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We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the
simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this
model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the
basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model
(DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce
similar level-dependent frequency responses with amuch simpler structure and is thus better suited for incorporation intoCI sound
processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly
represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array
which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed
that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy
based on fixed linear bandpass filters.

1. Introduction

Cochlear implants (CIs) have been used successfully for the
restoration of hearing function in cases of profound sen-
sorineural hearing loss by stimulation of spiral ganglia using
electrical pulses. The parameters of the electrical pulses
are determined from incoming sound via sound processing
strategy. Despite the great progress over a period ofmore than
two decades, many issues remain to be resolved to achieve
successful restoration of hearing in noisy environments,
melody recognition, and reduction of cognitive load in the
patients [1]. Hearing in a noisy environment is especially
important for practical purposes.

Several methods can be utilized for the improvement
of CI. Among them, the development of novel sound
processing strategies is particularly useful because it can
be accomplished by modifying embedded programs in the
speech processor and does not require a change of hardware.

A sound-processing strategy is defined here as an algorithm
to generate electrical stimulation pulses based on the pro-
cessing of incoming sound waveforms and is also called
an encoding strategy. More accurate imitation of normal
auditory function is a promising approach for CI sound-
processing strategy development [1–3].

It has been suggested that speech perception performance
can be improved considerably by adopting an active non-
linear model of the basilar membrane in the cochlea, called
the dual resonance nonlinear (DRNL) model [2, 3]. The use
of DRNL model was shown to be beneficial for the repre-
sentation of the information of the formants, which mean
the resonances in the vocal tract and are reflected in speech
spectra as spectral peaks [2, 3].The formants are known to be
encoded in population responses of the auditory nerves [4, 5].
They are very important cues for speech perception, since the
information on formants is crucial for the representation of
vowels. It is also imperative for consonant representation, as
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Figure 1: (a) General structure of CI sound-processing strategies. Incoming sound is decomposed into multiple frequency bands, and the
relative strength of each subband is then determinedwith an envelope detector tomodulate the amplitudes of stimulus pulses after logarithmic
compression. (b) The frequency decomposition stage for the conventional strategy based on a fixed linear bandpass filter array. (c) The
frequency decomposition stage for the proposed strategy based on the SDPN model.

formant transition provides a valuable piece of information
for the identification of consonants, such as plosives, stops,
and fricatives [6].

The aforementionedCI performance improvement by the
use of active nonlinear model of the basilar membrane may
result from robust representation of formants under noisy
conditions. The DRNL model was first applied to a CI sound
processor and improved speech perception performance was
verified from one listener [2]. It was also reported that
the DRNL-based sound-processing strategy provides robust
formant representation characteristics and enhances vowel
perception [3]. The DRNL model was originally developed
for quantitative description of the physiological properties
of the basilar membrane and to provide a satisfactory fit to
experimental results. Thus, the DRNL model includes many
parameters that should be determined from experimental
data, and its structure is rather complicated for adoption in
CI devices. Therefore, a simpler model may be implemented
without compromising the advantages of the DRNL model.

Here, we propose a new active nonlinear model of the
frequency response of the basilar membrane, called the

simple dual path nonlinear (SDPN)model and a novel sound-
processing strategy based on this model. The aim of the
present study is only to utilize the advantages of the active
nonlinear response and not to replicate the physiological
properties of the basilar membrane in biological cochlea in
detail. A subset of results has been presented in a conference
proceeding [7].

2. Methods

2.1. Proposed Sound-Processing Strategy. Figure 1(a) shows
the general structure of the sound processor for a CI. The
incoming sound is decomposed into multiple frequency
bands (stage 2 in Figure 1(a)), and then the relative strength
of each subband is obtained from an envelope detector
(stage 3) to modulate the amplitudes of stimulus pulses after
logarithmic compression. This structure was motivated by
place coding (tonotopy) of the basilar membrane and most
modern CI devices are based on this structure [8–10]. In the
strategy proposed in this paper, the frequency decomposition
stage is replaced with a simple active nonlinear filter model
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Figure 2: (a) Block diagram of the DRNL model. The output of each cochlear partition is represented as a summation of the outputs from a
linear and a nonlinear pathway. (b) Block diagram of the proposed SDPN model.

of the basilar membrane with variable response instead of a
fixed linear bandpass filter which is employed in conventional
CIs. The variable response characteristic originates from the
input-dependent tuning property of the basilar membrane
resulting from active motility of outer hair cells (OHC) [11]
and this active nonlinear response property contributes to
robust representation of speech cues under noisy conditions
[12].

