary Tabl
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independent background community of bacterial taxa was hence
underdeveloped in CF compared to healthy children (Fig. 1, Supple-
mentary Fig. S1, Supplementary Tables S1 and S2).

3.2. Rare species as key determinants of a healthy airway metagenome

The classification of children into the groups ‘CF disease’ or
‘healthy’ based on their airway metagenome and host-associated
factors revealed that most of the features contributing to the ran-
dom forest decision were associated with the rare taxa. In general,
this observation was made irrespective of whether a one-strain-
per-species (DB1) or pan-genome (DB2) reference database was
selected for the read alignment procedure or read counts were nor-
malised by BCPHC, VST or RLE (Fig. 2A-B). However, for BCPHC-
normalised read counts based on read alignments towards a pan-
genome database and with the following rarity threshold: 35th
species abundance percentile, core species explained most of the
re species biosphere as defined by the 25th abundance percentile of healthy and CF
ge group (0 years, 1–3 years and 4–6 years). The majority of rare species (35%) were
ent from early on (0 years) until pre-school age (4–6 years). (B) Visualisation of the
core species (44%) was found in all age groups. (C) The taxonomic overlap of rare
ddler age group (1–3 years). (D) Representation of the core species in CF airways per
ren. Note: In the CF cohort, there were 5 infants below the age of one, 20 between 1
re were 25 infants below the age of one, 7 children between 1 and 3 years of age and
ructed based on read alignments towards the pan-genome database. The findings of
verview of species distribution with age. The background species can be extracted
e S2.
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Fig. 2. Random forest classification [41,42] of children into the pre-defined categories ‘CF disease’ and ‘healthy’ by constituents of the airway microbial metagenome and host
variables including age, body mass index and gender. (A) Representation of the classification outcome based on the mean decrease accuracy obtained with the following three
normalisation strategies: BCPHC (Bacterial cell per human cell), RLE (Relative log expression), and VST (Variance-stabilising transformation), with two reference databases,
namely the one-strain-per-species (DB1) and the pan-genome (DB2) reference database and with the 15th, the 25th and the 35th species abundance percentile (PCTL) to
define the core and rare species biosphere. (B) Representation of the classification results based on the mean decrease Gini. Note: The mean out-of-bag (OOB) estimate of error
rate for the random forest classification was 0.11 (standard deviation = 0.06), the mean CF class error was 0.09 (standard deviation = 0.08) and the mean healthy class error
was 0.12 (standard deviation = 0.07). For host-associated, core species and rare species columns, only non-random features are shown with a mean decrease accuracy above
zero.
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difference between CF and healthy children. The database and
threshold settings caused a distinct situation in which more taxa
were detected in the core species than the rare species biosphere,
which explains this strategy-dependent observation of core species
becoming more important than rare species in the classification
process. For RLE and VST-normalised data, logarithmic-like trans-
formations compressed the data and hence boosted the effect of
rare taxa, causing the significantly higher mean decrease accuracy
of rare species compared to core species and host-associated fac-
tors for all rarity thresholds and both reference databases
(Fig. 2A). A similar observation was obtained for the mean decrease
Gini (Fig. 2B, Supplementary Table S3). The importance of host-
associated variables, including age, body mass index and gender
was negligible during the classification process.
3.3. Functional comparison of background bacteria

As described by Doolittle and Booth (2016), the taxonomic
makeup of a microbial community may vary and fluctuate as a
function of time, contrary to the biochemical function of the micro-
biome, which seems to be more conserved with time and across
habitats [56]. Correspondingly, investigations of the functional
capacities of the core and rare species biosphere are important to
gain insights into the more stable part of community airway ecol-
ogy in infancy. We thus investigated the functional capacity of core
and rare background species based on the reference genomes for
which uniform read distributions were obtained with raspir [30].
The tool gapseq utilised a pre-defined protein sequence reference
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pool for every sub-reaction involved in known core metabolic
pathways of bacteria (n = 1779) [34]. Here, we defined a functional
matching score (FM score) based on the percentage of reactions per
metabolic pathway. While the overall intra-genus Canberra dis-
tance based on FM scores of core and rare species was generally
more similar than the inter-genus distance (Supplementary
Fig. S2), distinct differences between the core and rare microbial
community of the healthy airway habitat were detected (Fig. 3A).
These differences were based on the presence or absence of known
DNA sequences associated with sub-reactions involved in alterna-
tive and central metabolic pathways (Fig. 3A, Supplementary
Table S4). Indeed, a principal component analysis of the scaled
and centred FM scores revealed a distinct clustering behaviour of
core and rare species (Fig. 3B). The extraction of variables con-
tributing to the separation in the first dimension revealed that
the core species biosphere contained higher FM scores for cofactor,
carrier and vitamin biosynthesis, the generation of precursor
metabolites and energy, whereas the rare species covered degrada-
tion pathways, amino acid metabolism and carbohydrate biosyn-
thesis (Fig. 3C).

