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There have been dozens of human clinical trials of DNA 
vaccines against infectious and non-infectious diseases such as 
influenza, hepatitis B, HIV, malaria and cancer; however, with 
disappointing outcomes (reviewed in refs. 1–3), suffering from 
lower immunogenicity than that had been observed in other 
mammals. Safety issues such as integration of plasmid DNA into 
genomic DNA, the risk of autoimmunity or antigen tolerance 
were successfully addressed in those studies. It was concluded that 
despite its low immunogenicity, DNA vaccination is a safe form 
of immunization. Therefore, it still has a future for use in humans 
if its immunogenicity can be strengthened. Moreover, successful 
DNA vaccines have been licensed in veterinary applications 
since 2005, including canine melanoma, West Nile viruses in 
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horses and fish hematopoietic necrosis viruses.4-6 The successful 
veterinary applications indicate that selecting an appropriate, 
strongly immunogenic antigen is very important and should 
be considered for improving DNA vaccine immunogenicity in 
humans.

Given such clinical results, understanding the underlying 
mechanism(s) of how DNA vaccines function is remains as a key 
step for its success. Recent studies investigating the immunological 
role of DNA-sensing machinery have brought new interest to 
the DNA vaccine field. It was demonstrated that the presence of 
double-stranded DNA in the cytoplasm of mammalian cells can 
trigger host immune responses by a mechanism involving as yet 
unidentified cytosolic DNA sensor(s).7 This is expected to have 
an important impact on future researches on the cytosolic DNA-
sensing machinery and on technological advance of delivery and 
processing of DNA plasmid.8 In this review, we discuss research 
developments in the understanding of cytosolic DNA sensing 
and its implications for development of DNA vaccines.

Immune Responses Initiated by DNA Vaccination

A DNA vaccine is composed of a bacterial plasmid that encodes 
the protein of interest (an antigen) under a mammalian promoter 
enabling it to function in the transfected mammalian cells. 
DNA vaccination could trigger immune responses through (1) 
the antigen(s) encoded by the DNA plasmid, which is the main 
component of the vaccine and (2) the transfected DNA plasmid 
itself (which has possible unwanted or unexpected, but surprising 
helper [adjuvant] activity of vaccines—to be discussed later).

Antigen(s) encoded by DNA plasmid. As soon as the 
plasmid DNA is administered in vivo, the encoded protein is 
expressed in the host cells under the control of the mammalian 
promoter. In the general understanding, expressed proteins 
can be processed as peptides, bind to MHC class I or class II 
molecules and be presented by antigen presenting cells (APCs) 
such as dendritic cells (DCs) to activate (prime) naïve T cells. 
Alternatively, the expressed, secreted proteins can be processed 
to activate B cells for antibody production. The plasmid DNA, 
administered by various methods, is directly transfected into 
resident stromal cells (e.g., muscle cells) at the injected site, 

Since the introduction of DNA vaccines two decades ago, 
this attractive strategy has been hampered by its low 
immunogenicity in humans. Studies conducted to improve 
the immunogenicity of DNA vaccines have shown that 
understanding the mechanism of action of DNA vaccines might 
be the key to successfully improving their immunogenicity. 
Our current understanding is that DNA vaccines induce innate 
and adaptive immune responses in two ways: (1) encoded 
protein (or polypeptide) antigen(s) by the DNA plasmid can 
be expressed in stromal cells (i.e., muscle cells) as well as DCs, 
where these antigens are processed and presented to naïve 
CD4 or CD8 T cells either by direct or cross presentation, 
respectively; and (2) the transfected DNA plasmid itself may 
bind to an un-identified cytosolic DNA sensor and activate the 
TBK1-STING pathway and the production of type I interferons 
(IFNs) which function as an adjuvant. Recent studies 
investigating double-stranded cytosolic DNA sensor(s) have 
highlighted new mechanisms in which cytosolic DNA may 
release secondary metabolites, which are in turn recognized 
by a novel DNA sensing machinery. Here, we discuss these new 
metabolites and the possibilities of translating this knowledge 
into improved immunogenicity for DNA vaccines.
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free bases to be re-utilized.13 Nucleic acid-derived purine bases 
are further catabolized into uric acid. Malfunctioning of nucleic 
acid utility/recycling may occur for various reasons. Therefore, 
even though nucleic acids are known to be immunologically 
inert during homeostasis, it should be noted that once released 
from microbes or damaged host cells, nucleic acids, together with 
their excess metabolites, could be detected by the immune sys-
tem and result in disease manifestations.13 Recent research has 
been heavily focused on the sensors and mechanisms involved in 
recognition of DNA abnormally present in cytoplasm. Below is a 
summary of recently identified “potential” DNA sensors.

