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Abstract

Background: RNA editing encompasses a post-transcriptional process in which the genomically templated sequence
is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing
represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the
catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of
Apobec-1-mediated C-to-U RNA editing remain incompletely explored.

Results: Deep sequencing, data filtering and Sanger-sequence validation of intestinal and hepatic RNA from wild-type
and Apobec-1-deficient mice revealed 56 novel editing sites in 54 intestinal mRNAs and 22 novel sites in 17 liver mRNAs,
all within 3′ untranslated regions. Eleven of 17 liver RNAs shared editing sites with intestinal RNAs, while 6 sites are unique
to liver. Changes in RNA editing lead to corresponding changes in intestinal mRNA and protein levels for 11 genes.
Analysis of RNA editing in vivo following tissue-specific Apobec-1 adenoviral or transgenic Apobec-1 overexpression
reveals that a subset of targets identified in wild-type mice are restored in Apobec-1-deficient mouse intestine and liver
following Apobec-1 rescue. We find distinctive polysome profiles for several RNA editing targets and demonstrate
novel exonic editing sites in nuclear preparations from intestine but not hepatic apolipoprotein B RNA. RNA editing is
validated using cell-free extracts from wild-type but not Apobec-1-deficient mice, demonstrating that Apobec-1 is
required.

Conclusions: These studies define selective, tissue-specific targets of Apobec-1-dependent RNA editing and show the
functional consequences of editing are both transcript- and tissue-specific.
Background
There is considerable interest in understanding both the
repertoire of and mechanisms for RNA-DNA differences
reported from deep sequencing (RNA-seq) of mammalian
transcriptomes [1-6]. Among the mechanisms for
RNA-DNA differences is RNA editing, in which genomi-
cally templated RNA sequences are enzymatically altered.
The most prevalent type of editing involves a base change
from adenosine to inosine (A-to-I), mediated by adenosine
deaminases acting on (double-stranded) RNA (ADARs)
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[7]. A second, much less prevalent type of RNA editing
involves deamination of cytidine to uridine (C-to-U) in
single-stranded RNA, mediated by Apobec-1, a member
of the APOBEC family of cytidine deaminases [8].
The prototype for mammalian C-to-U RNA editing is
apolipoprotein B (apoB) RNA, where Apobec-1-mediated
deamination of a CAA codon introduces a translational
termination (UAA) codon in the edited transcript. ApoB
mRNA editing is a critical adaptive pathway for lipid
transport in both the mouse intestine and liver, and
exhibits distinctive developmental and metabolic regulation
[9], mediated via the expression and stoichiometric
interactions of two dominant trans-acting proteins,
Apobec-1 and Apobec-1 complementation factor (ACF),
although other proteins are implicated [9-12].
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Although much is known about the regulation and
functional consequences of apoB mRNA editing, re-
markably little is known about the range of other targets
of C-to-U RNA editing. A recent transcriptome-wide
analysis of mouse enterocytes identified 32 novel
(non-apoB) Apobec-1-dependent editing targets, all within
3′ untranslated regions (3′ UTRs) [13]. These newly
identified RNA targets share features with apoB
RNA, including a preference for cytidines embedded
in AU-rich regions along with variations of a downstream
11-nucleotide cassette referred to as a 'mooring sequence'
with the consensus sequence WRAUYANUAU [13,14].
Those findings raise the corollary questions of whether
any of the novel editing targets identified in mouse
intestine are also modified in other tissues expressing
Apobec-1, particularly the liver, and, if so, are they
modified at the same site and to the same extent, and
do these editing events lead to differences in mRNA
or protein levels?
Here we used stringent filtering and sequence validation

to reveal multiple new sites of Apobec-1-dependent
C-to-U RNA editing, with examples of both tissue-specific
and common targets (Figure 1). We show that RNA editing
led to corresponding changes in mRNA and protein
expression in a subset of mRNAs. We also find enrichment
in the edited forms of certain mRNAs in cytoplasmic
compared to nuclear fractions. We further show that
mRNA editing regulates polysome distribution of a
subset of targets. We demonstrate editing of some
but not all novel targets using cell-free extracts from
wild-type (WT) but not Apobec-1-deficient mice,
demonstrating that Apobec-1 is necessary for RNA
editing. Taken together, our findings demonstrate that
C-to-U RNA editing exerts distinct tissue-specific
consequences, including a spectrum of outcomes on
protein expression.

Results
Overview
We undertook a comprehensive comparison of Apobec-
1-dependent C-to-U RNA editing, starting with
transcriptome-wide analyses of small intestine mucosa
and liver from WT and Apobec-1-/- mice (Figure 1). We
then extended those analyses to other lines of mice with
low or high transgenic intestinal overexpression of
Apobec-1 in either an Apobec-1-/- (that is, Apobec-1Int/O)
or WT background (Apobec-1Int/+) [15] (Figure 1). We
further studied livers from Apobec-1-/- mice following
adenoviral delivery of Apobec-1 (ad-Apobec-1) or a
LacZ control virus (Figure 1). This strategy permitted an
evaluation of tissue-specific (that is, intestine versus liver)
and dose-dependent (that is, WT versus Apobec-1Int/+and
Apobec-1Int/OLo versus Apobec-1Int/OHi) changes in C-to-U
RNA editing at different levels of Apobec-1 expression [15].
Identification of novel intestinal and hepatic Apobec-1-
dependent editing targets
The first task was to examine the 70 to 200 million
RNA-seq reads for intestine and liver from WT and
Apobec-1-/- mice identifying mRNA sequences with
C-to-U differences. C-to-U mismatches found in both
WT and Apobec-1-/- mice as well as sites with less
than three reads were excluded from further analysis.
Results for WT intestine revealed a total of 438 putative
editing sites (including apoB), 372 (85%) of which were
located in the 3′ UTR, and with the remainder residing in
5′ UTR (7; 1.6%), exonic (7; 1.6%) or intergenic regions
(52; 12%). We selected an arbitrary cutoff of 30% C-to-U
editing in 3' UTR calls and then validated 56 of 70 calls
(80% true positive) in 54 RNAs (App mRNA was edited
at two sites) (Tables 1 and 2) by Sanger sequencing,
including cohort validation of a subset of 23 of the 31
RNA targets identified by Rosenberg et al. [16] (74% true
positive) (Table 1). Of the seven exonic sites (six RNAs),
two were in apoB (one novel), two others were previously
unreferenced SNPs, and the remaining three were false
positives based on Sanger sequencing (Table S1A in
Additional file 1). C-to-U RNA editing efficiency among
the novel 3′ UTR targets ranged from 31 to 84% (Table 2).
Together the results (Tables 1 and 2) identify 54 validated
Apobec-1-dependent RNA editing targets from mouse
intestine, 32 of which have not been reported previously.
We attempted to account for discordances between our

results and those of Rosenberg et al. [13] (Table S1B in
Additional file 1). In two instances, miscalled bases reflected
the spurious mapping of reads with errors to a small re-
gion ('island') of otherwise unexpressed paralogs of an
unedited expressed gene. In one instance the location of
the editing site was within a homopolymeric stretch of
six thymidine residues (Table S1B in Additional file 1),
known to be vulnerable to nucleotide insertions [17].
Four targets (BC003331, Ptpn3, Rb1 and Abcb7) were
below our 30% editing threshold, but Sanger sequen-
cing nevertheless validated these mRNAs as Apobec-1
targets (Table S1C in Additional file 1). Finally, six
additional targets were originally identified in isolated
enterocytes [13], rather than from mucosal RNA as in the
current study. We then investigated whether the cellular
origin of the RNAs might account for these discordances.
Sites in Casp6 and Atf2 were sequence-validated using
isolated enterocyte RNA (Table S1D in Additional file 1).
The other four targets were not validated, for reasons that
remain to be determined.
Turning to hepatic RNA targets, we identified a total

of 39 putative editing sites, of which 27 were located in
3′ UTRs, with the remainder located in 5′ UTR (2; 5%),
exonic (6; 15%) and intergenic regions (4; 10%). Because
our filtering algorithms indicated fewer putative editing
targets in the liver compared to the small intestine, we