We also compared mean FM scores per metabolic pathway of
background core and rare species isolated from healthy or CF air-
ways with the FM scores obtained from the reference genome of
the CF hallmark pathogen P. aeruginosa. The P. aeruginosa taxon
was selected for these investigations because the DNA has been
reported to be stochastically detected at low numbers in healthy
and CF airways between 0 and 6 years of age [26], even though
the opportunistic pathogen does not typically belong to the airway
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Fig. 3. Comparison of the protein sequence usage (FM score) between the core and rare background species in healthy children. (A) Heatmap visualisation of the mean
differences in FM scores between the core (left) and rare (right) background taxa as defined by the 25th species abundance percentile and based on both reference databases.
The metabolic pathway analysis used a homology search by tblastn (bitscore � 200 and a coverage � 75%) in which the DNA sequence of the corresponding reference genome
was screened for matching protein reference sequences. Per reference metabolic pathway, a matching score (FM score) between 0 (green) and 100 (black) was assigned based
on the percentage of the number of sequences per sub reaction that were detected in the corresponding reference genomes. The heatmap hence visualises the mean FM score
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microbial community. P. aeruginosa is hence a verified taxonomic
outlier to which all children are regularly exposed in the early
years of life. However, CF in contrast to healthy children are at high
risk of developing acute and chronic airway infections later in life
with P. aeruginosa being the most dominant species of the lower
airway community [37]. We found no significant difference
between the mean FM scores per metabolic pathway of back-
ground core and rare species isolated from healthy airways and
the FM score of the CF hallmark pathogen P. aeruginosa (Supple-
mentary Fig. S3). However, for CF children, a small but significant
deviation in FM scores between the background core species bio-
sphere and the P. aeruginosa reference genome was unravelled,
whereas the mean FM scores of the CF rare species biosphere
and the P. aeruginosa genome remained similar (Supplementary
Fig. S3).
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Next, we performed a blast search of all background species
against a reference database of known bacterial adhesin protein
sequences. The reason why we focused on adhesins is that bacte-
rial adhesive structures and specific or non-specific adhesion
mechanisms determine the colonisation behaviour of bacteria in
the host and provide the major interface of bacterial-host cell
interaction and crosstalk [57]. While bacterial adhesins were
extensively explored for invading pathogens in terms of virulence
factors, the role of commensal adhesins in stimulating the immune
system or manipulating the host physiology remains understudied
[57]. Furthermore, the oropharyngeal barrier is often damaged in
patients with CF from early on because viral and subsequent bac-
terial colonisation cannot be properly contained [58]. Hence, the
spectrum of adhesins decreases in CF in contrast to the full reper-
toire of adhesins in the healthy oropharynx. The analysis revealed a
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distinct bacterial adhesin background pattern between healthy and
CF airways, as well as between the core and the rare species bio-
sphere in the early years of life (Supplementary Fig. S4).
3.4. Ecological network analysis of background commensals in the
early years of life

We performed an ecological species co-occurrence network
analysis with graph kernels to explore and compare the age-
independent background networks of microbial communities in
healthy and CF infants. With computer simulations we modified
the transient and labile CF background structure by inserting var-
ious combinations of healthy taxa, aiming to exploit the distinct
characteristics that further destabilise the underdeveloped CF net-
work or make it more robust by adopting healthy-like global fea-
tures. Independent of the normalisation strategy of raw count
data, the healthy background network of bacterial taxa exhibited
Fig. 4. Ecological network analysis of the background core (orange colour) and rare (bl
network of bacterial taxa in healthy children between zero and six years of age obtain
bacterial taxa in CF children between zero and six years of age obtained from RLE-no
normalised data are provided in Supplementary Fig. S5. Plus, only those background spec
one-strain-per-species). (C) Network connectivity dynamics per fraction of nodes remov
with descending degree centralities from all healthy (black) and CF (red) background netw
data, Fréchet-distances of 0.23, 0.23 and 0.22 were obtained between CF and healthy at
removed (p) by random network attacks. To simulate random network attacks, species w
For BCPHC, RLE and VST-normalised data, Fréchet-distances of 0.06, 0.06 and 0.07 were
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strong positive correlations between core and rare species with
high numbers of contributing species (Fig. 4A, Supplementary
Fig. S5). The background network of bacterial commensals in chil-
dren with CF contained only a few contributing species that were
loosely connected (Fig. 4B, Supplementary Fig. S5). While a healthy
background network under targeted attack broke down in a uni-
form manner independent of the normalisation strategy, the CF
background network collapsed at high speed and in progressive
stages (Fig. 4C). The CF and healthy networks were similarly
affected by a random attack strategy (Fig. 4D). The vulnerability
of CF networks to targeted attacks was decreased by inserting a
key combination of health-associated background taxa (Fig. 5A).
Overall, the more core or rare species were incorporated into the
CF network, the smaller the distance between CF and healthy back-
ground networks in terms of network robustness and vulnerability.
However, a large variability was observed between the simulation
runs (Fig. 5A). Depending on the combination of inserted taxa, the
ue colour) species in the early human airways. (A) The background co-occurrence
ed from RLE-normalised count data. (B) The background co-occurrence network of
rmalised count data. Note for Fig. 4A, 4B: Networks build from VST- and BCPHC-
ies are depicted, which were detected by both reference databases (pan-genome and
ed (p) by targeted network attacks. An increasing fraction of species was removed
orks with more than three contributing nodes. For BCPHC, RLE and VST-normalised