ZBP1/DAI. Z-DNA binding protein 1 (ZBP1), also called 
DNA-dependent activator of IFN-regulatory factors (DAI) or 
DLM-1, was found to bind directly to dsDNA and enhance its 
association with IRF3 and TBK1, resulting in the DNA-mediated 
activation of innate immune responses in vitro.14 However, 
because the role of DAI in DNA-induced IFN production is very 
cell-type specific and DAI-deficient mice induced normal type I 
IFN responses to dsDNA as well as plasmid DNA vaccinations, 
DAI’s role in innate signaling in humans has been questioned 
and remains to be further clarified.9,15

AIM2. Absence in melanoma 2 (AIM2), an IFN-inducible 
gene (HIN)-200 family member, was identified as a cytosolic 
DNA sensor for activation of inflammasomes by inducing 
the apoptotic speck protein containing a caspase recruitment 
domain (ASC)/caspase-1-mediated secretion of IL-1β. However, 
the AIM2 inflammasome is only essential for caspase-1 activa-
tion, but not for type I IFN production in response to cytosolic 
dsDNA.16-19

IFI16. Interferon-gamma inducible protein 16 (also called 
p204) is a member of the PYHIN protein family that contains 
a pyrin domain and two DNA-binding HIN domains. Reports 
have suggested that IFI16 depletion by RNA interference reduces 
the induction of type I IFN by synthetic DNA as well as DNA.20

RNA polymerase III. RNA polymerase III is an enzyme 
responsible for the transcription of DNA, and synthesizes various 
ribosomal and small RNAs in eukaryotes. It was recently shown 
that cytosolic poly(dA-dT) DNA are converted into RNA species 
(namely 5'-triphosphate RNA) by RNA polymerase III and in 
turn induce RIG-I-mediated type I IFN production. Therefore, 
although RIG-I is a cytosolic RNA receptor, RIG-I knockdown 
was associated with reduction in dsDNA-induced type I IFN 
production.21

HMGB. High-mobility group protein B1 (HMGB1) is 
normally localized in the nucleus. It has high DNA-binding 
capacity and recruits other proteins to the DNA-HMGB1 
complex, functioning as a transcription regulator. Once HMGB1 
is released from the nucleus and is present extracellularly, it can 
activate the immune system and might be responsible for various 
autoimmune diseases.22 It was shown that HMGBs (HMGB1, 
HMGB2, and HMGB3) can bind to pathogen-derived nucleic 
acids, and that knockdown of HMGBs in mice is responsible for 
defective type I IFN and inflammatory cytokine induction by 
cytosolic DNA.23

Histone H2B. Histones are essential basic proteins that help 
to form chromatin structure by association with DNA in the 

and can be directly delivered and transfected into APCs such 
as DCs.9 If plasmid DNA is taken up and the antigen directly 
expressed and processed in, and/or secreted by, DCs, then that 
would lead to direct presentation of the encoded antigen(s) to 
CD8+ and/or CD4+ T cells, respectively. On the other hand, 
if plasmid DNA is introduced into stromal cells at the injected 
site such as muscle cells, the antigen may be indirectly captured 
by DCs after release from transfected stromal cells and then 
cross-presented to CD8+ T cells. It is also well accepted that 
the expressed antigen can be captured by B cells to become 
antigen-specific B cells with the help of CD4 Th1 or possibly 
follicular helper T (Tfh) cells. Therefore, it is obvious that the 
mode and the amount of expression of the encoded antigen(s) 
are critical factors for the DNA vaccine immunogenicity. In this 
regard, various transfection modalities have been introduced, a 
promising one of which was the electroporation of plasmid DNA 
in vivo.10,11 Immune responses initiated by DNA vaccination are 
summarized in the figure.