Figure 1 RNA-seq identification of Apobec-1-dependent RNA-editing targets. (A) RNA-seq procedure and analyses of 3' UTR C-to-U calls
identified in wild-type (WT) small intestine and liver. Five murine lines with distinctive Apobec-1 expression profiles were used for intestinal
transcriptome analysis. Apobec-1-/- mice exhibit no intestinal or hepatic apoB RNA editing. Apobec-1Int/+, intestine-specific Apobec-1 transgenic
mice [15], were crossed with Apobec-1-/- mice generating Apobec-1Int/OHi and Apobec-1Int/OLo transgenic mice, with high (Hi) and low (Lo) levels
of Apobec-1 expression [15]. WT hepatic transcriptomes were compared to Apobec-1-/- mice. Apobec-1-/- + ad-Apobec-1 or ad-LacZ indicates
Apobec-1-/- mice injected with adenovirus expressing Apobec-1 or Lac Z. Overexpression of Apobec-1 in the liver restores apoB RNA editing.
Uniquely mapped reads were aligned to the C57BL/6 mouse genome (NCBI37/mm9) containing 23,334 reference genes. To minimize false positive
calls, sites identified in both WT and Apobec-1-/- mice, known SNPs from dbSNP128 and sites lying outside the gene boundaries were excluded. The
remaining sites were corrected for strand sense and qualified when supported by 3 minimum non-identical reads, a minimum frequency of 10% with
a minimum coverage of 10 reads. An arbitrary cutoff of 30% editing frequency was set to sequence-validate calls identified in the intestine. Due to the
low number of calls identified in WT liver, all calls (27) were sequenced. (B) Numbers of C-to-U editing events and RNAs Sanger-sequence-validated
(SSV). Blue circles represent the 56 3' UTR C-to-U calls identified in 54 WT intestine RNAs. Red circles show the 22 validated C-to-U sites identified in 17
hepatic RNAs. The shaded regions represent the 11 C-to-U sites or RNAs identified in both small intestine and liver. Forty-five sites were specific to the
intestine, 11 were liver-specific.
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undertook sequence validation of the entire set and con-
firmed 22 of 27 3′ UTR sites (81% true positive) distrib-
uted across 17 novel RNA targets (Table 3). Of these 17
liver targets, 11 were also verified by sequence analysis
in small intestine, and 6 were unique to liver (Table 3
and Figure 1). Of the 11 RNAs edited in both liver and



Table 1 Validation cohort of 3’ UTR Apobec-1 RNA targets

Rosenberg et al. [16] Current

RNA Chr Position Reference base Editing frequency Sanger RNA-seq Reads Sanger Edited/total

1. Sult1d1 5 87984364 (-) G 79% 82% 92% 26 91% (20/22)

2. Mfsd7b 1 192830761 (-) G 78% 78% 148 50% (10/20)

3. Aldh6a1 12 85772761 (-) G 56% 68% 38 50% (10/20)

4. Usp25 16 77116537 (+) C 50% 68% 44 58% (11/19)

5. Serinc1 10 57235791 (-) G 75% 66% 50 60% (12/20)

6. Tmem30a 9 79617629 (-) G 55% 65% 29 61% (11/18)

7. Bche 3 73442586 (-) G 36% 61% 52 64% (14/22)

8. 2010106E10Rik X 109671648 (+) C 46% 61% 544 54% (12/22)

9. Gramd1c 16 43981376 (-) G 29% 59% 68 68% (13/19)

10. Cmtm6 9 114658289 (+) C nd 54% 305 75% (15/20)

11. BC013529 1 152209582 (-) G 45% 50% 35 40% (8/20)

12. Cyp4v3 8 46391931 (-) G 38% 36% 49% 3381 29% (5/17)

13. Sh3bgrl X 106355759 (+) C 30% 20% 43% 70 40% (8/20)

14. Clic5 17 44416335 (+) C 31% 37% 1243 23% (5/22)

15. App 16 84954758 (-) G 21% 34% 221 4% (1/22)

App 16 84955113 (-) G 21% 30% 1539 21% (4/19)

16. Hprt1 X 50374459 (+) C 22% 31% 168 20% (4/20)

17. B2m 2 121978638 (+) C 18% 28% 803 27% (6/22)

18. Tmbim6 15 99239051 (+) C 20% 24% 1145 30% (6/20)

19. Rnf128 X 136207009 (+) C 20% 24% 779 18% (4/22)

20. Rrbp1 2 143811725 (-) G 38% 22% 269 5% (1/20)

21. Sep15 3 144259976 (+) C 54% 15% 14% 738 23% (5/22)

22. Ank3 10 69486962 (+) C 36% 13% 400 5% (1/21)

23. Lrrc19 4 94304303 (-) G 26% 11% 26 4% (1/22)

(+) Sense strand.
(-) Antisense strand.
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small intestine, all revealed lower levels of editing in liver
(Serinc1: 60 to 66% in intestine by Sanger/RNA-seq
versus 9.5 to 38% in liver by Sanger/RNA-seq; Cd36: 85
to 84% in intestine by Sanger/RNA-seq versus 23 to 24%
in liver by Sanger/RNA-seq). Most of the shared liver-
intestine targets (7/11) were below our threshold for
RNA-seq, although Sanger sequencing revealed editing
ranging from 4 to 32% (Table 3). Of the six putative
exonic editing sites, two (apoB and a novel site in
BC005561), were Sanger sequence validated, while four,
not validated by Sanger sequencing, were considered as
false positives (Table S1E in Additional file 1).

Sequence context features for C-to-U RNA editing
Prompted by findings that a close or exact match to the
mooring sequence in apoB RNA was present in almost
every other Apobec-1-dependent editing site [16], we
examined the flanking sequence of editing sites identified
above for features that might explain why some RNAs are
edited at much higher efficiency than others. We found
the region flanking edited 3′ UTRs to be significantly
more AU-rich than a random set of 3′ UTRs in both
intestine and liver (Figure S1A,B in Additional file 1),
which was confirmed by examination of a 101-nucleotide
region overlapping the edited sites (Figure S1C,D in
Additional file 1). Nearest-neighbor nucleotide analysis
revealed a strong preference for adenosine and uridine
both upstream (-1) and downstream (+1) of the editing
site for both intestinal and liver targets (Figure S1E,F in
Additional file 1). However, mismatches in the mooring
sequence, which are required for apoB RNA editing [14],
did not correlate with intestinal target editing efficiency.
For example, Rab1 RNA contained a perfect match to the
consensus mooring site and demonstrated 32% editing,
while Reps2 RNA contained two mismatches yet exhibited
75% editing (Table S2 in Additional file 1). Thus, the
immediate sequence context favors Apobec-1-dependent
C-to-U RNA editing, but does not distinguish editing
targets by tissue type and does not explain the differences
in editing efficiency.



