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Abstract: The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major
role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation.
Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state
toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the
countertransport of protons to stabilize the negative charge and maintain the structural integrity of
the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing
through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at
the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence
and function of this pathway have not yet been fully characterized. We used atomistic simulations to
demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the
C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is
accompanied by the formation of water wires that connect the transport sites with the cytosol. Water
wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the
notion that the C-terminal domain serves as a conduit for proton release. Additional simulations
showed that the release of a single proton from the transport sites induces bending of transmembrane
helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a
physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded
water wires once proton transport has occurred through this pore. Together, these findings support
the notion that the C-terminal proton release pathway is a functional element of SERCA and also
provide a mechanistic model for its operation in the catalytic cycle of the pump.
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1. Introduction

The calcium pump (sarco/endoplasmic reticulum (SR) Ca2+-ATPase, SERCA) is an
intensely studied ATP-dependent transmembrane ion pump, truly the biophysical model
for active transport and energy transduction [1] in more than 600 homologous P-type ion
pumps [2]. SERCA actively transports Ca2+ from the cytosol back into the SR lumen of
cells at the expense of ATP hydrolysis, thus playing vital roles in Ca2+ homeostasis and
signaling [3]. SERCA-mediated Ca2+ transport across the SR membrane is accompanied
by the concomitant flux of protons from the lumen to the cytosol to stabilize the negative
charge and maintain the structural integrity of the transport sites [4] and to partially
compensate for the positive charges of the two Ca2+ ions passing through the membrane [5].
Consequently, proton currents through SERCA play an essential role in balancing the charge
deficit that occurs during active ion transport across the SR membrane.

SERCA undergoes major structural transitions that are required for Ca2+-mediated
activation of the pump [6–8]. During each cycle, SERCA populates a high-Ca2+ affinity
state (E1), that binds two Ca2+ ions from the cytosol to the transmembrane transport sites
and one molecule of ATP in the nucleotide-binding domain. This nucleotide-bound E1-
2Ca2+-ATP complex facilitates ATP utilization and the formation of the phosphorylated
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intermediate E1~P-2Ca2+-ADP [9]. SERCA then undergoes a structural transition toward
a phosphorylated E2-Pi intermediate that has a low affinity for Ca2+, thus facilitating
translocation of two Ca2+ ions from the transport sites into the SR lumen. Two protons
from the lumen then bind to the transport sites to neutralize the negative charge in the
TM domain and stabilize this intermediate state [4,10–12]. The pump then undergoes
dephosphorylation [13,14] to form a protonated, low-Ca2+ affinity E2 state [6,7,9]. This E2
intermediate undergoes further deprotonation [10,15–17] to induce an E2-to-E1 transition
of SERCA required to initiate a new catalytic cycle of the pump [6–8]. These transitions are
summarized in Figure 1a.
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Figure 1. Location of the C-terminal proton release pathway, as suggested by x-ray crystallography
studies. (a) Schematic representation of SERCA (sarco/endoplasmic reticulum (SR) Ca2+-ATPase)
transport cycle showing the major biochemical intermediates of the pump. Proton transporting
events in the cycle are shown in the dashed box. Low-Ca2+ affinity (E2) and high-Ca2+ affinity (E1)
states of SERCA are shown in blue and red, respectively. (b) The pathway is shown inside the red
box showing the presence of crystallographic water molecules inside this pore (cyan). We show the
location of the N-terminal (blue) and C-terminal (red) regions of SERCA. The yellow spheres show
the boundaries of the lipid bilayer. For this figure, we used the crystal of SERCA in the E2 state
bound to AlF4

- and the inhibitor thapsigargin (PDB: 3n5k [18]).

During this last step in the cycle of the pump, protons are released from the transport
sites to the cytosol primarily via two pathways: (i) from residue Glu309 through the N-
terminal pathway to allow the opening of the cytosolic gate that is needed for binding of
metal ions to the transport sites N-terminal [10,15,19], and (ii) through a C-terminal proton
release pathway cytosolic pathway to allow proton translocation from SERCA residue
Glu908 to the cytosol [18]. Proton release through the N-terminal pathway is a relatively
straightforward event that involves the formation of a short, transient proton-release
pathway connecting Glu309 with the cytosol [19]; the pore is then closed following the
binding of two Ca2+ ions in the transport site [18]. The presence of a C-terminal pathway
has remained elusive, and it has only inferred from X-ray crystallography studies showing
the presence of a partially hydrated pore on the cytosolic side of the C-terminal region
SERCA in the E2 state bound to AlF4