Figures 1(b) and 1(c) illustrate the differences between the
conventional and proposed strategies. Both can be regarded
as having the structure shown in Figure 1(a). In the con-
ventional strategy (Figure 1(b)), a fixed linear bandpass filter
array, is adopted as the frequency decomposition block of
Figure 1(a). In contrast, in the proposed strategy (Figure 1(c)),
frequency decomposition is performed by the SDPN model
array. The output from each channel can be regarded as a
bandpass-filtered version of the input, similarly to the con-
ventional strategy. However, the frequency response property
is nonlinear and level dependent. Subsequently, the relative
strength of each channel is calculated by applying envelope
detectors to the outputs from each SDPN. The envelopes
are used to modulate the amplitudes of the current pulses
in clinical applications involving electrical stimulation; for
acoustic simulation, the amplitudes of sinusoids are modu-
lated instead of pulse amplitudes. This is described later in
detail (Section 3.4).

Figure 2(a) illustrates the dual resonance nonlinear
(DRNL)modelwhichwas developed for quantitative descrip-
tion of the physiological properties of the basilar membrane

and to provide a satisfactory fit to experimental results [12].
The output of each cochlear partition is represented as a sum-
mation of the outputs from linear and nonlinear pathways
in the DRNL model. The linear pathway consists of a linear
gain, a gammatone bandpass filter, and a Butterworth lowpass
filter. The nonlinear path includes broken-stick nonlinearity
between two bandpass filters so that its contribution to the
total output is determined by the input signal level.Thedetails
of the DRNL model and parameters were reported in [12].
The effective center frequencies of the linear and nonlinear
pathways are slightly different. The relative contributions of
the two pathways are variable because of the nonlinear gain
in the nonlinear pathway, and therefore the overall response
characteristics such as gain and bandwidth are also variable.
The DRNL model can replicate the frequency response
of biological cochlea in that the level-dependent tuning
and level-dependent gain properties could be reproduced
successfully [12]. Compared to other models with similar
purposes, it is relatively simple and computationally efficient.
However, the DRNLmodel includesmany parameters and its
structure is rather too complicated for adoption inCI devices.

The block diagram of the SDPN model is shown in
Figure 2(b). While developing the SDPN model, we did
not attempt to reproduce experimental results regarding the
neurophysiological properties of the basilar membranes to
the numerical details.The purpose here was to implement
the level-dependent frequency response characteristics of the
biological cochlea. As in the DRNL model, the incoming
sound is passed to two pathways.The linear pathway consists
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Figure 3: The frequency response of the proposed SDPN model
when the center frequency is set to 1500Hz. When the input
amplitude is low, the contribution of the nonlinear pathway is
relatively large so that the overall response shows a sharp frequency
selectivity determined by the tip filter. As the amplitude increases,
the contribution of linear pathway becomes dominant, and the
overall frequency response therefore becomes broader.

of a linear gain (fixed to 6 here) and a broad bandpass filter,
which is called the tail filter. The nonlinear pathway is made
of a sharper bandpass filter, which is called the tip filter,
and a compressive nonlinearity that is employed to mimic
the saturation properties of the OHC. The nonlinearity is
expressed as 𝑦 = 2 arctan(15𝑥). Both the tail and tip filters
are composed of Butterworth bandpass filters (tail filter: 2nd
order, tip filter: 4th order). The bandwidth of the tail filter is
set to be three times larger than that of the tip filter. To realize
the variable response properties, the relative contribution of
each pathway is controlled according to the input level (root
mean square value) by the nonlinearity. The overall output
from one channel of the frequency decomposition block is
obtained by summing the outputs from the two pathways.
As discussed later in Section 3 (Figure 3), this method
allows the implementation of active nonlinear frequency
response characteristics of biological cochlea with much
lower computational costs than the DRNL model.

After frequency decomposition, the envelopes of each
channel output are obtained. We used a conventional enve-
lope detector consisting of a rectifier and a low-pass filter.
In addition, we also examined the advantages of using an
enhanced envelope detector proposed byGeurts andWouters
[13]. This is based on the adaptation effect resulting from the
synapse between inner hair cells and auditory nerves and
utilizes a combination of two envelope detectors, namely, a
standard envelope detector consisting of a full-wave rectifier
and a 4th order Butterworth low-pass filter with 400-Hz
cutoff frequency and another for extraction of slowly varying
envelope with a low-pass filter cutoff frequency of 20Hz.