Table 2 Wild-type intestine 3' UTR Apobec-1 RNA targets (>30% editing efficiency)

RNA Chr Position Reference base RNA-seq Reads Sanger Edited/total

1. Cd36 5 17288955 (-) G 84% 44 85% (17/20)

2. Reps2 X 158851906 (-) G 75% 12 50% (10/20)

3. Siglec5 7 50614573 (+) C 72% 43 10% (2/20)

4. Fmn1 2 113556683 (+) C 71% 17 65% (13/20)

5. 0610010O12Rik 18 36562329 (+) C 67% 2900 55% (11/20)

6. Mcmbp 7 135841366 (-) G 63% 155 30% (7/23)

7. Man2a1 17 65104330 (+) C 60% 119 15% (3/20)

8. Herc2 7 63486942 (+) C 60% 15 5% (1/20)

9. Ddx60 8 64516163 (+) C 59% 22 30% (6/20)

10. Tmem195 12 38308269 (+) C 56% 466 44% (11/25)

11. Mtmr2 9 13610423 (+) C 53% 19 25% (5/20)

12. Cyp2c65 19 39168358 (+) C 50% 1011 9.5% (2/21)

13 Cnih 14 47395982 (-) G 48% 25 59% (13/22)

14. Atp11c X 57477477 (-) G 46% 13 5% (1/19)

15. Sh3bgrl X 106356686 (+) C 45% 83 35% (7/20)

16. Fgl2 5 20883372 (+) C 42% 72 33% (7/21)

17. Nr1d2 14 19036726 (-) G 39% 82 25% (5/20)

18. Tmem135 7 96290044 (-) G 39% 28 20% (4/20)

19. Slc4a4 5 89668527 (+) C 38% 21 45% (9/20)

20. Dpyd 3 119134696 (+) C 38% 66 25% (5/20)

21. Ttc9c 19 8885447 (-) G 37% 16 18% (4/22)

22. Yes1 5 32989151 (+) C 36% 22 30% (6/20)

23. 1110020G09Rik 15 9038469 (+) C 36% 22 10% (2/20)

24. Actr2 11 19963383 (-) G 35% 52 41% (9/22)

25. Kctd12 14 103379573 (-) G 35% 63 28% (5/18)

26. Nr3c1 18 39571801 (-) G 33% 18 17% (4/24)

27. Skil 3 31018375 (+) C 33% 16 5% (1/20)

28. Ccny 18 9315769 (-) G 32% 25 25% (5/20)

29. Rab1 11 20125336 (+) C 32% 508 15% (3/20)

30. mCG_2776 6 8378189 (+) C 31% 36 20% (4/20)

31. Lrba 4 9503468 (+) C 31% 37 6% (1/16)

32. Dek 13 47181166 (-) G 31% 26 5% (1/20)

(+) Sense strand.
(-) Antisense strand.
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Apobec-1 abundance modulates tissue-specific editing
efficiency
Previous work demonstrated that transgenic liver
overexpression of Apobec-1 produced additional editing
sites (so called ‘hyperediting’) in apoB mRNA and in other
targets [18,19]. In order to understand the importance of
Apobec-1 expression levels in editing target selection and
efficiency, we generated intestinal Apobec-1 transgenic
mice on either a WT or Apobec-1-/- background [15]
and compared editing efficiencies at different levels of
transgene expression among shared RNAs from the
indicated genotypes. Specifically, we compared editing
efficiencies of shared targets between WTand Apobec-1Int/+

and editing efficiencies of RNA targets shared between
Apobec-1Int/OLo and Apobec-1Int/OHi. Among Apobec-1-
dependent editing targets in WT mice (Table 2), a subset
demonstrated increased RNA editing in response to
increasing levels of Apobec-1 expression (Table S3A in
Additional file 1). For example, ATP6ap2 demonstrated 28
to 30% editing in WT and 57 to 62% with transgenic over-
expression (Apobec-1Int/+), but no detectable editing in
Apobec-1-/- mice. Similarly, editing efficiency of ATP6ap2
increased in Apobec-1Int/Hi versus Apobec-1Int/Lo mice
(Table S3A inAdditional file 1). The fold increase observed



Table 3 Wild-type liver 3’ UTR Apobec-1 RNA targets

RNA Chr Position Reference base RNA-seq Reads Sanger Edited/total

1. Serinc1 10 57235791 (-) G 38% 186 9.5% (2/21)

2. Dcn* 10 96980667 (+) C 30% 104 14% (3/21)

Dcn* 10 96980535 (+) C 14% 370 14% (3/21)

3. Cd36 5 17288955 (-) G 24% 45 23% (5/21)

4. Cybb* X 9012717 (-) G 23% 13 18% (4/22)

Cybb* X 9012852 (-) G 23% 13 4.5% (1/22)

Cybb* X 9013390 (-) G 14% 21 14% (2/16)

5. Colec10* 15 54297696 (+) C 18% 17 5% (1/20)

Colec10* 15 54295026 (+) C 13% 39 5% (1/20)

6. Ube2l3* 16 17152203 (-) G 16% 271 45% (9/20)

7. Abcc9* 6 142538042 (-) G 14% 28 14% (3/22)

Abcc9* 6 142538035 (-) G 11% 52 18% (4/22)

8. Aldh6a1 12 85772761 (-) G 12% 854 14% (3/22)

9. Tmem30a 9 79617629 (-) G 11% 95 8% (2/23)

10. Mpeg1* 19 12539179 (+) C 11% 66 5% (1/21)

11. Usp25 16 77116537 (+) C BTa 12 9% (2/22)

12. Sh3bgrl X 106355759 (+) C BTb,c 49 17% (3/18)

13. Cmtm6 9 114658289 (+) C BTb,c 147 4% (1/22)

14. Sep15 3 144259976 (+) C BTb 379 19% (4/19)

15. Cyp4v3 8 46391931 (-) G BTb 350 14% (3/22)

16. Rnf128 X 136207009 (+) C BTb,c 260 32% (7/22)

17. B2m 2 121978638 (+) C BTb 8013 9% (2/21)

BT, below threshold.
aLess than three reads supporting C-to-U editing.
bLess than 10% C-to-U editing.
cDoes not have one read per strand.
(+) Sense strand.
(-) Antisense strand.
RNAs with asterisk are liver-specific (compare Figure 1).
Remaining RNAs are shared between liver and intestine.
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was variable among RNAs, ranging from 1.2- (Usp25)
to 4-fold (Rab1) in WT versus Apobec-1Int/+ mice and
from 3 to 80 fold in Apobec-1Int/Lo versus Apobec-1Int/Hi

mice. Occasional discordance was found for editing
efficiency as inferred from RNA-seq versus Sanger
sequencing. For example, Atp6ap2 in Apobec-1Int/Lo

mice demonstrated 52% editing by RNA-seq but only
4.5% by Sanger sequencing (1/22 clones edited). Overall,
most but not all RNA targets demonstrated increased
editing efficiency with increasing Apobec-1 expression
(Table S3A in Additional file 1).
Examination of eight hepatic RNA editing targets

identified in both WT and Apobec-1-/- mice following
ad-Apobec-1 transduction revealed increased editing
efficiencies for all shared targets from two- (Tmem30a)
to nine-fold (Serinc1) (Table S3B in Additional file 1).
Additional C-to-U editing sites (hyper-editing) were also
detected (Table S3C in Additional file 1); among the eight
shared targets, seven RNAs exhibited from one to nine
additional editing sites (Table S3C inAdditional file 1). In
addition, as noted above, alignment of nucleotides
flanking these edited sites revealed a strong preference
for A or U immediately upstream (96%) and down-
stream (92%) of the edited site, respectively (Figure S1F
in Additional file 1) and, as noted above, alignment with
the mooring sequence failed to reveal a predictive cor-
relation with hepatic editing efficiency (Table S4 in
Additional file 1).