- and the inhibitor thapsigargin (Figure 1b) [18]. If
this proton pathway exists, as suggested by crystallography studies, it would represent the
missing functional component that explains proton countertransport during the catalytic
cycle of the pump, as it provides an operational conduit for proton release during the
exchange of metal ions and a proton in the transport sites during the E2-to-E1 transition.
In this study, we used atomistic simulations to probe the functionality of the C-terminal
proton release pathway at physiological-like conditions.
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2. Results and Discussion

We first point out that the crystal structure that more closely characterizes the ‘native’
E2 state of SERCA, i.e., determined in the absence of non-cognate ligands (PDB: 3w5c,
ref. [20]) does not contain water molecules in the C-terminal proton release pathway.
Therefore, we first performed a single 300 ns molecular dynamics (MD) simulation starting
from this crystal structure in an explicit lipid and water environment to (i) to demonstrate
that the C-terminal of the E2 state is intrinsically occupied by water molecules, as suggested
in earlier studies [18], and (ii) to generate an unbiased structure with the characteristics of
the partially hydrated C-terminal pore of the protonated E2 state of SERCA. The position of
the residues along the proton pathway is virtually unchanged in the nanosecond timescale
used here, as revealed by the root mean square deviation (RMSD) analysis of residues
Ser767 (0.9 ± 0.1 Å), Arg836 (1.1 ± 0.3 Å), Tyr837 (0.8 ± 0.3 Å), Asn911 (1.3 ± 0.3 Å), and
Asn914 (0.9 ± 0.1 Å). These results indicate that the structural stability of the C-terminal
pathway is not affected by the absence of initially bound water molecules in this region
of the protein. We found that two water molecules from the cytosolic side of the complex
bind to the pore at t = 62 ns to a cavity formed by residues Tyr837, Asn914, and Glu918
(Figure 2a). Residue Tyr837 then recruits two water molecules from the cytosol at t = 106 ns
(Figure 2b), and further recruited by residue Glu908 at t = 115 ns (Figure 2c). At the end of
the trajectory, five water molecules occupy the C-terminal pore (Figure 2d). Remarkably,
the positions of three water molecules in the pore overlaps remarkably well with those
found in the crystal structure of the E2 state bound to AlF4

- and thapsigargin (Figure 2d).
The qualitative correspondence between simulations and experimental data confirms the
crystallography-based hypothesis that the binding of water molecules in this pore is an
intrinsic feature of the protonated E2 state of the pump [18].
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Figure 2. Hydration pattern of the C-terminal proton release pathway detected in the 300 ns sim-
ulation of the protonated E2 state of SERCA. (a) Water penetration into the pathway observed at
t = 62 ns; (b) and (c) penetration of water molecules into the pore near transport site residue Glu908;
(d) orientation of water molecules in the C-terminal pathway observed at the end of the trajectory.
In all cases, SERCA is shown as ribbons, key residues along the C-terminal pathway as sticks, and
water molecules as red/white spheres; for comparison, we show the location of the crystallographic
water molecules (PDB: 3n5k [18]) as blue spheres. The blue arrows indicate the location of water
molecules in the simulation that overlap (RMSD < 2Å) with the crystallographic waters.

Partial hydration of the C-terminal pore agrees with crystallography data [18], but we
did not identify hydrogen-bonded water wires connecting residue Glu309 and Glu318 in
the nanosecond-long simulation. Water wires are proton-transport devices in biological
systems [21], thus their presence is essential to infer whether this pore may serve as a proton-
transporting conduit. Therefore, we used the structure at the end of the 300 ns trajectory
to perform a 1.8 µs MD simulation of the protonated E2 state of the pump to establish the
formation of water wires along the C-terminal proton release pathway. We found that the pore
is partially hydrated during the first 0.63 µs of simulation time (Figure 3a) and contains on
average four molecules of water during this time frame. The number of water molecules in the
pore increases to an average of 7–11 for the remainder of the trajectory (Figure 3a). During the
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first 0.73 µs of simulation time, we did not detect the formation of water wires (Figure 3b);
however, after t = 0.73 µs, we found ~130 stable (lifetime of 150–250 ps) hydrogen-bonded
water wires that directly connect residues Glu908 and Glu318 (Figure 3c). The water
wires identified in this pore are predominantly formed by six water molecules (Figure 3d);
however, we also detected the formation of water wires composed of seven molecules of
water in the time scales used here (Figure 3e). In all cases, the water wires originate from the
carboxyl group of Glu908 and are stabilized along the pore by the hydroxymethyl group of
Ser767, the carboxamide group of N911, the guanidine group of Arg836, and the hydroxyl
group of Tyr377 (Figure 3d,e). The overall structure and stability of the hydrogen-bonded
water wires are consistent with proton transport functionality [22], thus supporting the
hypothesis that the C-terminal pore in SERCA serves as a conduit for proton release.
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Figure 3. Identification of water wire formation in the C-terminal pathway of the protonated E2
state of SERCA. (a) The number of water molecules present in the C-terminal pore throughout the
1.8 µs of simulation time. The number of water molecules was computed at 1 ns intervals. (b) and (c)
show the configuration of the water molecules in the partially and fully hydrated structures of the
C-terminal pathway. The location of the pore is shown inside the red box; water molecules in the
pore are shown as blue spheres, SERCA as ribbons, the lipid bilayer as yellow spheres and sticks, and
bulk water in the cytosolic and luminal sides as blue dots. (d) and (e) Structure of the six-membered
and seven-membered water wires that connect the carboxyl groups of residues Glu908 and Glu918;
residues that form the water pore are shown as sticks, and water molecules are shown in blue as a
ball-and-stick representation.