By comparing the two envelopes, it is possible to determine
the temporal points where rapid transient changes occur,
and additional gain can be applied at these time points
for emphasis of the transients. The detailed algorithm was
reported in [13].

2.2. Acoustic Simulation. Acoustic simulation can be used to
predict performance trends of CI sound-processing strategies
and has therefore been utilized for many studies of the
development of novel strategies [14]. We adopted sinusoidal
modulation for the synthesis of acoustic waveforms, as
in many previous studies on CI sound-processing strategy
development [14, 15]. The center frequencies of the channels
were chosen according to the method of Loizou et al. [16], as
this enables systematic computation of the filter bandwidths
and is used in current CI devices. Logarithmic filter spacing
was used for 4-channel implementation, and semilogarithmic
mel spacing was used for 8 and 12 channels. Detailed values
of the center frequencies and bandwidths are listed in Table 1.

The method of acoustic simulation in the conventional
strategy was similar to that of Dorman et al. [17]. After fre-
quency decomposition of incoming sound by a linear band-
pass filter array, an envelope detector consisting of a full-wave
rectifier and a 4th order Butterworth low-pass filter (cutoff
frequency: 400Hz) was applied. The detected envelopes
were used to modulate the sinusoids with frequencies the
same as the center frequencies listed in Table 1. Finally, the
amplitude-modulated sinusoids from all the channels were
summed.

For the generation of an acoustic waveform correspond-
ing to the proposed strategy, frequency decomposition was
performed by an array of SDPN models, and then the
envelopes of the outputs from each SDPN model were
extracted by envelope detectors. Either conventional or
enhanced envelope detectors were adopted. The amplitudes
of sinusoids were modulated according to the outputs from
the envelope detectors. The frequencies of sinusoids were the
same as in the simulation using the conventional strategy.
Note that we assigned one sinusoid per channel, as the center
frequencies of the tail and tip filters were identical. Thus,
the results of acoustic simulation can be readily compared
to those of the conventional strategy. This is different from
the case of acoustic simulation of the DRNL-based sound-
processing strategy [2, 3], where two sinusoids should be
used to simulate one channel due to the different center
frequencies of linear and nonlinear pathways.

2.3. Hearing Experiment. Ten subjects with normal hear-
ing volunteered to participate in the hearing experiment
(mean ± SD age: 25.8 ± 4.08 years; 6 men, 4 women). All
subjects were undergraduate or graduate students of Yonsei
University. The experimental procedure was reviewed and
approved by a local ethics review committee.The experiments
were performed under two noise conditions: without any
noise (i.e., signal-to-noise ratio (SNR) of ∞ dB) and with
speech-shaped noise (SSN) of 2 dB SNR. The SSN here was
generated by applying a 2nd order Butterworth low-pass filter
(cutoff frequency 1100Hz) to white Gaussian noise (WGN) as
described previously [18] so that its spectral shape was similar
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Table 1: Center frequencies and bandwidths of the filter arrays used for frequency decomposition.

(a) 4 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 460 953 1971 4078
BW (Hz) 321 664 1373 2426

CFs and BWs of tip and tail BPFs (in proposed strategy)

CF (Hz) 460 953 1971 4078
BW of tip filter (Hz) 321 664 1373 2426
BW of tail filter (Hz) 107 221.3 457.7 808.7

(b) 8 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 394 692 1064 1528 2109 2834 3740 4871
BW (Hz) 265 331 431 516 645 805 1006 1257

CFs and BWs of tip and tail BPFs (in proposed strategy)

CF (Hz) 394 692 1064 1528 2109 2834 3740 4871
BW of tip filter (Hz) 265 331 431 516 645 805 1006 1257
BW of tail filter (Hz) 83.3 110.3 143.7 172 215 268.3 335.3 419

(c) 12 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8 Ch. 9 Ch. 10 Ch. 11 Ch. 12
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 274 453 662 905 1190 1521 1908 2359 2885 3499 4215 5050
BW (Hz) 165 193 225 262 306 357 416 486 567 661 771 900

CFs and BWs of tip and tail BPFs (in proposed strategy)
CF (Hz) 274 453 662 905 1190 1521 1908 2359 2885 3499 4215 5050
BW of tip filter (Hz) 165 193 225 262 306 357 416 486 567 661 771 900
BW of tail filter (Hz) 55 64.3 75 87.3 102 119 138.7 162 189 220.3 257 300
CF: center frequency, BPF: bandpass filter, BW: bandwidth.

to that of speech waveforms. The number of channels was
varied to 4, 8, or 12 channels.