tack curves, respectively. (D) Network connectivity dynamics per fraction of nodes
ere randomly removed from all healthy (black) and CF (red) background networks.
obtained between CF and healthy attack curves, respectively.



Fig. 5. In silico network simulations to evaluate CF network topology and robustness in the presence of healthy background species. (A) In the presence of targeted attacks,
network vulnerability of modulated CF networks was compared with the network vulnerability of the healthy network. A Fréchet distance of 0 indicated perfectly matching
curves. Network vulnerability decreased with increasing number of species (Spearman’s rank correlation, BCPHC: p-value < 0.0001, coefficient = -0.51, CI = [-0.53; �0.49];
RLE: p-value < 0.0001, coefficient = -0.69, CI = [-0.71; �0.68]; VST: p-value < 0.0001, coefficient = -0.72, CI = [0.74; 0.71]). The robustness of the original CF background
network is provided (dotted, horizontal lines). The grey dots represent the output of the simulation runs with 100 seeds set for the random node generator. The enlarged and
coloured dots depict the median output per normalisation strategy. The error lines give information on the minimum and maximum final performance. (B) Representation of
the outcome of the null model analysis to identify whether modulated CF networks display destabilisation (left) and stabilisation (right) characteristics to a significantly
different extent than expected by chance under a null hypothesis. The colours black, red and blue correspond to simulations based on BCPHC-, RLE-, or VST-normalised count
data, respectively. Points depict simulated CF networks which were significantly different from random background structures of the null model (p-value < 0.05). Enlarged
triangular shapes, show simulated CF networks, which were not different from random structures (p-value > 0.05). (C) Based on the 1-dimensional (1-dim) Weisfeiler-
Lehman graph kernel, modulated CF and healthy network similarity increased with two and more inserted species (Spearman’s rank correlation, BCPHC: p-value < 0.0001,
coefficient = 0.95, CI = [0.95; 0.96]; RLE: p-value < 0.0001, coefficient = 0.94, CI = [0.93; 0.94]; VST: p-value < 0.0001, coefficient = 0.95, CI = [0.94; 0.95]). (D) Representation of
the outcome of the null model analysis to identify whether modulated CF networks display disimprovement (left) and improvement (right) characteristics in terms of graph
topology to a significantly different extent than expected by chance under a null hypothesis. In general, disimprovement was limited to simulation runs based on the
incorporation of less than three bacterial taxa from the healthy network structure. All simulated networks were distinct from random background structures (no triangles).
Note: We only worked with and display core and rare background species which were verified by both reference databases (pan-genome and one-strain-per-species).
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CF network robustness became either more similar (stabilisation)
or dissimilar (destabilisation) to the healthy network compared
to the original CF network (Fig. 5A). In general, the modulated CF
networks displayed destabilisation (Fig. 5B, left panel) or stabilisa-
tion (Fig. 5B, right) features to a significantly different extent than
expected by chance under a null hypothesis (p-value < 0.05).
In<0.2% of simulated structures, no significant difference was
observed (Fig. 5B, enlarged triangular shapes). These random net-
work structures were subsequently removed for the following part
of the data analysis. The topological distance between CF and
healthy network decreased in terms of the neighbourhood aggre-
gation kernel when health-associated background taxa were incor-
porated into the CF network (Fig. 5C). We compared the observed
graph structures of modulated CF networks with random network
structures by null models and found that simulated structures
were significantly different from random background structures
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(p-value < 0.05). We subsequently evaluated the selection features
stabilising or destabilising the non-random CF network structures
with a binominal regression analysis. The investigation revealed a
stabilisation effect of the CF network structure whenever healthy
taxa were incorporated with high species diversity (Shannon diver-
sity index) and low species dominance (Simpson diversity index).
Furthermore, the transfer of Rothia mucilaginosa and Streptococcus
spp. (Fig. 6), as well as adding rare instead of core taxa was impor-
tant in increasing the robustness of the CF network to targeted net-
work attacks (Fig. 6).
4. Discussion