The transfected DNA plasmid. Recognition of foreign DNA 
(i.e., of bacterial origin) has been well-studied by now that for-
eign DNA can bind to TLR9 in the endosome and stimulate the 
production of type I IFNs in DCs. However, recent studies have 
additionally shown that transfected double-stranded DNA into 
cytosol (and/or nucleus) is also immunogenic.7 If introduced into 
the cytosol, double-stranded (ds)DNA derived from host cells 
(mainly in the B-form, a right-handed helical structure), can 
induce immune responses in fibroblasts, macrophages and DCs 
to produce robust amounts of type I IFNs. This effect is inde-
pendent of the CpG motifs and TLR9, but completely dependent 
on TRAF-family-member-associated NF-κB activator (TANK) 
binding kinase 1 (TBK1).7 Interestingly, similar to the dsDNA 
sensing pathway, DNA plasmids, although of bacterial origin, 
also interact with an un-identified cytosolic DNA sensor and 
induce the activation of TBK1 and IκB kinase-ε (IKKε) through 
STING, (stimulator of interferon genes, also called MITA, ERIS 
or TMEM173).9,12 Hence, it was proposed that the recognition 
of the double-stranded backbone of cytosolic plasmid DNA by 
as yet un-identified cytosolic DNA sensors could contribute (i.e., 
have adjuvant activity) to enhanced adaptive immune responses 
induced by DNA plasmids.

Recent studies, on the other hand, have addressed the recogni-
tion of cytosolic DNA and the roles of DNA-mediated secondary 
products. In the light of these new studies of the mechanisms by 
which cytosolic dsDNA and possibly DNA plasmid are sensed, 
we will look into the details of cytosolic DNA sensors.

Update on Cytosolic Double Stranded 
(ds)-DNA-Recognition Sensors

Nucleic acids, namely DNA and RNA, are composed of nucle-
otide chains that convey genetic information important for all 
living organisms. Normally, these genetic molecules are metabo-
lized or recycled and are subsequently re-used. Several endonu-
cleases, phosphodiesterases and nucleoside phosphorylases work 
together to metabolize nucleic acids into polynucleotides, oligo-
nucleotides and free nucleosides and finally into ribose-1-P and 
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TRIF-double deficient mice showed normal responses to DNA 
vaccines. However, TBK1 was the major player in DNA vaccine 
immunogenicity.9 Importantly, studies with STING-deficient 
mice confirmed that STING was a critical molecule for immuno-
genicity of DNA plasmids.12 Collectively, these studies strongly 
suggest that STING and TBK1, the critical components of the 
DNA recognition machinery, are also important for DNA vac-
cine-induced immunogenicity. DNA vaccination requires TBK1 
activation in hematopoietic cells (i.e., DCs) for Th1 and B cell 
responses to the encoded antigen, while TBK1 activity in non-
hematopoietic cells (i.e., muscle cells), not hematopoietic cells, 
is essential for CD8+ T cell activation. 9 Direct presentation and 
cross-presentation of the encoded antigens via hematopoietic and 
non-hematopoietic cells differentially contribute to the genera-
tion of adaptive immune responses to DNA vaccines, and that 
STING-TBK1-dependent type I IFN is required to promote 
both responses (Fig. 1).8,9,34

ZBP1/DAI and its function as an intracellular DNA-sensor 
is controversial because of the differing cell type-dependent 
requirements in mouse and human cells. Nevertheless, DNA 
vaccine immunizations of ZBP1/DAI-deficient mice revealed a 
minimal role for ZBP-1 in innate or adaptive immune responses 
to DNA vaccine in vivo.9