In vitro validation of Apobec-1-dependent RNA editing
Because C-to-U RNA editing of a synthetic apoB RNA
template can be accomplished using recombinant
Apobec-1 and ACF, we asked if editing of these novel
targets might also be replicated in an in vitro system.
We used a cell-free in vitro editing assay in which RNA
from Apobec-1-/- liver was incubated with tissue S100
extract and analyzed by poisoned primer extension
analysis [9]. This strategy was employed on two candidate
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RNAs, selected based on their prior identification in small
intestine [16] and independently in brain [4]. We found
that Dpyd was approximately 30% edited (Figure 2A), while
Tmbim6 site 99239051 demonstrated almost complete
editing with increasing amounts of WT extracts. For both
RNAs, editing was absent in extracts prepared from
Apobec-1-/- mice (Figure 2B). C-to-U RNA editing
could not be replicated using recombinant Apobec-1
and ACF alone (Figure 2B), conditions previously
shown to support in vitro RNA editing of apoB [9]. We
note that other targets, including Cmtm6, Sh3bgrl,
Serinc1 and Cyp4v3, failed to replicate C-to-U editing in
this cell-free system (data not shown). Together these
Figure 2 In vitro editing assay of 3' UTR targets. Total hepatic RNA from
hepatic S100 extract. RNA was used for cDNA synthesis followed by PCR ampli
Dpyd RNA editing of cytidine 119134696 was determined by poisoned primer
product (U 4690) is indicated to the right. Vertically is shown the sequence sur
editing, the primer extension reaction proceeds until the next C (represented in
RNA editing of cytidine 99239051. Total hepatic RNA from Apobec-1-/- mice wa
amounts of hepatic WT S100 extract. C-to-U editing of cytidine 9051 was deter
surrounding the editing site. The edited cytidine (9051) is shown in red. Cytidin
terminating at cytidine 9035.
findings show that Apobec-1 is required for C-to-U RNA
editing and suggest that other factors in addition to ACF
may be required for target selectivity and in vitro C-to-U
deamination.

Nucleo-cytoplasmic distribution of edited RNAs
Earlier studies demonstrated that apoB RNA undergoes
post-transcriptional RNA editing in the nucleus of rat liver
[20]. Those findings demonstrated that C-to-U RNA edit-
ing was virtually complete on spliced, polyadenylated
intranuclear apoB RNA and that little if any additional
editing took place in the cytoplasmic compartment [20].
We confirmed that >90% intestinal apoB RNA was edited
Apobec-1-/- mice was incubated with increasing amounts of WT
fication of Apobec-1 3′ UTR targets using specific targets. (A) Endogenous
extension. The relative mobility of the unedited (C 4696) and edited
rounding the editing site. The targeted cytidine is indicated in red. Upon
green). The 32P-labeled primer is shown in blue. (B) Endogenous Tmbim6

s incubated with recombinant Apobec-1 and ACF or with increasing
mined by poisoned primer extension. To the right is shown the sequence
e 9043 also appears to be targeted, resulting in an extension product
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at the canonical site (6666) in both nucleus and cyto-
plasm, but in addition observed several subpopulations of
edited apoB RNAs with distinctive nucleo-cytoplasmic
distributions (Figure 3A). Specifically, intestinal nuclear
Figure 3 Nucleo-cytoplasmic distribution of Apobec-1-dependent mR
hepatic (B) edited apoB RNA. A 738 bp amplicon (nucleotides 6,508 to 7,24
sequenced. Twenty-two clones from each subcellular fraction (from three i
graphic representation of percentage of edited clones in nuclear and cytop
apoB RNA are indicated with green circles; cytidines identified in cytoplasm
with the nucleotide position to the left. (C) Nuclear-cytoplasmic distributio
validated by Sanger sequencing. A 550 bp (ATP6ap2) and a 667 bp (Usp25
analyzed by sequencing 19 to 22 clones. For both ATP6Ap2 and Usp25 RN
apoB RNA contained a cluster of C-to-U sites distributed
between positions 6702 and 6968 in addition to the
canonical 6666 site (Figure 3A). None of these sites was
edited in liver RNA (Figure 3B). Unexpectedly, intestinal
NA editing targets. (A,B) Distribution of WT small intestine (A) and
6) from nuclear and cytoplasmic apoB mRNA was cloned and
ndependent nuclear-cytoplasmic isolations) were analyzed. Left panel:
lasmic apoB RNA. Right panel: targeted cytidines identified in nuclear
ic apoB RNA are represented by blue circles. All cytidines are aligned
n of intestinal Apobec-1 3′ UTR targets identified by RNA-seq and
) amplicon were generated from nuclear and cytoplasmic RNA and
As, the edited RNA is predominantly exported to the cytoplasm.
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nuclear apoB RNA also demonstrated extensive (>90%)
exonic C-to-U editing at positions 6583 and 6659. These
sites were again not edited in liver RNA (Figure 3B). RNA
editing at position 6583 modifies an ACA to an AUA
codon, resulting in a threonine to isoleucine substitution,
while editing at position 6659 (UAC to UAU) is a silent
modification (Tyr-Tyr) (Figure 3A). In addition, a much
lower proportion (19 to 33%) of cytoplasmic apoB RNA
contained these two additional edited exonic sites (6583,
6659) compared with what was observed (approximately
90%) in the nucleus.
We next turned to the nucleo-cytoplasmic distribution

for other editing targets. For Atp6ap2, we identified two
edited sites (positions 12193607 and 12193524; Figure 3C).
Atp6ap2 RNA edited at both sites was detected only in the
cytoplasm and at low frequency (4%, 1/22 clones edited).
By contrast, Atp6ap2 RNA containing only the edited site
12193607 was abundantly represented in cytoplasm
(45%, 10/22 edited clones) compared to nucleus (23%, 5/22
edited clones sequenced). For Usp25, we identified only a
single RNA population edited at site 77116537 and found
68% of the transcripts containing the edited site in
cytoplasm (13/19 edited clones) but only 18% editing
in nuclear transcripts (4/22 edited clones). Among the
testable hypotheses to account for these observations
is that RNA editing of Atp6ap2 and Usp25 may favor
cytoplasmic export or influence the pathways modulating
turnover of the edited RNA. The extent to which other
edited RNAs show differences in subcellular distribution
remains to be determined.