The bacterial co-occurrence network of the lower airway habi-
tat is a dynamic system, continuously shaped by newly arriving
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microbes from the upper respiratory tract and the loss of bacteria
which were targeted by the host defence system [59–61]. In a pre-
vious study, we showed that the airways of healthy newborns and
toddlers contain a strongly interconnected co-occurrence network
of core taxa from early on [26]. This network was characterised by
high species diversity and bacterial loads of all the contributing
species. Here, we approached our recently published software tool
that scans the within-species conservation of the global chromoso-
mal organisation by evaluating the distribution of raw reads map-
ping towards circular reference genomes [27]. Since we re-
analysed deep shotgun metagenomic sequencing data of single-
end read runs, where the maximum number of genome positions
was probed, insights were obtained into the contribution of rare
species in maintaining and stabilising the bacterial co-occurrence
network of human airways in the first six years of life. We per-
formed the data analysis with three different normalisation meth-
ods to account for the compositional behaviour of microbiome
data. The BCPHC normalisation has high ecological relevance con-
sidering that human read counts are used as natural spike-in con-
trol to obtain an estimation of the underlying microbial abundance
pattern [36]. Since the human host forms an essential part of the
ecological airway habitat, its quantitative information can be
maintained by the BCPHC normalisation strategy. However, the
method can be affected by free DNA in the sample or library prepa-
ration procedures [36]. We therefore also performed RLE and VST
normalisations. These methods have been shown to perform well
when applied to shotgun metagenomics and 16S rRNA gene
sequencing data by obtaining unbiased p-values, controlling the
false discovery rate in simulation scenarios and enabling robust
interpretations of correlation and proportionality estimates
[30,39,62].

The gastrointestinal human microbiome has been described as
stable during adult life and unstable with regard to the overall tax-
onomy in the first few years of life [63]. In this study, we show that
the healthy airway microbial community consists of both back-
ground and non-persisting bacteria. The background taxa are the
early airway colonisers that remain to be detected until pre-
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school age, independently of the child’s developmental stage.
These persistent background commensals form a stable network
in which core and rare taxa are equally important from early on.
Depending on the developmental stage of the child, non-
persisting core and rare species enter the network for a limited
period of time. So, the healthy airway metagenome was found to
contain background and non-persisting bacteria that are stimulat-
ing the immune system on a long-term and short-term basis,
respectively. In CF children, the background network was found
to be underdeveloped and the majority of rare species in CF air-
ways was associated with the toddler age group (1–3 years of
age). Since a close-to-healthy network structure of high-
abundant taxa was only detected in CF toddlers, a long-term
immune system stimulation is missing in CF pre-school children
for most of the time and the training of the immune system is
defined by non-persisting bacteria or pathogens later in life
[37,64,65]. Leitão et al. (2016) [23] utilised simulation studies of
environmental ecosystems and thereby unravelled the dispropor-
tional influence of rare species on the functional structure of an
ecosystem. They reported that rare species extinction causes a dis-
turbance on the long-term supply of goods and services and thus
destabilises the entire ecosystem [23]. The detection of the major-
ity of rare species in CF toddlers with their subsequent loss in pre-
schoolers may hence explain the known reduction in core species
diversity and occurrence of network fragmentation as the disease
progresses [37,64–66]. Furthermore, the loss of rare species may
create an open niche in the CF airway habitat that can be chroni-
cally filled by incoming CF hallmark pathogens such as P. aerugi-
nosa. However, to confirm these results that were based on
cross-sectional metagenome data, it is essential to perform
follow-up longitudinal metagenome studies, tracking both the
healthy and diseased early airway development in individuals over
time.