Earlier reports successfully showed that DNA vaccine 
immunogenicity could be improved by incorporation of IL-1 
and caspases into the plasmid backbone.35,36 However, it is less 
likely that the inflammasome components AIM2 and ASC, 
which are important components for cytosolic DNA-mediated 

nucleus. Histone H2B, which mainly localizes to the nucleus, 
recognizes aberrant genomic DNA from damaged cells or 
cytosolic dsDNA generated by DNA viruses and activates TBK1/ 
IRF3 axis to produce type I IFN.24

STING. Upon stimulation by various cytoplasmic dsDNAs, 
an endoplasmic reticulum (ER)-localized molecule, STING 
re-localizes with TBK1 from ER to perinuclear vesicles and 
activates IRF3/IRF7 to stimulate type I IFN production and 
NF-κB activation.25 Recent studies have reported that STING 
could also sense bacterial secondary messenger molecules such as 
c-di-GMP or c-di-AMP.26 This raises the important possibility 
that cytosolic dsDNA stimulation might produce secondary 
products such as c-di-GMP/c-di-AMP that might be recognized 
by STING.

TRIM56. Another interferon-inducible molecule, tripartite-
motif 56 (TRIM56), an interferon-inducible E3 ubiquitin ligase, 
was recently identified as a modulator of STING dimerization 
upstream of TBK1 and to confer dsDNA-mediated type I IFN 
responses.27

DDX41. DDX41 is a member of the DEXDc family of 
helicases. It was found to sense intracellular DNA in myeloid 
dendritic cells (mDCs) and to be responsible for type I IFN and 
cytokine responses to cytosolic DNA and DNA viruses with 
direct co-localization with STING in the cytosol.28 In addition, 
dsDNA from bacteria (small bacterial nucleic acids called cyclic 
dinucleotides) together with cyclic di-GMP and cyclic di-AMP 
were found to bind to central DEAD-box domain (DEADc), 
albeit not directly to STING.28,29 Further studies are needed to 
understand the interactions between DDX41, dsDNA, cyclic 
dinucleotides and STING.30

cGAS. Recently, an enzyme in mammalian cells called cGAS 
was found to directly bind to transfected dsDNA and viral 
DNA. cGAS is a cyclic guanosine monophosphate-adenosine 
monophosphate (cGAMP) synthase that functions in the 
cytoplasm by direct binding to dsDNA. As a result, cGAMP is 
synthesized, binds directly to STING and induces transcription 
factor IRF3 and the induction of type I IFN in a STING-
dependent manner, suggesting that cGAS is a cytosolic DNA 
sensor.31

DNA Sensing Machinery vs. DNA Plasmid-Mediated 
Immunogenicity

To clarify the role of various dsDNA-sensing/signaling molecules 
on the immunogenicity of DNA vaccines, several groups have 
taken advantage of knockout mice to investigate the innate as 
well as adaptive responses evoked by DNA plasmids (Table 1 
summarizes the current knowledge on the dsDNA-sensing 
machinery and its known impact on the mechanism of DNA 
vaccination). The main discovery was that transmembrane-local-
ized foreign DNA receptor, TLR9, had minimal involvement in 
the activity of plasmid DNA in vivo.32-34 Rather, optimal DNA 
vaccine immunogenicity (antigen-specific T and B cell induc-
tion) required type I IFNs, with clear evidence of little or no 
activity of such immunogenicity in IFNαR2-deficient mice.9 
Overall, TLR signaling may play little or no role, as MyD88/

