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ABSTRACT
In cancer patients, the clinical response to checkpoint-based immunotherapy is associated with the 
composition and functional quality of the host microbiome. While the relevance of the gut microbiome 
for checkpoint immunotherapy outcome has been addressed intensively, data on the role of the local 
tumor microbiome are missing. Here, we set out to molecularly characterize the local non-small cell lung 
cancer microbiome using 16S rRNA gene amplicon sequencing of bronchoscopic tumor biopsies from 
patients treated with PD-1/PD-L1-targeted checkpoint inhibitors. Our analyses showed significant diver-
sity of the tumor microbiome with high proportions of Firmicutes, Bacteroidetes and Proteobacteria. 
Correlations with clinical data revealed that high microbial diversity was associated with improved patient 
survival irrespective of radiology-based treatment response. Moreover, we found that the presence of 
Gammaproteobacteria correlated with low PD-L1 expression and poor response to checkpoint-based 
immunotherapy, translating into poor survival. Our study suggests novel microbiome-specific/derived 
biomarkers for checkpoint immunotherapy response prediction and prognosis in lung cancer. In a broader 
sense, our data draw attention to the local tumor microbial habitat as an important addition to the 
spatially separated microbiome of the gut compartment.
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Background

Immune checkpoint inhibitor (ICI) therapy, either alone or in 
combination with classical chemotherapeutic drugs, constitutes 
the mainstay of treatment for advanced non-small cell lung cancer 
(NSCLC), in the absence of targetable molecular driver 
alterations.1,2 ICIs are powerful therapeutic agents that harness 
the natural specificity and adaptability of the immune system to 
reinvigorate anticancer immunity and tackle tumor 
heterogeneity3,4 and cancer-associated immune suppression.5 

Across tumor entities, biomarkers for ICI response prediction 
include target antigen expression (e.g., PD-1/PD-L1),6 tumor 
mutational burden (TMB),7,8 DNA mismatch repair deficiency/ 
microsatellite instability,9 and tumor T cell infiltration at 
baseline;10 however, ICI responsiveness also relies on the compo-
sition and functional quality of the host microbiome.11–13 

Microbes are particularly abundant in the gastrointestinal (GI) 
tract,14 and certain species of this compartment (mostly bacterial 
commensals) have been shown to be associated with ICI treat-
ment efficacy through various immunological and metabolic 
mechanisms.15,16 In the case of lung cancer, the GI microbiome 
is anatomically distant despite a postulated functional interaction 
via the gut-lung axis,17,18 which theoretically compromises the 
relevance of gut microbes in relation to more proximal 
habitats.19,20 Therefore, profiling of the local NSCLC tumor 

microbiome, as a reflection of the overarching pulmonary micro-
bial landscape,18 is important to (i) get a better understanding of 
local tumor–microbiome interactions and (ii) potentially establish 
novel biomarkers with superior predictive value in ICI-treated 
NSCLC.

In this proof-of-concept study, we aimed at analyzing bac-
terial species directly in NSCLC tissue, using mostly broncho-
scopic tumor biopsies. Our study reports novel microbiome- 
related NSCLC biomarkers in the tumor environment and 
emphasizes the importance of the local tumor microbial habi-
tat for ICI responsiveness and patient outcome.

