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Abstract

The massive sequencing of severe acute respiratory syndrome coronavirus 2 (SARS‐

CoV‐2) and global genomic surveillance strategies allowed the detection of many

variants of concern and interest. The variant of interest Lambda (C.37), which

originated in South America, has been the most prevalent in Peru and Chile, but its

dispersion in other continents still remains unknown. The current study aims to

determine the phylogenetic relationship among C.37 isolates worldwide, focusing on

spike mutations to understand the spread of Lambda in pandemics. A total of 7441

sequences identified as C.37 were downloaded from the GISAID database; local

analysis was carried out to identify spike mutations and phylogenetic analysis was

carried out to determine the rate of spread of the virus. Our results showed some

spike mutations of Lambda that allowed us to detect small local outbreaks in

different countries that occurred in the past and identify several clades that have not

yet been designated. Although the lineage C.37 is not epidemiologically relevant in

Europe or North America, the endemic behavior of this variant in Peru had a major

impact on the second SARS‐CoV‐2 wave.
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1 | INTRODUCTION

Genomic surveillance using next‐generation sequencing (NGS) is the

gold standard tool for tracking the severe acute respiratory syndrome

coronavirus 2 (SARS‐CoV‐2) pandemic in real time. Currently, more

than six million genomes have been submitted to the GISAID

database (https://www.gisaid.org/); nevertheless, the genome quan-

tity reported by each country is very different. United States, Iceland,

the Netherlands, the United Kingdom, and Australia are countries

with massive genomic records, mainly due to better support in terms

of sequencing technology, logistically, and financially.1 At the

beginning of 2021, the global genomic surveillance of SARS‐CoV‐2

allowed the identification of lineages thereafter considered as viral

variants by WHO; these variants were the result of dispersion,

geographically constrained, and natural mutations of the virus.2 In

this sense, currently, there are five lineages that are most important
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or called a variant of concern (VOC): the variant B.1.1.7 (Alpha),

B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and the recently

designed B.1.1.529 (Omicron). In addition, two variants of interest

(VOI), C.37 (Lambda) and B.1.621 (Mu), are still under surveillance.

The C.37 lineage of SARS‐CoV‐2 was termed Lambda by the

World Health Organization and considered as a VOI. In Peru, the

emergence of Lambda was estimated to occur around October

2020.3 C.37 was initially described to present seven nonsynonymous

mutations in the S gene (Δ246–252, G75V, T76I, L452Q, F490S,

D614G, T859N) and a deletion in the ORF1a gene (Δ3675–3677),

similar to 19 other mutations.4 Two mutations (L452Q, F490S) are

present in the receptor‐binding protein, and one of them (F490S) has

shown reduced susceptibility to antibody neutralization.5 Although it

is only categorized as a variant of interest, many countries with more

efficient public health systems were concerned about its transmission

and infectivity due to the rapid increase in the number of cases in

South American countries. One study established that the Lambda

(C.37) variant has more infectivity and reduced susceptibility to

neutralization in comparison with other variants like Alfa (B.1.1.7) and

Gamma (P1).6 Lambda mainly spread in Peru, Chile, and Argentina.

Other countries in the region like Ecuador, Colombia, Brazil,

Venezuela, and Bolivia detected only a minimal number of cases,

possibly due to greater spread of other variants like Gamma, Alpha,

and Mu.

The rapid dispersion of lambda through South America has been

well documented. Nevertheless, knowledge of its dispersion in other

continents is still unclear. The description of spike mutations in terms

of their spread and outbreaks in other countries could be important

to understand the global behavior of pandemics. Here, the main focus

of the research is to discuss the diversity and spread of the lambda

variant (C.37) over time, focusing on genomic spike mutations and

distribution in the early stages.

2 | MATERIALS AND METHODS

Data of the genomic surveillance project used in the present study

were collected in Peru from March 2020 to September 2021. A total

of 9877 samples were collected gradually from all departments of the

country and sent to the National Institute of Health in Peru.

A random selection of samples with Ct < 30 was used for RNA

isolation using the Quick‐DNA/RNA Viral MagBead Kit (Zymo

Research) in the automated platform Opentrons OT‐2. The library

preparation was performed using the Illumina COVIDSeq Kit and

sequenced in the NextSeq. 550 (Illumina®) according to the

manufacturer's instructions.

The quality of reads was assessed and removal of reads

contamination was performed using FastQC v0.11.9 (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) and Kraken2 v2.0.8,

respectively.7 The filter reads were mapped to the NCBI reference

sequence (NC_045512) isolated from Wuhan using the software

package BWA v.0.7.17.8 The consensus sequence was obtained using

Samtools v.1.9 and IVAR v.1.9,10 Finally, the annotation of consensus

sequences was performed using NextClade (https://clades.

nextstrain.org/), and lineage designation was defined using the

software Pangolin v.3.1.2 (https://pangolin.cog-uk.io/).