Apobec-1-mediated changes in mRNA abundance and
microRNA seed sites
We next asked whether RNA editing exerts functional
effects on the modified transcripts. We undertook
transcriptome-wide comparison of intestinal mRNA
abundance of the 58 validated editing targets, of
which 32 derived from Table 2, 22 from Table 1, and
4 from Table S1B in Additional file 1. The data show that
approximately half (27) were significantly down-regulated
in Apobec-1-/- intestine (lower FPKM (fragments per
kilobase of exon per million), as inferred from RNA-seq
alignment frequency; see Materials and methods) and a
subset of these same samples were validated with quantita-
tive PCR (Table S5 in Additional file 1). The remainder
showed either no change or (in a single case, Dek) a trend
to increased mRNA abundance (more than two-fold) in
Apobec-1-/- mice (Table S5 in Additional file 1). Simi-
lar analysis of liver RNA revealed one target (Cd36)
down-regulated (more than two-fold) in Apobec-1-/-, but
the majority of targets (11/16) showed no change in
expression (Table S6 in Additional file 1). Among the 335
differentially expressed mRNAs (Figure 4A), a subset of
17 demonstrated C-to-U RNA editing, although there was
no correlation between the extent of editing and mRNA
abundance (Figure S2A,B in Additional file 1).
Several studies show that A-to-I RNA editing modifies

microRNA (miRNA) sites and influences mRNA
abundance [5,21,22]. Accordingly, we investigated the
possibility that C-to-U editing might create, eliminate
or change the affinity of miRNA seed sequences that
in turn might influence gene expression. For intestinal
targets, the Siglec 5 editing site is contained within
four miRNA seed motifs (Table S7 in Additional file 1).
Interestingly, loss of Siglec5 RNA editing in Apobec-1-
deficient mice resulted in a nine-fold decrease in mRNA
abundance (Table S5 in Additional file 1) and not only
eliminates four of those miRNA sites (from WT mice),
but simultaneously creates five new seed motifs (Table S7
in Additional file 1). By contrast, C-to-U editing creates
miRNA seed motifs in five other RNA targets (App, Cnih,
Β2m, Mtmr2 and Sh3bgrl) that show no change in mRNA
expression (Table S7 in Additional file 1). For liver samples,
loss of CD36 editing in Apobec-1-/- mice led to a two-fold
mRNA decrease compared to WT samples, yet simul-
taneously eliminated a miRNA seed motif (Table S8 in
Additional file 1). Furthermore, RNA editing created
miRNA seed motifs in three other hepatic targets whose
mRNA abundance either increased in Apobec-1-/- mice or
remained unchanged (Table S8 in Additional file 1).
Taken together, the findings reveal no consensus mechan-
ism by which C-to-U editing within the 3′ UTR alters
miRNA binding sites and influences mRNA abundance.

Apobec-1-dependent C-to-U RNA editing influences
protein abundance
Since we did not observe a consensus mechanism by
which RNA editing regulates mRNA abundance, we
asked if RNA editing might influence translational
efficiency. We turned to a proteome-wide approach
using mass spectrometry-based shotgun proteomics in
conjunction with metabolic labeling for quantification
to identify 893 proteins that were differentially expressed
in small intestine from WT versus Apobec-1-/- mice
(Table S9 in Additional file 1). Comparison with our
transcriptome-wide analyses revealed 26 differentially
expressed proteins encoded by an RNA target of
Apobec-1 dependent C-to-U editing (Figure 4A; Table S10
in Additional file 1). Using a two-fold change in protein
expression as a cutoff, we demonstrated a concordant in-
crease in both mRNA and protein expression in WT com-
pared to Apobec-1-deficient mice in 10 targets (Table S10
in Additional file 1). One additional target (Ido1)
showed a decrease in both RNA and protein abundance
in WT compared to Apobec-1-deficient mice (Tables S10
and S11 in Additional file 1). We confirmed this pattern
of differential intestinal protein expression for two targets,
Cd36 (which showed the greatest magnitude of C-to-U



Figure 4 Apobec-1 editing targets in relation to RNA and protein expression. (A) Schematic representation of Apobec-1-dependent editing
targets in relation to RNA and protein expression. Total proteins were extracted from WT Apobec-1-/- intestine and submitted for proteomic analysis
(Materials and methods). The relative expression and editing status of the RNAs encoding the differentially expressed proteins were analyzed in parallel.
Data comparison between WT and Apobec-1-/- data sets revealed 238 Apobec-1 RNA editing targets (blue circle), 335 differentially expressed RNAs
(green circle) and 893 differentially expressed proteins (orange circle). Overlapping these three groups led to the identification of only 11 edited RNAs
showing altered expression concomitant with altered protein level: 10 RNAs and proteins were up-regulated in WT (blue upward arrow) and one RNA
and its protein product were down-regulated in WT compared to Apobec-1-/- (red downward arrow). (B) Reduced expression of Cd36 in intestinal
extracts from Apobec-1-/- mice. Total cell lysates from three individual WT mice and four individual Apobec-1-/- animals were separated by SDS-PAGE
probed with an anti-Cd36 and anti-α-actin antibody. * Indicates p < 0.05 for difference in protein abundance (C) Trend to increased expression of Ido1
protein expression in western blots of intestinal extracts from two individual Apobec-1-/- mice and two individual WT mice, normalized to α-actin as a
loading control. Error bars represent mean ± se of relative protein abundance by genotype.
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RNA editing, 84%) and Ido1 (Figure 4B,C). Cd36 RNA was
demonstrated to be approximately two-fold down-
regulated in Apobec-1-/- intestine (FPKM and quantitative
PCR) (Table S5 in Additional file 1). Western blot analysis
showed an approximately four-fold decrease of Cd36 pro-
tein expression in Apobec-1-/- intestine (Figure 4B). Analysis
of Ido1 revealed a trend towards increased protein expres-
sion in Apobec-1-/- intestine, consistent with the find-
ings from the proteomic survey (Figure 4C).
In seeking an explanation for the changes in protein
expression, we considered the possibility that RNA edit-
ing influenced mRNA translation by shifting transcript
distribution within translating ribosome subfractions.
WT intestinal extracts revealed 95% apoB RNA segregated
into polysomal fractions while apoB RNA from Apobec-1-
deficient mice was distributed into both polysome and
monosome fractions (Figure 5A,B). We extended this
analysis to editing targets that demonstrated alterations in



Figure 5 Polysomal distribution of Apobec-1 mRNA editing
targets. (A) Absorbance profile (A260) of fractions harvested from
WT (green) and Apobec-1-/- (blue) mouse small intestine cytoplasmic
extracts separated on sucrose gradients. Cytoplasmic extracts (two
to five preparations) were prepared, each with three to four animals
per genotype. (B) Sucrose gradient fractionation of apoB RNA from
WT (green) and Apobec-1-/- small intestine cytoplasmic extracts
(blue). ApoB RNA content in each fraction was analyzed in triplicate
by quantitative PCR. Data were normalized to the expression of 18S
mRNA and expressed as percentage of total apoB RNA. Data
represent the mean of four to five separate isolations. (C-F)
Polysomal distributions of Cyp2c65, Hpgd, Cyp2j6 and Ido1 RNAs,
respectively, evaluated by quantitative PCR as described above. WT
distribution (green), Apobec-1-/- distribution (blue).
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both mRNA and protein abundance. Cyp2c65 RNA from
WT mice fractionated predominantly into polysomes but
Apobec-1-deficient mice showed distinctive populations of
RNA associated with monosome fractions (Figure 5C). By
contrast, intestinal Hpgd mRNA revealed virtually over-
lapping profiles in WT and Apobec-1-/- mice (Figure 5D).
Intestinal Cyp2j6 mRNA associated mostly with high
molecular weight polysome fractions in WT animals but
revealed a shift into lighter fractions in Apobec-1-/- mice
(Figure 5E). Intestinal Ido1 mRNA demonstrated a shift
into monosome-associated fractions in Apobec-1-/-

mice (Figure 5F). These findings together suggest that
Apobec-1 and C-to-U RNA editing individually influence
polysome loading of a subset of target RNAs (including
apoB), and (with the exception of Ido1 whose protein
abundance was increased in Apobec-1-deficient mice)
suggest a plausible mechanism whereby editing might
selectively influence protein expression (Table S10 in
Additional file 1).