Investigations of the functional capacities of microbial commu-
nities are of high interest and can provide novel insights into the
microbial airway inhabitants and the airway environment itself.
However, functional annotation and the underlying gene ortholo-
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gous databases are still in development. Despite the enormous
number of annotations that are available in the public domain, a
large number of entries remain classified as ‘hypothetical’ and
wet-lab experiments are currently lacking to confirm the candidate
proteins [67]. Also, short reads are often not discriminative enough
to distinguish between functions and it is recommended to use
paired-end data for generating and mapping the long contigs
instead of short reads to the databases [68]. This strategy cannot
be approached to gain insights into the functional capacity of rare
species since genome coverages are low. Therefore, we performed
the functional analysis based on the corresponding reference gen-
omes instead of directly utilising DNA reads obtained from the bio-
logical samples. Major differences in FM scores were detected
between the core and the rare microbial background communities
in the human airways. These differences were not only associated
with alternative metabolic pathways but also with central meta-
bolic functions, e.g., usage of essential metabolites, bacterial respi-
ration and energy generation. A high FM score in one group
contrary to a low FM score in the other one (Fig. 3) does not imply
the presence or absence of the corresponding core metabolic path-
ways, respectively. It does however indicate that in the latter case
protein sequences are missing with sufficient homology towards
the known sequences in pre-defined sequence reference pools of
the sub-reactions per metabolic pathway. A different pool of still
unknown protein sequences may be utilised by the group instead
to accomplish the same functional task, suggesting a division of
labour between the core and rare microbial community in terms
of nucleotide, codon and motif usages. We assume that the
observed sequence differences in exotic and core pathways enable
the permanent co-existence of core and rare species in an other-
wise highly competitive airway environment. As described in sec-
tion 3.3, we also compared the mean FM scores of the core and rare
species biosphere in healthy or CF airways with the FM scores
obtained directly from the P. aeruginosa reference genome PAO1,
because P. aeruginosa DNA has been reported to be stochastically
detected at low numbers in healthy and CF airways between 0
and 6 years of age [26], even though the opportunistic pathogen
does not typically belong to the airway microbial community. P.
aeruginosa is hence a verified taxonomic outlier to which all chil-
dren are regularly exposed in the early years of life. However, CF
in contrast to healthy children are at high risk of developing acute
and chronic airway infections later in life with P. aeruginosa being
the most dominant species of the lower airway community [37].
Interestingly, we found no significant differences in the overall
protein sequence usage between healthy core/rare species and
PAO1, suggesting that a high competition for resources prevents
the overgrowth of P. aeruginosa in the healthy airway habitat.
While the mean FM scores of the rare species biosphere in the CF
airway habitat was also similar to the P. aeruginosa genome scores,
the CF core species biosphere differed slightly but significantly
from the pathogen’s scores. We thus hypothesise that in the early
CF airways, the rare species compete with the pathogen for
resources by using a similar pool of known protein sequences.
The subsequent loss of rare species in the CF pre-school age may
hence again be assumed to facilitate the overgrowth of P. aerugi-
nosa. However, our functional investigations have to be interpreted
with caution. The typical core microbes may have been studied
more extensively in the past than the often-unknown and uncul-
turable rare species, so there is a literature bias in gene databases
in favour of the more abundant species [69,70]. On the other hand,
the identification of moonlighting proteins, which are multifunc-
tional molecules involved in various metabolic pathways is still
at the beginning [71,72]. So, known bacterial key enzymes may
undertake a number of different tasks in unrelated biological pro-
cesses and therefore functionally fill the gaps in case of missing
protein sequences. Furthermore, the gapseq tool prioritises the
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mapping of sequences and reactions by EC number even though
some reactions in the MetaCyc [44] database have more than one
EC number annotation, which may introduce false FM scores
[28]. Nonetheless, gapseq achieves higher prediction accuracies
than other known functional pipelines and can hence be consid-
ered as state-of-the art software [28]. Ultimately, only comparative
metatranscriptomics and metaproteomics will reveal what is actu-
ally expressed by core and rare airway species and hence give us
more information on relevant microbe-microbe or host-microbe
interactions [73].

In conclusion, we were able to show that rare species play the
key role in differentiating between healthy and CF airway meta-
genomes in the early years of life. Rare species contribute to a
stable and robust species co-occurrence airway network and seem
to facilitate the metabolic integrity of the healthy human airway
metagenome. The computer-based model simulations revealed a
stabilisation effect of the CF network after the transfer of a key
combination of bacterial taxa with high species number, high spe-
cies diversity and low species dominance. Also, R. mucilaginosa and
Streptococcus spp. were found to play a key role in reducing the
vulnerability of labile CF background networks. With the here
approached algorithms however, it has not been possible to make
the networks identical. Nonetheless, rare species were particularly
important in improving the underdeveloped CF background net-
work. It is hence essential to investigate the currently uncharac-
terised taxonomic and functional potential of rare species in
future studies to get a more comprehensive picture of the universal
features characterising a healthy or diseased human microbiome.
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