For rapid detection and visualization of new mutations related to

spike protein, a Python script was developed (GitHub). A maximum‐

likelihood phylogenetic analysis was conducted using IQ‐TREE soft-

ware with 30 independent searches and 1000‐Lart replicates to assess

for node support.11 Data selected for phylogeny were composed of the

reference sequence Wuhan‐Hu‐1 (NC_045512) and all the sequences

available in the GISAID database (https://www.gisaid.org/) until

September 26, 2021 corresponding to the C.37 Pango lineage. In our

research, viral genomes with poor‐quality sequences were not included

in the downstream analysis. Data were filtered based on the N number

(<10%) and a minimum length of 28000 bp.

3 | RESULTS

We collected 7374 genomes from the GISAID database, filtering 170

genomes according to the parameters described previously. Here, we

describe the results of analysis of a total of 7204 complete genomes of

the Lambda variant from a wide variety of geographical sites. We

found that South American countries (3054 Peru and 1607 Chile) and

North American (1081, United States) countries have the highest

numbers of records. Of the total Peruvian sequences of C.37, 2791

were identified at our institution. In contrast, European countries have

reported lower cases (Spain, Germany, and France), and Oceania,

Africa, and Asia countries have shared only a few reports (Figure 1).

Epidemiological data available on the GISAID database indicate that

the first genome of Lambda was reported in South America and

collected on November 8, 2020 from Argentina (EPI_ISL_2158693).

Afterward, Peru and Chile reported cases of the first SARS‐CoV‐2

genome sequence of the Lambda variant in April 2021.

We found 8027 nucleotide mutations in all genomes analyzed;

after applying a filter, we obtained 177 mutations (2.2%) shared by

more than 40 genomes (Figure 2). These mutations were present in

nine genes of the virus: ORF1a (58), ORF1b (21), Spike (30), ORF3a

(12), ORF6 (6), ORF7 a (6), ORF8 (9), gen M (6), and gen N (17), and

intergenic regions (12). In phylogenetic analysis, we focus on spike

mutations and some nucleotide sharing in phylogenetic clades. We

detected eight mutations in the spike gene as the most frequent

(>6200 genomes) and emerged at the same time: G21786T,

C21789T, T22917A, the 22 299–22 319 deletion, T23031C,

A23403G, C23731T, and C24138A. Likewise, spike mutations with

less frequency are listed in Table 1. The emergence and disappear-

ance of some C.37 mutations over time are shown in Figure 2, and it

is clear that most of them were widely spread and conserved since

the appearance of the Lambda variant. More details of the

emergence of new mutations over time are provided in Supporting

Information: Data 1 and 2).

C.37 phylogenetics revealed that this lineage is widely present in

South American samples. Within the phylogenetic tree (Figure 3), we

can find the C.37.1 subgroup, the only sublineage described in C.37.
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F IGURE 1 Global distribution of the SARS‐CoV‐2 Lambda variant. Countries with a greater number of cases are represented in color: Peru and
France (red); Chile and Italy (blue); Argentina and Germany (light blue); Ecuador (yellow); Colombia (pink); Mexico and Spain (Orange); United States and
United Kingdom (Green); and Switzerland (purple). Other countries are shown in gray. SARS‐CoV2, severe acute respiratory syndrome coronavirus 2.

F IGURE 2 Mutations of the SARS‐CoV‐2 Lambda variant from November (2020) to September (2021) from all samples available on the
GISAID database. Each circle represents a sample. SARS‐CoV2, severe acute respiratory syndrome coronavirus 2.

MESTANZA ET AL. | 4691



Our results show that the C.37.1 sublineage is defined mainly by the

presence of North American and European samples, with R21I,

T572I, Q675H, and D253N, and other mutations in ORF1ab, ORF1b,

ORF3a, and N genes. From the phylogenetic tree, we infer that some

emergency mutations could help to delimit new sublineages over the

course of time. Among these mutations, we found E471Q, T572I,

Q675H, and I714V as possible emerging sublineages.

Mutation Q675H was found to be present in many emerging

clades in the phylogenetic analysis, the most representative clade is

composed of 430 genomes (Figure 3). It is also defined by the

presence of P51L and D253N mutations in ORF9b and Spike genes,

respectively. Other mutations like E471Q, T572I, and I714V emerged

in one clade, each composed of 58, 30, and 355 genomes,

respectively. The D253N mutation is of concern due to its constant

prevalence. More details about these new possible emerging clades

are shown in Figure 3.

Our analysis also found local outbreaks in Peru (Arequipa and

Northern Peru), Germany (North Rhine‐Westphalia), and some

European countries. All these outbreaks are defined by spike gene

mutations (Figure 4).

The proposed and designated C.37.1 sublineage of lambda

emerged in June and its dispersion continued up to August 2021. It

mainly spread in Europe, in Spain (64%), and Switzerland (16%). Two

main outbreaks of Lambda emerged in Peru, one of them occurring in

the Northern region (Piura and La Libertad city), delimited by the

presence of the T572I mutation, from July to September 2021.

Another one emerged in the Southern region (Arequipa), with the

Q675H mutation, from April to August 2021. Simultaneously, we

found the emergence of another outbreak in the North Rhine‐

Westphalia city (Germany) from February to June 2021, with the

Q675H mutation predominating.