Discussion and conclusions
Here we report a comprehensive, comparative analysis
of Apobec-1-dependent C-to-U RNA editing in mouse
intestine and liver and show that the functional effects
are both transcript- and tissue-specific. These tissues
were selected because they represent the dominant sites
of expression of both Apobec-1 as well as its canonical
target, apoB. Our approach included Sanger sequence
validation to reinforce the confidence of the findings
(74 to 81% true positive), an important consideration
in view of recent transcriptome-wide analyses reporting
approximately 49% false discovery rates for non A-to-I
RNA editing [5]. Given that we restricted our analysis to 3′
UTR targets and for the small intestine to targets showing
at least 30% C-to-U RNA editing, the findings represent a
conservative view of the scale of Apobec-1-dependent
C-to-U RNA editing and its functional implications.
We validated most but not all the findings of

transcriptome-wide Apobec-1-mediated RNA editing in
enterocytes [16]. Some of the discordances were
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accounted for by differences in the optimized parameters
[23] used in the current report, including filters for
sequence quality, strand bias, distance to end of reads,
paired-end reads and genomic single nucleotide variants.
But it remains possible that other, cell-specific events,
including nutritional or circadian factors, might contribute
to the differences noted. In addition, the current findings
show a restricted subset of shared RNA editing targets
between intestine and liver. Other work showed 25%
overlap in RNA editing targets in mouse liver and
adipose [2], while another study found approximately 53
to 61% concordance in RNA editing (overwhelmingly
A-to-I) in seven mouse tissues (including brain and
liver but not small intestine) [4]. Nevertheless, among
those studies and in the present report, there was
conservation in the editing sites identified within each
target. The demonstration of fewer C-to-U editing targets
in the liver (27) compared to small intestine (372), as well
as the reduced range of hepatic (<45%) versus intestinal
(approximately 85%) editing efficiency, further emphasize
tissue-specific requirements for target selection and
cytidine deamination by the hepatic editing machinery. In
keeping with this suggestion, only a single edited site was
detected for apoB RNA editing in both nuclear and
cytosolic hepatic RNA, compared to eight additional
sites in intestinal apoB.
Examination of nuclear and cytoplasmic RNA targets

revealed unanticipated results. We found that nuclear
apoB RNA from WT intestine (but not liver) exhibited
extensive C-to-U editing at two exonic sites upstream of
the canonical site 6666, one of which (6583) introduces
a threonine to isoleucine coding change. There were
additional RNA editing sites in nuclear apoB RNA,
predominantly 3′ of the canonical site, which were
detectable at much lower levels in cytoplasmic RNA.
These findings suggest nuclear transcriptomes are
relatively enriched with C-to-U edited targets, as sug-
gested recently for A-to-I RNA editing [22]. Among the
possibilities to account for the observed differences in
nuclear versus cytoplasmic distribution and efficiency of
apoB RNA editing, it is tempting to speculate that nuclear
apoB transcripts edited at the canonical site may be
preferentially exported to the cytoplasm and/or that
C-to-U RNA editing influences nucleo-cytoplasmic
transport of apoB RNA in a site-specific manner.
These possibilities will require formal evaluation in
future studies. In this regard, it is worth noting that
both Apobec-1 and its RNA binding cofactor ACF
have been shown to shuttle between nuclear and
cytoplasmic compartments [24,25]. In addition, it
should be emphasized that the physiological relevance
of compartmentalization of editing targets remains
unresolved, with some studies showing A-to-I edited
RNAs to be retained in the nucleus [26] while others
found A-to-I edited mRNAs preferentially distributed
in cytoplasmic translating polysome fractions [27].
The finding that editing sites were concentrated in

3′ UTRs suggests a regulatory role in the transport,
stability, translation or other function of these targeted
RNAs. Elimination of A-to-I RNA editing in ADAR-null
flies resulted in upregulation of hundreds of RNAs [28]. By
contrast, we found that mRNA abundance of the majority
of edited mRNAs was either unchanged or decreased in
Apobec-1-deficient mouse intestine. In addition, while
other work has demonstrated ADAR-mediated editing of
both miRNAs and mRNAs [21], we found no evidence for
C-to-U editing of miRNAs from WT small intestine
(data not shown). That said, it is possible that either
Apobec-1 binding and/or editing affect the stability of
the target mRNA-polysome complexes and selectively
modulates translational efficiency. For example, RNAs
bound to a subset of yeast RNA binding proteins
interact with RNA recognition elements located in the
3′ UTR that, in turn, regulate translation [29]. It is worth
noting that the 26 differentially expressed proteins encoded
by Apobec-1 RNA targets (Table S10 in Additional file 1)
represent approximately 3% of the 893 differentially
expressed proteins (Figure 4A). By contrast, the 54
Apobec-1 C-to-U RNA editing targets identified by
RNA-seq (Tables 1 and 2) represent approximately
1.7% of the total proteins identified in our proteomic
survey (Materials and methods), suggesting a two-fold
enrichment of proteins encoded by Apobec-1 RNA
targets within the pool of differentially expressed proteins
(P-value 0.0163).
The search to understand the functional implications

of RNA editing led to another intriguing observation: a
subset of 10 targets exhibited downregulation of both
mRNA and protein abundance while a single edited
target, Ido1, was upregulated in Apobec-1-deficient
intestine. We confirmed that another highly edited
intestinal Apobec-1-dependent target, Cd36, also showed
concordant decreases in RNA and protein abundance in
Apobec-1 null mice. The functional implications of these
changes will require formal confirmation but targets
including Rfk, Tes, Pde5a, Yme1l1 and Ido1 have been
implicated in tumorigenesis [30-35]. This possibility is
intriguing in view of findings that Apobec-1 deletion
attenuates the tumor burden in ApcMin/+ mice [36] while
deficiency of Deadend1 (Dnd1), a paralog of ACF,
increases intestinal polyposis susceptibility in ApcMin/+

mice [37]. Among the down-regulated targets in Apobec-
1-deficient intestine, Cyp3a11, Cyp2c65, Abcd3, Cyp4v3
and Pde5a are either directly or indirectly modulated by
lipid mediators and it is possible that the changes
observed are a secondary consequence of alterations
in lipid flux rather than a direct effect of eliminating RNA
editing [35,38-40]. The consequences for intestinal lipid
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metabolism of the changes in the fatty acid translocase
Cd36 [41] are particularly intriguing and will be the focus
of future investigation. Alternatively, and by analogy to
events described with ADAR-mediated RNA editing, it is
conceivable that the changes in protein expression in
targets undergoing Apobec-1-dependent C-to-U RNA
editing could reflect subtle protein-RNA interactions that
influence polysome distribution and in turn modulate
gene expression [42]. The current findings demonstrate
that Apobec-1-dependent C-to-U RNA editing exerts
broad functional effects in a tissue-specific manner,
beyond its canonical target apoB and in most cases
unrelated to a restricted role in chylomicron assembly.

Materials and methods
Animals
All studies were performed using C57BL/6 from JAX
(C57BL/6J) or Apobec-1-/- mice (both genders) back-
crossed for >12 generations onto a C57BL/6 background.
Apobec-1Int/O mice and intestinal Apobec-1 transgenic
mice [15] were on a mixed background (C57BL/6 and
6xCBA). Apobec-1-/- mice were injected with 6 × 108

plaque-forming units of recombinant adenovirus en-
coding either β-galactosidase (Lac-Z) or rat Apobec-1
(ad-Apobec-1) resulting in hepatic Apobec-1 overexpres-
sion. Mice were 8 to 10 weeks old and fed an ad libitum
chow diet. All animals were treated following National
Institutes of Health guidelines and all protocols (#20130037)
were approved by the Washington University Institutional
Animal Care and Use Committee.