Methods

NSCLC biopsies and patient characteristics

Bronchoscopic (n = 35) and surgical (n = 3) biopsies from 38 
patients with advanced-stage NSCLC treated with ICIs were 
obtained from the St. Gallen Lung Biopsy Biobank, a dedicated 
biobank for pulmonary samples maintained and operated by 
the Lung Center of the Cantonal Hospital St. Gallen. Healthy 
adjacent lung tissue macroscopically free of tumor was 
obtained from NSCLC patients undergoing curative-intent 
surgical treatment and was used for control purpose (n = 10). 
Tumor biopsies were from stage III–IV NSCLC patients who 
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received a PD-1/PD-L1-targeting ICI (pembrolizumab, nivo-
lumab, atezolizumab, durvalumab, or spartalizumab) in var-
ious therapy lines (first, second, or third) with or without 
a chemotherapy doublet (carboplatin-pemetrexed, cisplatin- 
pemetrexed, or carboplatin-paclitaxel) or an investigational 
treatment (MK-1308/anti-CTLA-4, NIS793/anti-TGF-β, 
NIR178/adenosine A2a receptor antagonist). Importantly, 
biopsies were sampled before the start of treatment. The 
patient population comprised 80% males and the main 
NSCLC histological subtypes were well-balanced (43% adeno-
carcinoma (ADC) and 53% squamous cell carcinoma (SCC)). 
PD-L1 expression status was available for 77% of the cases (12 
patients with 0–20% of the cells positive, 11 patients with >20% 
of the cells positive) and was determined using the VENTANA 
PD-L1 (SP263) Assay from Roche Diagnostics (Rotkreuz, 
Switzerland). 30% of the patients had a known mutation in 
one of the following proto-oncogenes: KRAS, EGFR, ERBB2, 
PIK3CA, MET. Of note, the MET alteration in one patient 
concerned a missense mutation in exon 14 (T992I) that may 
have influenced immunotherapy outcome.21 In addition, the 
EGFR alteration found in another patient (a single nucleotide 
variant in exon 18) may also have impacted immunotherapy 
outcome.22 Median progression-free survival (PFS) and med-
ian overall survival (OS) were 3.1 and 15.3 months, respec-
tively, and the overall response rate to ICI therapy was 27%. 
Patient characteristics are specified in Table 1.

16S rRNA gene amplicon sequencing

Bronchoscopic (n = 35) and surgical (n = 3) NSCLC biopsies as 
well as healthy lung control tissues (n = 10) were subjected to 
16S rRNA sequencing using Illumina MiSeq technology, 
a platform for targeted resequencing, expression profiling and 
metagenomics. To this end, PCR amplification protocols were 
optimized, and two-step NextEra PCR libraries were generated 
using 341 F (5′- CCT ACG GGN GGC WGC AG −3′) and 
802 R (5′- GAC TAC HVG GGT ATC TAA TCC −3′) primers 
specific for the V3 and V4 regions of the bacterial 16S rRNA 
gene. The amount of total DNA (including host and other non- 
bacterial DNA) was determined using PicoGreen (Thermo 
Fisher Scientific, Waltham, MA) and 140.2 ± 33.7 ng of DNA 
(mean ± SEM) were used as input for PCR amplification 
emanating from similarly sized biopsies. Libraries were 
sequenced on the Illumina MiSeq platform employing a 500 
cycles MiSeq Reagent Kit v2. Paired-end reads passing Illumina 
quality filtering were demultiplexed and trimmed of adaptor 
residuals using MiSeq reporter built-in data analysis software 
v2.6. The read quality was further analyzed using FastQC 
v0.11.8 and sequencing reads were trimmed of primers using 
cutadapt v2.8. Forward and reverse reads were merged to 
reproduce the sequenced molecule using USEARCH 
v11.0.667 and a minimum overlap of 15 bases. Further quality 
filtering allowed one expected error per merged read and dis-
carded reads with ambiguous bases or an outlier amplicon size. 
Samples with a minimum of 5000 merged reads were denoised 
using the UNOISE module of the USEARCH package, and 
operational taxonomic units (OTUs) were defined. OTU 

abundances were filtered for possible bleed-in contaminations 
making use of the UNCROSS algorithm. Sequences from the 
RDP 16S rRNA database served as reference and taxonomies 
were predicted using the SINTAX module included in the 
USEARCH package, setting the minimum confidence thresh-
old to .5. Ultimately, 5 NSCLC and 5 healthy lung samples did 
not pass the quality controls and were excluded from 

Table 1. Patient characteristics (n = 30).