After establishing that the C-terminal pathway of protonated E2 state of SERCA is
intrinsically hydrated and serves as a proton shuttling conduit element, we next deter-
mined whether proton release triggers gate closing in this pathway. This is especially
important because residues Glu908 and Glu918 are present at the respective ends of the
water wires; these residues are both a proton donor and acceptor, which may lead to proton
reuptake from the cytosol back into the transport sites, which in turn may create a charge
imbalance in the transport sites and interfere with the structural transitions necessary for
SERCA activation [23]. Since explicit modeling of proton transport is not possible using
conventional MD simulations, we simulated the effect of proton release using the structure
of the fully hydrated C-terminal pore but with Glu908 modeled as ionized to mimic proton
release from this residue; a detailed explanation of the modeling strategy is presented in
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the Materials and Methods section. Analysis of the trajectory showed that the C-terminal
pathway is only partially solvated with 4–5 water molecules during the entire simulation
time (Figure 4a), although complete pore dewetting was also detected in the trajectory (i.e.,
at 0.7–0.85 and 1.7 µs, Figure 4a). A closer inspection of the pore revealed that although
water molecules occupy both ends of the C-terminal pathway, we do not detect the for-
mation of continuous water wires connecting residues Glu908 and Glu918 throughout
the 1.8 µs of simulation time (Figure 4b). This finding indicates that metal ion–proton
exchange induces closing of the C-terminal proton release pore, effectually preventing
proton exchange across this pathway. More importantly, the C-terminal pore does not
undergo closed-to-open structural transitions in the timescales used here, indicating that
proton recapture from the cytosol is unlikely to occur upon metal ion–proton exchange in
the transport sites. These findings are consistent with the notion that the C-terminal proton
release pathway is exclusive to the metal ion-free, protonated E2 state of the pump [18].
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Figure 4. Identification of water wire formation in the C-terminal pathway following deprotonation
of residue Glu908 in the E2 state of SERCA. (a) The number of water molecules found in the C-
terminal pore throughout the 1.8 µs. molecular dynamics (MD) simulation of SERCA with residues
Glu908 and Glu309 modeled as ionized. The number of water molecules was computed at 1 ns
intervals. (b) Configuration of water molecules in the C-terminal pathway of SERCA following metal
ion–proton release in the transport sites; the structures capture the disruption of the initially formed
water wire and the absence of subsequent water wire formation events. SERCA structure is shown as
ribbons, residues that form the water pore are shown as sticks, and water molecules in the C-terminal
pathway are shown as spheres.