Accession numbers
RNA sequencing data from deep sequencing are available
in the Gene Expression Omnibus under the accession
number [GEO:GSE57910]. The mass spectrometry proteo-
mics data have been deposited to the ProteomeXchange
Consortium [43] via the PRIDE partner repository [44]
with the dataset identifier PXD001007.

RNA-seq library
Total RNA was extracted from intestinal mucosa from
WT, Apobec-1-/- and Apobec-1Int/O mice and from livers
isolated from WT, Apobec-1-/-, Apobec-1-/- + ad-LacZ
and Apobec-1-/- + ad-Apobec-1 mice (three mice per
genotype), using TRIZol reagent (Invitrogen, Grand
Island, NY, USA). DNAse-free RNAs were used for
cDNA preparation as previously described [6]. Pooled
RNA (10 μg) was subjected to oligo(dT) selection. After
chemical fragmentation RNA was reverse transcribed
using random hexamer and sequencing adapters (Illumina)
ligated to each end of double-stranded cDNA. The
fragments were then PCR-amplified using linker-specific
primers (Illumina). All libraries were diluted to 10 nM and
an equal volume of each sample was combined to form
the final sequencing pool that was run on an Illumina
HiSeq2000.

RNA-seq analysis
RNA-seq reads for each genotype were mapped to the
mouse reference genome (NCBI37/mm9) and single
nucleotide variants were called using a modified version
from [23]. Reads from each sample were mapped with
Bowtie version 0.12.8, with at most three mismatches,
suppressing all alignments for a particular read if more
than one reportable alignment exist for it, and using
only those alignments that fell into the best stratum The
alignment files were sorted and indexed using Samtools
version 0.1.18 [45]. Variants were called using the mpileup
command. We called a single nucleotide variant when at
least three independent reads support a non-reference
variant, and the variant is present at a minimum frequency
of 10% with minimum coverage of 10 reads and is
supported by at least one read per strand. Sites were
removed if they had three or more different observed
nucleotide variants and a minimum frequency greater than
1.5%. Editing candidate sites were required to have no
more than a 5% variant frequency in Apobec-1 knockout
genotypes. Known SNPs from dbSNP128 that were not
annotated as based on cDNA and sites lying outside of
the 5′ and 3′ gene boundaries were set aside, and the
remaining sites were corrected for strand sense. These
sites were then annotated using ANNOVAR [46] with a
splicing threshold of 5.

Sanger sequencing validation of Apobec-1-dependent
editing sites
Genomic DNA and total RNA were isolated from intes-
tine and liver of WT, Apobec-1-/-, Apobec-1Int/O and
Apobec-1-/- + ad-Apobec-1 mice. Genomic DNA was
prepared as follows: 100 ng of liver tissue was incubated
at 55°C overnight in 600 μl cell lysis solution (QIAGEN,
Valencia, CA, USA). After protein removal, DNA was
precipitated and resuspended. Total RNA was TRIzol-
extracted and subjected to cDNA synthesis using random
hexamers and MultiScribe Reverse Transcriptase from
High Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster city, CA, USA). Both isolated genomic
DNA and cDNA were used as templates to amplify
sequences containing RNA-seq-identified Apobec-1-
dependent putative editing sites. PCR amplifications
were performed using Pfultra II DNA polymerase
(Agilent Technologies, Santa Clara, CA, USA). Primer
sequences are listed in Tables S13 and S14 in Additional
file 1. Quality-controlled PCR products were then cloned
into pCR-Blunt II-TOPO vector (Invitrogen) following
the manufacturer’s recommendations. Twenty individual
clones were sequenced using Applied Biosystems BigDye
terminator mix version 3.1. C-to-U calls are referred to as
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true positives when validated by Sanger sequencing. By
contrast, C-to-U calls made from RNA-seq but not
verified by Sanger sequencing are referred to as false
positives.

Nuclear-cytoplasmic RNA isolation
Intestines were harvested from three to four mice per
genotype. Preparation of nuclear and cytoplasmic
RNAs was undertaken as described [47]. Briefly, scraped
intestinal mucosa was resuspended in ice-cold buffer B
(10 mM tris pH 7.4, 140 mM NaCl, 1.5 mM MgCl2,
0.5% NP-40, 1 mM DTT, 20 units/μl RNAse inhibitor
(Promega Madison, WI, USA) and 1× protease inhibitor)
homogenized and centrifuged at 7,000 g for 10 minutes
at 4°C. Supernatant was saved as cytoplasmic fraction.
Nuclear pellets were resuspended in 2 volumes of buffer B
supplemented with one- tenth volume detergent (3.5%
sodium deoxycholate (w/v) and 6.6% Tween 20 (v/v))
incubated for 30 minutes at 4°C and centrifuged at 1,000 g
for 5 minutes. Supernatant was combined with the
previous cytoplasmic fraction and nuclear pellet was
rinsed once in buffer B. Cytoplasmic and nuclear
RNAs were extracted using TRiZol (Invitrogen) following
the manufacturer’s protocol, treated with DNAse (Ambion
Life Technology, Grand Island, NY, USA) and subjected to
cDNA synthesis as described above. Targets of interest
(apoB, Usp25 and ATP6ap2) were then PCR amplified
using specific primers (Table S13 in Additional file 1). PCR
products were cloned and sequenced as described above.

Protein extraction and western blotting
Scraped mucosa was homogenized in tissue lysis buffer
containing 20 mM Tris (pH 8), 0.15 M NaCl, 2 mM
EDTA, 1 mM sodium vanadate, 0.1 M sodium fluoride,
50 mM β-glycerophosphate, 5% glycerol, 2× protease
inhibitor (Roche Applied Science Indianapolis, IN, USA),
1% Triton, and 0.1% SDS. Aliquots of homogenate (60 μg
protein) were resolved by SDS-PAGE, transferred to
PVDF membrane, and probed with goat anti-CD36
antibody (AF2519, R&D Minneapolis, MN, USA),
mouse anti-IDO1 (BioLegend, San Diego, CA, USA).
Equal loading was verified using a rabbit anti-α-actin
antibody (Sigma-Aldrich St. Louis, MO, USA).

Polysome isolation
Each polysome isolation used three to four mice with
two to five isolations per genotype. Intestinal mucosa
was prepared in ice-cold phosphate-buffered saline
supplemented with 100 μg/ml cyclohexamine (Sigma,
St Louis, MO, USA) was incubated in 1 ml lysis buffer
(25 mM Tris-HCl pH 7.5, 250 mM NaCl, 5 mM MgCl2,
0.5 mM PMSF, 200 μg/ml heparin (Sigma), 5 mM dithio-
threitol, 20 U/ml RNAsin, 100 μg/ml cycloheximide, 1%
Triton X-100, 1× protease inhibitor). Scraped mucosa was
homogenized and centrifuged at 10,000 g for 10 minutes
at 4°C. The supernatant was loaded onto a 10 to 50%
sucrose gradient and centrifuged at 40,000 rpm for 2.25 h
at 4°C using an SWT41i rotor (Beckman Brea, CA, USA).
Fractions (900 μl) were collected from the bottom of the
gradient and 260 nm absorbance monitored by spectro-
photometry. RNA was phenol/chloroform extracted from
each fraction, precipitated, resuspended in 20 μl H2O and
used for cDNA synthesis followed by PCR amplification
of specific targets (apoB, Usp25, Atp6ap2). PCR products
were cloned and sequenced as described above.