Syllable identification tests were performed using closed-
set tasks. Consonant-vowel-consonant-vowel (CVCV) disyl-
lables were constructed mainly to test vowel perception
performance. Each speech token was fixed to the form of
/sVda/; that is, only the first vowel was changed whereas the
others were fixed to /s/, /d/, and /a/. The first vowel was
selected from /a/, / e/, /o/, /u/, /i/, and /e/. This CVCV form
is more natural for the Korean language and was therefore
used instead of the CVC-type monosyllables frequently
utilized in vowel perception tests in previous studies [13,
17]. Vowel-consonant-vowel (VCV) type monosyllables were
also constructed. The vowels at the beginning and end were
the same and fixed to /a/. The consonants between vowels
were selected from /g/, /b/, /m/, /n/, /s/, and /j/. Thus, the
speech materials were of the /aCa/ type. A total of 72-
/sVda-/ type disyllables and 72-/aCa-/ type monosyllables
were generated (72 = 6 consonants/vowels × 2 strategies
(conventional/SDPN-based) × 2 noise levels × 3 channel

types). Two experimental sessions were performed with the
same subjects; the first compared conventional and SDPN-
based strategies, and the second compared the conventional
strategy with that based on the SDPN and the enhanced
envelope detector.

The acoustic waveforms of speech tokens were generated
by 16-bit mono analog-to-digital conversion at sampling
rate of 22.050 kHz and stored as .wav files. The stored files
were played by clicking icons displayed in a graphical user
interface on a personal computer prepared for the experimen-
tal run. The speech tokens were presented binaurally using
headphones (Sennheiser HD25SP1) and a 16-bit sound card
(SoundMAX integrated digital audio soundcard). The sound
level was controlled to be comfortable for each subject (range:
∼70–80 dB). A 5min training session was given before the
main experiment. Each speech token was presented once.
The conditions of sound processing strategies and noise
conditions were randomized across subjects. If the subjects
requested, the waveforms were played once more. After
hearing each speech token, the subjects were instructed to
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Figure 4: Dominant frequency component analysis for the vowel /i/. F1, F2, and F3 are at 270Hz, 2290Hz, and 3010Hz, respectively. Upper
row: under quiet conditions. Middle row: under 2.5 dB WGN. Lower row: under 2.5 dB SSN. Left column: by the linear BPF array. Middle
columns: DRNL. Right column: SDPN.

choose the presented syllable among six given examples as
correctly as possible, and the percentage of correct answers
was scored.

3. Results

3.1. Variable Frequency Response of the SDPN Model. Fig-
ure 3 shows the frequency response of the proposed SDPN
model with a center frequency of 1500Hz. When the input
amplitude was low (35 dB sound pressure level (SPL)), the
contribution of the nonlinear pathway was relatively large,
and so the overall response showed sharp frequency selec-
tivity determined by the tip filter. Peak gain was 9.44, and
the full width at half maximum (FWHM) was 140.27Hz. As
the amplitude increased (85 dB SPL), the contribution of the
linear pathway became dominant, and the overall frequency
response became broader (FWHM = 424.08Hz). Mean-
while, the overall gain decreased due to the compressive non-
linearity (peak gain = 4.26). Overall, the frequency response
of the SDPNmodel showed level-dependent behavior, which
was similar to that of the biological cochlea. Compared to
the DRNL model, the proposed simplified structure could
be executed very quickly. For example, to process 1 s of
sound, the CPU time was 0.054 ± 0.012 s (mean ± SD) for

the SDPN model, whereas that for the DRNL was 1.33 ±
0.034 s (average of 40 trials, Matlab implementation, 3.0GHz
Pentium4 processor, 2 GBRAM).That is, the processing time
for the proposed SDPN model was only about 1/24.6 that of
the DRNL model.