Parameter Median (range)

Age (years) 67 (23–79)
Progression-free survival (months) 3.1 (.7–28.7)
Overall survival (months) 15.3 (2.6–50.9)

Case number (n) Fraction (%)Sex

female 6 20.0
male 24 80.0
NSCLC histological subtype
ADC 13 43.3
SCC 16 53.3
unknown 1 3.3
Tumor stage
III 7 23.3
IVA 7 23.3
IVB 14 46.7
unknown 2 6.7
ICI therapy line
first 9 30.0
second 16 53.3
third 5 16.7
ICI used
Pembrolizumab (anti-PD-1) 12 40.0
Nivolumab (anti-PD-1) 12 40.0
Atezolizumab (anti-PD-L1) 1 3.3
Durvalumab (anti-PD-L1) 3 10.0
Spartalizumab (anti-PD-1) 2 6.7
Combination anticancer therapy
yes (chemotherapy) 5 16.7
yes (investigational medicine) 3 10.0
no (ICI monotherapy) 22 73.3
ICI treatment response
CR 0 .0
PR 8 26.7
SD 6 20.0
PD 14 46.7
unknown 2 6.7
PD-L1 expression status
0–20% of cells positive 12 40.0
>20% of cells positive 11 36.7
unknown 7 23.3
Known mutation in a proto-oncogene
no 21 70.0
yes 9 30.0
KRAS G12C 1 3.3
KRAS G13C 1 3.3
KRAS G12F 1 3.3
KRAS G12D 1 3.3
KRAS G12A 1 3.3
EGFR SNV exon 18 1 3.3
ERBB2 G776delinsVC 1 3.3
PIK3CA SNV exon 9 1 3.3
MET T992I 1 3.3
Number of packyears
0–40 13 43.3
>40 13 43.3
unknown 4 13.3

ADC, adenocarcinoma; CR, complete response; ICI, immune checkpoint inhibitor; 
NSCLC, non-small cell lung cancer; PD, progressive disease; PR, partial response; 
SCC, squamous cell carcinoma; SD, stable disease; SNV, single nucleotide 
variant.
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subsequent analysis; thus, a total of 30 NSCLC biopsies (28 
bronchoscopic, 2 surgical) and 5 healthy lung samples were 
finally analyzed. Three non-template controls (NTCs) were 
run. Signals detected in the NTCs were subtracted from the 
whole analysis to correct for potential reagent contamination 
by trace amounts of bacterial DNA as reported.23–25 16S rRNA 
gene amplicon sequencing as described in this section was 
performed by Microsynth AG (Balgach, Switzerland). All sam-
ples were processed in parallel, starting from DNA isolation, 
PCR amplification, library preparation and sequencing, thus 
eliminating potential batch effects.

Data analysis and statistical considerations

Phylum, class and OTU abundances were analyzed in 
a descriptive manner. Bacterial α-diversity was estimated 
using the Shannon diversity index (SDI)26 as well as the num-
ber of unique OTUs observed. Correlation of the SDI with the 
number of unique OTUs was analyzed using Spearman’s rank 
correlation coefficient. Two-group data were tested for statis-
tical significance using the Mann–Whitney U test, and three- 
group data were statistically analyzed using the Kruskal–Wallis 
test. A Cox proportional hazard model was used to analyze 
phylum and class abundance with respect to PFS and OS, and 
Wald test p-values are reported. Time to event data (patient 
survival) were analyzed using Kaplan–Meier estimates and log- 
rank tests (Χ2 statistics and associated p-values are reported). 
Where applicable, optimized cutoffs have been used for data 
analysis (e.g., to harmonize group sizes). Unless otherwise 
stated, quantitative data are shown as boxplots with whiskers 
and outliers. The nominal significance level was .05. Statistical 
analyses were performed using IBM SPSS Statistics 20 and the 
R statistical software (www.r-project.org).

Ethics statement

Patients donating their samples to the St. Gallen Lung Biopsy 
Biobank provided written informed consent for use of their 
biological material for research purpose (EKSG 11/044). The 

study was approved by the local Ethical Review Board 
(Ethikkommission Ostschweiz) under BASEC number 2019– 
02059.

Results

16S rRNA gene amplicon sequencing deciphers tumor 
microbial diversity

To characterize the tumor microbial habitat of NSCLC, broncho-
scopic (n = 28) and surgical (n = 2) tumor biopsies as well as 
healthy lung control tissues (n = 5) were subjected to 16S rRNA 
gene amplicon sequencing.27,28 Bacterial species from various 
phyla were detectable in the samples, which could be allocated 
to 224 individual OTUs. OTU abundances ranged from <5000 
reads to >30000 reads and showed high proportions of Firmicutes, 
Bacteroidetes and Proteobacteria in both NSCLC biopsies and 
healthy lung samples (Figure 1a). In NSCLC biopsies, the number 
of unique OTUs observed (ranging from 3 to 109) was highly 
correlated with the SDI, an established measure for α-diversity 
taking into account both the number of species and their abun-
dance (r = .926, p < .001, Figure 1b). In summary, our results show 
that 16S rRNA gene amplicon sequencing represents a suitable 
method to analyze bacteria in bronchoscopic NSCLC biopsies and 
suggest significant diversity of the tumor microbial habitat along 
with marked interpatient variation.