Finally, we ask what structural mechanism drives the closing of the C-terminal proton
release pathway of SERCA once proton transport has occurred through this pore. We focus
on local structural changes occurring in the C-terminal pore that can lead to exclusion of
water molecules from this region of the protein. Analysis of the trajectory revealed that
deprotonation of Glu908 induces bending of the transmembrane helix M5 by 15–30◦ in the
nanosecond timescale (Figures 5a and A1, Appendix A). Bending of this transmembrane helix
occurs within a region formed by residues Ile761-Ile765 (Figure 5b); the structural malleability
of this region of SERCA is in agreement with NMR experiments showing that transmembrane
helix M5 is prone to hinge-bending near the transport sites [24]. We found that bending
of helix M5 is prompted and stabilized by the favorable interaction between the guanidine
group of Arg762 and the backbone oxygen of Ser915 (Figure 5b and Appendix A). Indeed, the
formation of this interaction occurs concomitantly with the breaking of the O(i)→N–H(i+4)
bond between residues Ile761 and Ile765 early in the MD trajectory (Figure 5). These structural
changes and interactions, which are not detectable in the fully hydrated C-terminal pathway
of protonated E2 state of the pump (See Figure A1, Appendix A), are coupled to the rapid
dissociation of the water wires and closing of the pore (Figure 5b). Once these structural
transitions take place, the pore remains closed for the remainder of the simulation time
(Figure 4). We note that in the trajectory of the protonated E2 state, the separation of Arg762
and Ser915 becomes more prominent upon the formation of water wires in the C-terminal
pore (See Figure A1, Appendix A); conversely, Arg762 and Ser915 are clustered together
(R < 5 Å) in the crystal structure of the Ca2+-free E1 state of the pump that features a closed
structure of the C-terminal pathway [20,25,26]. These findings suggest that Arg762 plays
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a direct role in modulating the open-closed transitions of the pore; this functional role is
supported by studies showing that removal of the positive charge at this position alters Ca2+

binding to SERCA [27]. More importantly, our simulation demonstrates that protonation
plays a fundamental role in controlling the open-closed dynamics of the C-terminal pore via
bending of the transmembrane helix M5. This functional role is supported by mutagenesis
studies showing that single amino acid replacement of residues Ile761–Ile765 by alanine, a
residue with a high propensity for helix formation [28], affects Ca2+ transport activity and
apparent Ca2+ affinity of SERCA [29,30].
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Figure 5. Local structural changes of SERCA inducing pore closure of the C-terminal pathway
upon proton release from the transport sites. (a) Left panel: Time evolution of the bending angle
of the transmembrane helix M5 of SERCA during the first 200 ns of in the 1.8 µs trajectory of
the unprotonated E2 state SERCA; this timeframe captures the rapid bending of this helix in the
trajectory. The dashed line shows the average bending angle calculated using the last 300 ns in the 1.8
µs trajectory of the protonated E2 state. Right panel: Ribbon representation of the rapid bending of
transmembrane helix M5 (magenta) at residues Ile761–Ile765 (yellow). (b) Left panel: Time evolution
of the distances Arg762–Arg915 and Ile761–Ile765 during the first 200 ns in the MD trajectory of
unprotonated SERCA; this timeframe captures the concomitant interaction of Arg762–Ser915 and
the breaking of the backbone hydrogen bond between Ile761 and Ile765. The dashed line shows the
average distances calculated using the last 300 ns in the 1.8 µs trajectory of the protonated E2 state.
Right panel: Structural representation for rapid closing of the C-terminal proton release pathway
and inhibition of water wire formation induced by metal ion–proton exchange. SERCA is shown as
ribbons, key residues involved in the closing of the pore are shown as sticks, and water molecules
are shown as spheres.
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3. Conclusions

We used atomistic simulations to test the crystallography-based hypothesis that a
C-terminal pathway in SERCA serves as a conduit for proton release from the transport
sites [18], and to elucidate the mechanism for the operation of this proton-transporting
pathway. We used molecular dynamics simulations starting from a crystal structure of
the pump in the absence of non-cognate ligands. These simulations conclusively showed
that the C-terminal is intrinsically hydrated in the protonated E2 state of SERCA and
that this pore allows for the formation of hydrogen-bonded water wires that connect the
transport sites with the cytosol. These findings are consistent with the proton transport
functionality of this pathway, thus supporting the notion that the C-terminal pore in SERCA
serves as a conduit for proton release. We performed additional atomistic simulations
to determine whether the C-terminal proton release pathway undergoes open-to-closed
structural transitions upon deprotonation of the E2 state. These simulations showed that
bending of transmembrane helix M5 and the interaction Arg762–Ser915, which occur only
upon metal ion–proton exchange in the transport sites, create a physical barrier against
full hydration of the pore, thus preventing the formation of proton-transporting water
wires. Remarkably, our simulations revealed that upon metal ion–proton exchange, the
C-terminal pore is incapable of forming proton-transporting water wires, thus effectually
inhibiting proton exchange in the transport sites during the E2-to-E1 transition of the
pump [17]. Our simulations provide hypotheses for the function of the C-terminal proton
release pathway that can be tested by functional mutagenesis and electrical measurements.
For example, additional information may be gained by measuring charge transfer using
microsomal vesicles containing SERCA adsorbed on a solid supported membrane [31,32].
These experiments can also be complemented with multiscale reactive molecular dynamics
to quantify the free energy profile and timescale of the proton transport across the C-
terminal proton pathway [26]. In summary, the structural evidence presented in this study
supports the notion that the C-terminal proton release pathway is a functional element of
SERCA, and also provides a mechanistic model for its operation in the catalytic cycle of the
pump.