3.2. Formant Representation under Noisy Conditions. The
superiority of the active nonlinear models for robust rep-
resentation of formants under noisy conditions could be
demonstrated by dominant frequency component analysis,
that is, by plotting the maximum frequencies of the output
from each cochlear partition as a function of the center
frequency [19]. We divided the frequency range from 100Hz
to 10 kHz in 181 partitions and observed the output from each
cochlear partition. Figure 4 shows the results of dominant
frequency component analysis after frequency decomposi-
tion using the fixed linear bandpass filter, the DRNL model,
and the proposed SDPN model (input: vowel /i/, under
quiet conditions, 5 dB WGN, and 5 dB SSN). Particularly
under noisy conditions, the maximum frequencies of the
outputs from active nonlinear models (DRNL and SDPN)
were concentrated at the location of formant frequencies,
as shown by the horizontal lines at the formants, whereas
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Figure 5: FER1 ((a) and (c)) and FER2 ((b) and (d)) at various sound pressure levels (SPLs) for the vowel /i/. (a) and (b) underWGN of 2.5 dB
SNR. (c) and (d) under SSN of 2.5 dB SNR.

those from the linear filterbank model were determined by
the center frequencies of each channel so that the data points
were more concentrated at diagonal locations. Thus, the
proposed SDPN model is more effective for robust formant
representation under noisy conditions than the linear filter
array and has advantages similar to those of theDRNLmodel.
Similar results were also obtained for /a/ and /u/.

From the results of dominant frequency component anal-
ysis, formant representation performance could be quantified
by counting the number of cochlear partitions the maximum
output frequencies of which were determined by the for-
mant frequencies. We defined two formant extraction ratios
(FERs), FER1 and FER2, as the ratios of cochlear partitions
with maximum output frequencies that were the same as the
1st and 2nd formant frequencies, respectively. FER1 and FER2
can be regarded as good quantitative measures of saliency
of the formant representation in the output speech. Since
the performance of nonlinear models could vary according
to the input level as the response characteristic changes
with respect to the input level, we observed the changes in
formant representation performance at various SPLs. Figure 5
shows FER1 and FER2 for the vowel /i/ as functions of input
amplitude under conditions of WGN and SSN of 5 dB SNR.
For a wide range of input levels, the SDPN yielded higher
FER1 and FER2 compared to the linear bandpass filter under
both WGN and SSN.The FERs of the linear model remained

constant except for slight fluctuations due to error. As shown
in Figures 5(a) and 5(b), the SDPN resulted in higher values
of FER1 at all input amplitudes underWGN.The FER2 of the
SDPNwas also higher than that of the linear model when the
SPL was higher than 40 dB. This indicated that the SDPN is
advantageous for the formant representation for typical SPL
levels. The SDPN was also superior when the SSN was added
as background noise (Figures 5(b) and 5(d)).

3.3. Enhanced Envelope Detector. Figure 6 shows the envel-
opes of 4 channels obtained from conventional (Figure 6(a))
and enhanced (Figure 6(b)) envelope detectors after fre-
quency decomposition using the SDPN model. The arrows
in Figure 6(b) indicate the time points where the enhanced
envelope detector effectively emphasized the point of speech
onset. Particularly, for the input speech “/aka/,” the onset
point of /k/ was significantly accentuated in Figure 6(b).

3.4. Acoustic Simulation andHearing Experiment. The results
of hearing experiments using acoustic simulation of the pro-
posed sound-processing strategy based on the SDPN model
are shown in Figure 7. The percentages of correct answers
were plotted as functions of the number of channels for 4, 8,
and 12 channels. For all conditions, the proposed strategy was
considerably superior to the conventional strategy. Although
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Figure 6: The envelopes obtained from (a) conventional and (b) enhanced envelope detectors after frequency decomposition by the SDPN
model. The arrows in (b) indicate emphasis of speech onset.
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Figure 8: Results of syllable identification tests using the sound-processing strategy based on the SDPN and the enhanced envelope detector
(under quiet conditions or SSN of 2 dB SSN). (a) 4 channels. (b) 8 channels. (c) 12 channels.

statistical significance (𝑃 < 0.05) was not reached for some
conditions, the proposed strategy yieldedmuch better speech
perception performance for all conditions; all 𝑃-values were
<0.0762 and approached statistical significance. Figure 8
shows the results of hearing experiments using a strategy
based on the SDPN and the enhanced envelope detector. For
quiet conditions, the proposed strategy was better than the
conventional one for all channel conditions. The superiority
was statistically significant for all channel conditions (t-test,
𝑃 < 0.05 for 4 channels, and 𝑃 < 0.01 for 8 and 12
channels). Under SSN of 2 dB SNR, the proposed strategy
provided considerably better syllable identification for all
channel conditions (t-test, 𝑃 < 0.05 for 4 and 8 channels,
𝑃 = 0.06 for 12 channels).