In vitro editing analysis by poisoned primer extension
Total hepatic RNA was isolated from Apobec-1-/- mice
and treated with DNA-free reagent (Ambion). Resulting
RNA (1 μg) was incubated for 3 h at 30°C with variable
amount of hepatic S100 extract prepared from either
WT or Apobec-1-/- mice liver [9]. Following incubation with
S100 extracts, the RNA was phenol/chloroform extracted,
precipitated and resuspended in cDNA synthesis reaction
mix (High Capacity cDNA Reverse Transcription kit
(Applied Biosystems). Single-stranded DNA was then
subjected to PCR amplification using primers specific
for a Sanger-validated Apobec-1-dependent RNA target
followed by poisoned primer extension using γ-ATP 5′
end-labeled primer annealing approximately three to six
nucleotides downstream of the identified editing site
as previously described [9]. Extension products were
separated by electrophoresis on a 7 M urea-acrylamide gel
and analyzed by autoradiography.

Proteomics analysis
Total proteins were isolated from three WT and three
Apobec-1-/- intestine samples using a buffer containing 2%
SDS, 30 mM Tris pH 8, supplemented with protease inhibi-
tors (Complete EDTA-free, Roche), phosphatase inhibitors
(PhosStop, Roche) and benzonase (25 U/μl, Sigma).
Proteins were methanol/chloroform precipitated and
resuspended in urea/thiourea buffer (6 M/2 M, 30 mM Tris,
pH 8). Protein concentration was estimated using Bradford.
Unlabeled samples were mixed with a lys6-labeled
SILAC standard (analogously extracted from intestine
from lys6-labeled mice; Silantes GmbH, Munich,
Germany) at a ratio of 1:1. Samples were in-solution
digested [48] using Lys-C (Wako Richmond, VA, USA)
only. Peptides (200 μg) were separated by in-solution
isoelectric focusing (Offgel fractionator, Agilent) into
12 fractions over a pH range of 3 to 10. Fractionation
was performed according to the manufacturer’s protocol
with adaptations. Glycerol and ampholytes in the separation
buffer were reduced to 0.3% (original, 6%) and 0.1% (1%),
respectively. Peptides were focused for 20 kVhr and
harvested including a well washed with 50 μl 50:49:1
methanol:MilliQ:TFA for 15 minutes. Fractionated peptides
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were dried down with a speedvac (Eppendorf Hauppauge,
NY, USA) prior to desalting using C18 StageTips according
to [49]. The fractions obtained were individually sub-
mitted to liquid chromatography (LC) coupled to mass
spectrometry (MS) [48]. After trimming to avoid ampholyte
interference with data analysis using RecalOffline (Thermo-
Fisher Scientific Waltham, MA, USA), mass spectrometry
data were analyzed using the MaxQuant suite of algorithms
(version 1.3.0.5; Cox and Mann, 2008). The data were
searched against the Mus musculus UniProtKB protein
sequence database (as of 8 May 2013) consisting of 79,342
entries, including canonical and isoform sequences. Search
parameters were set as follows. Lys-C was selected with a
maximum of two missed cleavages. Precursor mass
tolerance was set to 20 ppm for the first search and
to 6 ppm for the main search. Oxidized methionines
and amino-terminal protein acetylation were allowed
as variable, carbamidomethylation as a fixed modification.
The false discovery rate for peptide and protein identifica-
tion was set to 1%. Minimum peptide length was set to 7
with no maximum. Peptide identification by chromatog-
raphy alignment and ID transfer ('match between runs')
was enabled and led to identification of 3,210 proteins.
Differentially expressed genes were identified by t-test
(significance cutoff of 0.1) in R, a language and environ-
ment for statistical computing and graphics [50].

Apobec-1-dependent editing sites: analysis of flanking
sequence features
Analysis of bases flanking the editing sites was performed
by aligning 10 nucleotides surrounding the editing sites
(5 nucleotides immediately upstream and 5 nucleotides
immediately downstream). Frequency plots and logos
were generated using the WebLogo application [51,52].
Identification of consensus mooring sequence was
performed by aligning 100 nucleotides surrounding the
editing sites and looking for the consensus mooring
sequence previously identified [16]. To determine the AU
content of the targeted 3′ UTRs, the average AU content
of both the full length 3′ UTR and a 101-bp window
surrounding each editing site were compared to the distri-
bution of 100,000 random sets of 101-bp windows in 3′
UTRs and whole 3′ UTRs of equivalent size.

Gene expression analysis
Differential gene expression analysis was performed
using the Tuxedo suite of tools [53]. RNA-seq reads
were mapped onto the transcriptome (mm9 UCSC
knownGene) using Bowtie version 2.0.0b7 [54] and
TopHat version 2.0.5 [54]. Differentially expressed genes
were called using fragments per kilobase of exon per
million fragments mapped (FPKM) and reported as a
measure of relative transcript abundance using Cufflinks
version 2.0.2 [55].
Statistical analysis
Degree of enrichment of the Apobec-1 targets was
represented by the difference in hypergeometric distribu-
tion using one-tailed Fisher’s exact test. Correlation
between editing frequency and fold protein expression is
reflected by Spearman’s rho (ρ) rank correlation coefficient.
Statistical significance was set at a P value <0.05. All
analyses were performed using Graphpad Prism 4.0
(GraphPad Software, Inc. La Jolla, CA, USA).

Additional file

Additional file 1: The following supplemental data are available with
the online version of this paper. Table S1A. lists WT intestinal Apobec-1
exonic targets. Table S1B-D. list WT intestine discordant RNA targets.
Table S1E. lists the WT liver Apobec-1 exonic targets. Table S2. shows
alignment of mooring sequence-like motifs of WT intestine Apobec-1 RNA
targets. Table S3A. lists intestinal RNA targets with increased editing efficiency
correlating with increased Apobec-1 expression. Table S3B. lists hepatic
C-to-U RNA editing targets shared in WT and Apobec-1-/- mice following
ad-Apobec-1 rescue. Table S3C. lists C-to-U editing targets shared between
WT and Apobec-1-/- + ad-Apobec-1 showing hyperediting following
ad-Apobec-1 rescue. Table S4. shows alignment of mooring sequence-like
motifs of WT liver Apobec-1 RNA targets. Tables S5 and S6. show,
respectively, RNA expression of intestinal and hepatic Apobec-1 targets.
Tables S7 and S8. show, respectively, intestinal and hepatic Apobec-1 editing
sites in miRNA seed sequences. Table S9. lists the proteins differentially
expressed between WT and Apobec-1-/- intestine. Table S10. shows intestinal
Apobec-1 RNA editing targets with altered protein expression. Table S11. lists
miRNA seed sequences in Apobec-1 C-to-U RNA editing targets with altered
RNA and protein expression. Tables S12 and S13. list primer sequences for
PCR amplification of, respectively, intestine and hepatic 3' UTR Apobec-1 RNA
targets. Figure S1. shows frequency plot analysis of nearest nucleotides
flanking Apobec-1 3' UTR RNA editing sites. Figure S2A,B. shows that the
extent of differential mRNA expression for each edited transcript is unrelated
to the percent C-to-U editing.
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