4. Materials and Methods
4.1. Simulation of the Protonated E2 State of SERCA for 300 ns

We used the crystal structure 3w5c [20] as an initial structure to map the C-terminal
proton release pathway in the protonated E2 state of SERCA. We used this crystal structure
because of its high resolution (2.5 Å), and because it was determined in the absence of
exogenous inhibitors and/or non-cognate ligands [20]. To recapitulate the structural
features of the protonated E2 state of the pump, we modeled side chains of transport site
residues Glu309, Glu771, and Glu908 as protonated, and Asp800 as unprotonated [11,33].
Additionally, we used PROPKA [34–37] to adjust the ionization state of all other titratable
residues to closely match those within a physiological pH range (7.0–7.2) [38,39]. This
structure was then inserted in a pre-equilibrated 13 × 13 nm lipid bilayer composed of
palmitoyl-2-oleoyl-sn-glycerolphosphatidylcholine (POPC) and solvated using TIP3P water
molecules. We added K+, and Cl− ions to neutralize the electric charge of the system and
to produce an [KCl] of approximately 100 mM. We used the CHARMM36 force field
topologies and parameters to model the protein, lipid, water, and ions [40,41]. We used
this structure to simulate the hydration of the C-terminal proton release pathway. Briefly,
we used NAMD [42], with periodic boundary conditions [43], particle mesh Ewald [44,45],
a non-bonded cutoff of 12 Å, and a 2–fs time step. The equilibrated system was simulated
without restraints for 300 ns at constant pressure (1 atm) and temperature (310 K) using a
Langevin thermostat and an anisotropic Langevin piston barostat.



Int. J. Mol. Sci. 2021, 22, 3507 8 of 11

4.2. Simulation of the Protonated E2 State to Establish the Presence of Water Wires in the
C-Terminal Pathway

We performed a MD simulation for a total of 1.8 µs to study the formation of proton-
transporting water wires in the C-terminal proton release pathway of SERCA. To this aim,
we used the structure of the protonated E2 state of SERCA obtained at the end of the 300 ns
MD simulation described in Section 4.1. This structure was used ‘as is’ for this simulation,
but the initial velocities for all atoms were generated randomly to generate an independent
MD trajectory of this system. We simulated this system for 1.8 µs using NAMD [42] and
the CHARMM36 force field topologies and parameters [40,41].

4.3. Simulation of Proton Release from Residue Glu908 in the E2 State of SERCA

We performed a MD simulation for 1.8 µs to simulate the effects of deprotonation and
metal ion–proton exchange on the operation of the C-terminal pathway. Since classical MD
simulations are not capable to treat proton transport explicitly, we model proton release
from Glu908 based on the following assumptions: (i) the gatekeeper residue Glu309 was
modeled as unprotonated to reflect the opening of the N-terminal pathway [18,19,33]; (ii)
The transport site residues Glu771 and Glu908 are modeled protonated and unprotonated,
respectively; these protonation states capture the release of a proton from Glu908 only [26];
and (iii) We explicitly modeled the rapid binding of K+ ion in the transport sites to recapit-
ulate both metal ion–proton exchange as well as the charge conservation induced by the
departure of a single proton from the transport sites [46–48]. For this purpose, we used the
structure of the protonated E2 state of SERCA at 0.73 µs extracted from the 1.8 µs trajectory
performed as described in Section 4.2. We chose this structure because it captures both
the fully hydrated C-terminal pore and the formation of a water wire connecting residues
Glu908 and Glu918. The structure was used ‘as is’ for this simulation, but we added two
additional K+ ions to neutralize the electric charge of the system produced by the removal
of protons from residues Glu908 and Glu309. This system was simulated with no restraints
for 1.8 µs using the same protocol described in Section 4.1.
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Figure A1. (a) and (b) time evolution of the bending angle of the transmembrane helix M5 of SERCA
in the protonated and unprotonated E2 state of SERCA calculated from the 1.8 µs trajectories of the
pump. (c) and (d) Table 762. Arg915 and Ile761–Ile765 in the full-length trajectory of protonated and
unprotonated E2 SERCA.
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