Figure 1. Current understanding of the mechanism of action of DNA 
vaccines. DNA plasmid transfection into the cytosol (i.e., by electropora-
tion) induces innate and adaptive immune responses by two compo-
nents; Component I: encoded protein (or polypeptide) antigen(s) by 
the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as 
well as DCs, where these antigens are processed and presented to naïve 
CD4 or CD8 T cells either by direct or cross presentation, respectively. 
Component II: the transfected DNA plasmid and its metabolites (such 
as cGAS, c-diGMP, RNA polymerase III, and uric acid) interact with an 
unidentified cytosolic DNA receptor and activate the STING-TBK1-IRF 
pathway, with production of type I IFNs or some other unknown func-
tions that act as a built-in adjuvant.
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Incorporation of HMGB1 into DNA plasmids as a genetic 
adjuvant successfully enhanced adaptive immune responses 
against HIV-1 as well as influenza viruses with greater neutraliz-
ing antibody responses against lethal influenza virus challenge.41,42

Although ZBP1/DAI has no role in the immunogenicity 
of DNA vaccines, it has been shown to have a role as a genetic 
adjuvant.43 A recent study has evaluated transcription factors of 
the IRF family (IRF-1, IRF-3, and IRF-7) as adjuvants to DNA 
vaccines. Plasmid DNA encoding IRF-1, but not IRF-3 or IRF-
7, enhanced antigen-specific immune responses.44 A cocktail of 
TBK1-encoding plasmids with plasmids encoding Plasmodium 
antigens might be able to improve humoral responses to malarial 
antigens.34

DNA Plasmid Metabolites: An Adjuvant?

Several studies have independently shown that synthetic non-
coding dsDNA as well as genetic material from dying cells 
could improve the immunogenicity of protein-based vaccines 
and act mainly as adjuvants.8,45,46 However, the studies also 
suggest that other by-products resulting from DNA metabolism 
could be involved in increasing the immunogenicity of the 
vaccines.13 Currently there is no clear evidence as to whether in 
vivo transfection of plasmid DNA could release metabolites that 
are capable of inducing type I IFN production, however, recent 
discoveries have revealed that several DNA metabolites such as 
cGAMP or cyclic-diGMP (c-diGMP) can be immunogenic and 
can interact with DNA sensing machinery such as STING.

Cyclic-di-GMP (c-diGMP) is a small nucleotide second mes-
senger synthesized by bacteria. When c-diGMP is transfected 
into mammalian cells, it strongly induces high levels of type I 
IFN,47 utilizing the same signaling pathway as dsDNA by direct 
binding to DDX41 and STING and activating downstream 
TBK1-IRF3 signaling.28,29,48 c-diGMP was studied for this 
immunogenic property, and shown to be an effective adjuvant 
for vaccines targeting the mucosal route.49,50

As mentioned earlier, not only bacterial DNA metabolites, 
but transfected dsDNA or viral DNA can be catalyzed in the 
cytoplasm by a directly-bound enzyme called cGAS.31 As a result, 
cGAMP is synthesized and directly binds to STING. Although 
currently no study has reported it, cGAMP is expected to have 
adjuvant properties.

IL1β responses, are required for DNA vaccine immunogenicity 
(unpublished observations).

Currently no data are available on the possible involvement of 
IFI16, HMGBs, TRIM56 or DDX41 in the mechanism of DNA 
vaccines, which should be explored in the future by using avail-
able mice that are deficient for those molecules.

In the down-stream signaling of the STING-TBK1 complex, 
IRF3-deficient mice elicited strong antigen-specific humoral 
responses after DNA vaccination, while CD4+ and CD8+ T cell 
responses (including the production of Th1, Th2 and Th17 cyto-
kines) were severely impaired (Table 1).37

Cytosolic DNA Sensing Machinery 
as a Genetic Adjuvant

The discoveries in which cytosolic plasmid DNA-induced immu-
nogenicity was attributed to its adjuvant properties (mediated 
via STING and TBK1 kinase) have led researchers to evaluate 
whether such immunogenicity could be improved by incorpo-
rating overexpression of these signaling molecules as an exter-
nal adjuvant to DNA vaccines. Several incorporation techniques 
(i.e., in the plasmid backbone or by co-immunization) have been 
challenged. The pioneering studies have shown that although 
dispensable for the immune signaling of DNA vaccines, adaptor 
molecules such as the Myeloid Differentiation Primary Response 
Gene (MyD88) or Toll/IL-1 receptor (TIR)-domain-containing 
adaptor inducing interferon-β (TRIF), if incorporated into DNA 
vaccines as dual-promoter plasmids and overexpressed, greatly 
enhance humoral as well as cellular responses to given antigen.38