4. Discussion

In this study, we proposed a simple active nonlinear model
of basilar membrane in the cochlea and developed a novel
sound-processing strategy for the CIs based on this model.

Acoustic simulation andhearing experiments in subjectswith
normal hearing indicated that the proposed strategy provides
enhanced syllable identification performance under condi-
tions of speech-shaped noise, compared to the conventional
strategy using a fixed linear bandpass filter array.

Some previous experimental studies indicated that the
active nonlinear frequency response property contributes
significantly to robust representation of formant information
in noisy environments. Several models were suggested to
reproduce this property [11, 20, 21]. For example, Deng
and Geisler [11] proposed a nonlinear differential equation
model with a variable damping term to simulate a level-
dependent compression effect and successfully reconstructed
the response characteristics of the biological cochlea that are
beneficial for robust spectral cue representation under noise.
This implies that the speech perception performance of CIs
can be improved by adopting the active nonlinear response
property, as demonstrated by the enhanced performance of
CI sound-processing strategy based on the DRNL model
[2, 3].
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Although the DRNL model is one of the most efficient
models in terms of computational costs, its purposes are
to quantitative description of the physiological properties of
the basilar membrane and to replicate detailed experimental
results. The complicated structure and numerous parameters
of the DRNL model make it unsuitable for the CI sound pro-
cessor. The motivation for development of the SDPN model
was to simplify the DRNL model without compromising its
advantages due to the adaptive nonlinear frequency response.
The SDPN model was developed as a further simplification
of the DRNL model, with the purpose of developing a CI
sound-processing strategy.The emphasis was on reproducing
the input-dependent response characteristics of biological
cochlea qualitatively. Many building blocks and parameters
of the DRNL model were not necessary to implement the
level-dependent frequency response of the biological cochlea,
because they were adopted for the detailed replication of
experimental results and are not essential to our goal here.
The proposed SDPN is much simpler than the DRNL but
can still provide the level-dependent frequency response,
which is beneficial for real-time processing with lower power
consumption due to less computation.

The results of dominant frequency analysis verified that
more robust formant representation under SSN could be
obtained from the proposed SDPN model. When the SDPN
model was used, the output frequency was dominated by
formant frequencies in much more cochlear partitions com-
pared to the case of the linear bandpass filterbank (Figures 4
and 5). Despite the simplification, the formant representation
performance of the SDPN model was comparable to that
of the DRNL presented in [3], as can be verified by the
results of dominant frequency component analysis and FERs.
This suggests that the detailed imitation of the frequency
response characteristics of the human basilar membrane is
not essential for the improvement of CI speech perception
performance. This is in contrast with a previous study [2] in
which a detailedmodel of human basilarmembrane based on
the DRNL model was adopted in the CI sound processor.

The comparison between the envelopes extracted by
two envelope detectors shown in Figure 6 showed that the
enhanced envelope detector provides the emphasis of speech
onset points, which is often weak in amplitude.This property
may contribute to the improvement of the perception of stop,
fricative, and plosive consonants. This was confirmed from
the hearing experiments using acoustic simulation (Figures 7
and 8), as the use of the enhanced envelope detector provided
further improvement of the SDPN-based strategy in speech
perception.

A new sound-processing strategy for CI should be applied
in clinical tests for more comprehensive verification. This
requires themodulation of electrical pulse trains based on the
sound processor output. The proposed SDPN-based strategy
was developed so that it employs one amplitude-modulated
pulse train per channel in actual CI devices.Thus, it is readily
applicable to the existing hardware of current CIs.

In conclusion, we proposed a simple novelmodel of active
nonlinear characteristics of biological cochlea and developed
a sound-processing strategy for CI based on the model.
The proposed SDPN model was based on the function of

the basilar membrane so that a level-dependent frequency
response can be reproduced; it is much simpler than the
DRNL model and is thus better suited for incorporation into
CI sound processors.The SDPN-based strategywas evaluated
by spectral analysis and hearing experiments in subjects with
normal hearing. The results indicated that the use of the
SDPN model provides advantages similar to those of the
DRNL-based strategy in that the formant is more robustly
represented under noisy conditions. Further improvement in
speech perception under noisy conditions was possible by
adopting an enhanced envelope detector.
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