TABLE 1 Spike mutation frequency with <6200 genomes

Mutations
Nucleotide Amino acidic Frequency

G23587T Q675H 596

C21727T ‐ 408

A23702G I714V 355

A23203G ‐ 224

C23277T T572I 212

21 749–21 787 ‐ 176

C21575T L5F 151

G21777A S71− 137

G21624T R21I 132

C21691T ‐ 98

C21621G ‐ 93

G22111A ‐ 87

22 301–22 321 ‐ 83

C21676T ‐ 70

G22973C ‐ 60

A25336C ‐ 59

G22346T ‐ 54

G24038T V826L 54

G22319A ‐ 51

G23593T ‐ 49

C21614T ‐ 43

G22801T ‐ 42

(A) (B)

F IGURE 3 (A) The C.37 phylogenetic tree showing the C.37.1 sublinage and potentially new subclades with E471Q, T572I, Q675H, and
I714V mutations. (B) Genomic representation highlighting relevant mutations by each gene.
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(A) (B)

(C)

(D)

F IGURE 4 Distribution of local outbreaks of the C.37 lineage worldwide. (A) Local outbreak in Northern Peru. (B) Local outbreak in Peru
(Arequipa) and Germany (North Rhine‐Westphalia). (C) Outbreak in Europe, emergence of the C.37.1 sublineage. (D) Number of genomes by
country.
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4 | DISCUSSION

Since the first report of the Lambda variant (C.37 lineage) in April

2021, several cases across all continents have been reported.

Information related to this VOI transmission and dispersion is still

scarce. Nevertheless, it is important to constantly track the new

mutations of the Lambda variant that are currently spreading despite

the emergence of variants of concern.

The prevalence of Lambda was high in two South American

countries: Peru and Chile (>1000 genomes). Nevertheless, lambda

variant remains less epidemiological important in other countries like

United States compared to high records of Alfa, Gamma,12 Delta, and

the recent introduction of Omicron.13 Novel reports of the spread of

this VOI to Europe14 led to the creation of a new sublineage called

C.37.1, but the spread of cases reported is very slow compared to

other VOCs circulating in Europe.15 In this sense, the emergence of

the Lambda variant was probably endemic and represented the

principal lineage prevalent during the second wave in Peru.3

Mutations detected in the Lambda variant show high individual

diversity, but there are 26 shared mutations among all populations of

the virus located in the genes Spike, ORF1a, ORF1b, and N, and the

intergenic region. The main mutations that characterize the Lambda

Spike gene are G75V, T76I, R246N, a deletion of seven amino acids

SYLTPGD in positions 247–253, L452Q, F490S, D614G, and

T859N,3 but we found possible additional emerging mutations such

as Q675H, V826L, I714V, L5F, R21I, T572I, and S71del. The

mutation Q675H appears in two clades: the first clade includes the

C.37.1 sublineage with additional spike mutations R21I and T572I.

The C.37.1 sublineage is currently spreading in Europe and America

(82 Spain, 59 USA, 20 Switzerland, 17 Germany, 8 Denmark,

7 Netherlands, 7 Belgium, 5 Dominican Republic, 4 Ireland,

3 Sweden, 3 Italy, 2 France, 1 Portugal, 1 Norway, 1 the United

Kingdom, 1 Mexico, and 1 Aruba). Nevertheless, our phylogenetic

analyses reveal that Q675H is not responsible for the monophyletic

clade; the spike mutations R21I and T572I cluster into a real

monophyletic clade. In a sense, we suggest withdrawing the mutation

Q675H as a biomarker to classify C.37.1 sublineage samples. The

second clade is monophyletic and carries the mutation Q675H in

genomes from Germany, Chile, Peru, and the United States. The

emergence of the same mutation in different contexts and countries

is probably related to gain transmission; genomes with this mutation

are currently active in Peru and Chile, and the spread of clade C.37.1

is slow in Spain and Switzerland.

The mutation V826L was associated with outbreaks in Europe

and North America; phylogenetic relations are very close to the

sublineage C.37.1. The T572I mutation that was found in La Libertad

city as a local outbreak (Figure 4) was previously demonstrated to

cause the shift of the coiled region to a helix.16 Nowadays, genomes

with V826L and some Q675H are misclassified as C.37.1 using the

Pango algorithm (https://cov-lineages.org/). Therefore, we consider

that it is crucial to reanalyze and focus on local spike diversity due to

possible limitations present in the PANGO lineage related to

identifying clades or convergent occurrence of mutations.17

In conclusion, by tracking the emergence of spike mutations of

Lambda, it is possible to detect past outbreaks in different countries.

Although the C.37 lineage is not currently epidemiologically relevant

in Europe or North America, due to the endemic behavior of this

variant in South America (Peru and Chile), it became the most

prevalent from February to July (2021) in the second wave. It

is essential to continue local genomic surveillance of Lambda spike

mutations, especially considering the late emergence of the Omicron

variant in South America.
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