A similar approach was taken with RIG-I and MDA5, 
although IPS-1-deficiency has not played a role in the 
immunogenicity of DNA vaccines.9 RIG-I is upstream of IPS-
1, and can also recognize dsDNA by involving DNA-dependent 
RNA polymerase III.21 Based on this, Luke et al. have generated 
DNA vaccines co-expressing antigen and potent RIG-I ligands 
from RNA polymerase III promoters as RIG-I agonists.39 The 
resultant vectors potently induced type I IFN production and 
increased influenza-specific serum antibody binding avidity 
of DNA vaccines in mice. Co-administration of influenza-HA 
plasmid and plasmid DNA for MDA5 expression resulted in 
enhanced immunogenicity as well as protection against a lethal 
H5N1 challenge infection in chickens.40

Table 1. Current known signaling molecules in the DNA vaccine-induced immune responses

Knockout mice
DNA vaccine-

Reference
Antigen Route Ab responses CD4+ T cells CD8+ T cells

TLR9 LacZ i.m e.p. → → → [9]

MyD88/TRIF LacZ i.m e.p. → → → [9]

ZBP-1 (DAI) LacZ i.m e.p. → → → [9]

STING OVA i.m e.p. ↓ ↓ ↓ [12]

TBK1 LacZ NP i.m e.p. ↓ ↓ ↓ [9]

IRF3 OVA-Luc i.m.* → ↓ ↓ [37]

IFNαR2 LacZ i.m. e.p. ↓ ↓ ↓ [9]

*This data is available only by i.m. route of immunization which might be different than i.m. e.p. immunization.
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10-carboxymethyl-9-acridanone (CMA) was highlighted as 
potent type I IFN inducer via the STING-TBK1-IRF3 axis.54 
Interestingly, both DMXAA and CMA have a species-specific 
mode of action in binding to the STING pocket where c-diGMP 
also binds. Perhaps that is a clue to future understanding of the 
immunogenicity of DNA vaccines in different species.54,55

Overall, our understanding of how DNA vaccines might 
function is continuously improving along with recent 
developments in the investigation of the DNA sensors. Discovery 
of adjuvant properties of DMXAA, a compound with high 
similarity to DNA-mediated metabolites, is a promising advance 
in the field of DNA vaccines and adjuvants and for the generation 
of successful vaccines.
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Uric acid is a nucleic acid metabolite of degraded purine 
nucleotides. However, aberrant cell death under certain 
conditions could lead increased uric acid levels and DC 
activation.51 Un-excreted crystalized uric acid results in disease 
like gout. Uric acid crystals, but not soluble uric acid, could 
function as adjuvant (unpublished observation). However, it is 
unclear whether DNA plasmids produce uric acid and/or crystals 
in the transfected cells.

These studies have revealed that not only DNA, but its 
metabolites could target DNA sensing machinery, intrigued a 
hypothesis that synthetic compounds that target the DNA sensing 
pathway might be capable of inducing type I IFN responses and 
may function as an adjuvant. 5,6-dimethylxanthenone-4-acetic 
acid (DMXAA) is a good example. DMXAA is a small synthetic 
molecule and a potent type I IFN inducer that resembles viral 
infections and dsDNA in the inflammatory signaling events 
it triggers.52 Furthermore, DMXAA utilizes the TBK1-IRF3 
signaling pathway without the involvement of TLRs or RNA 
helicases in its mechanism of type I IFN induction. Experience 
with DMXAA as adjuvant in protein immunizations suggest that 
it could indeed act as a vaccine adjuvant. Its unique property as a 
soluble innate immune activator and its adjuvant effect are directly 
dependent on the IRF3-mediated production of type I IFNs.53 
Of note, very recently another known anti-viral compound, 
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