Survival benefit of patients with a higher tumor microbial 
diversity

Analyzing the SDI in stratified groups of patients did not reveal 
associations with sex (female vs. male, p = .494), the number of 
packyears (0–40 vs. >40, p = .650), tumor stage (III vs. IVA vs. 
IVB, p = .214), or the NSCLC histological subtype (ADC vs. 
SCC, p = 1.000) (Figure 2a-d). Along similar lines, the SDI was 
comparable in PD-L1low (0–20%) vs. PD-L1high (>20%) expres-
sers (p = .786, Figure 2e). The SDI could not discriminate 
patients based on their observed radiological response to 
checkpoint-based immunotherapy (partial response (PR) vs. 
stable disease (SD) vs. progressive disease (PD)) (p = .161, 

Figure 1. Microbial diversity of NSCLC tumors revealed through 16S rRNA gene amplicon sequencing. (a) OTU abundance in NSCLC and healthy lung samples and 
allocation to specific bacterial phyla. (b) Correlation of the SDI with the number of unique OTUs observed in NSCLC samples. NSCLC, non-small cell lung cancer; OTU, 
operational taxonomic unit; SDI, Shannon diversity index.
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figure 2f) and, accordingly, PFS was indifferent among SDIlow 

vs SDIhigh patients (χ2 = .152, p = .697, Figure 2g). However, 
patients with a high SDI showed significantly longer OS 
(χ2 = 4.036, p = .045, Figure 2h), which indicates benefit from 
a higher microbial diversity irrespective of checkpoint immu-
notherapy responsiveness. Collectively, the diversity of the 
tumor bacterial metagenome correlates with specific survival 
metrics in ICI-treated NSCLC.

Gammaproteobacteria constitute a significant part of the 
NSCLC tumor microbiome

We next sought to investigate which types of bacteria would play 
a role in shaping or predicting the response to PD-1/PD-L1- 
targeted ICIs. As shown in Figure 3a, the phyla of Firmicutes, 
Bacteroidetes and Proteobacteria were largely dominating the 
scene, jointly accounting for almost 90% of the detected tumor 
microbiome. Other phyla still showing appreciable abundance 
included Fusobacteria and Actinobacteria (Figure 3a). A Cox 
proportional hazard model revealed that only the phylum of 
Proteobacteria was significantly associated with PFS (p < .001) 
and OS (p < .001) in our cohort and that the class of 
Gammaproteobacteria (accounting for almost 60% of 
Proteobacteria, Figure 3a), was most significantly correlated with 
survival (p < .001 for PFS and p = .011 for OS) (Figure 3b). In 
summary, Gammaproteobacteria account for roughly 7% of the 
total detected microbiome and are associated with survival in 
NSCLC patients receiving immunotherapy.

Gammaproteobacteria correlate with low PD-L1 
expression and predict poor checkpoint immunotherapy 
responsiveness

Based on the predictions from the Cox proportional hazard model 
(Figure 3b), we analyzed the abundance of Gammaproteobacteria 
in stratified patient subgroups and also comparatively investigated 
their levels in healthy lung vs. NSCLC tissues. Although not 
reaching statistical significance, Gammaproteobacteria levels 
appeared to be higher in lung cancer tissue as compared to healthy 
lung control tissue (p = .421, Figure 4a). Statistical significance was 
also not reached when stratifying according to sex (female vs. 
male, p = .900), the number of packyears (0–40 vs. >40, p = .153), 
tumor stage (III vs. IVA vs. IVB, p = .755), or the NSCLC 
histological subtype (ADC vs. SCC, p = .449), even though some 
trends were observed (Figure 4b-e). In contrast, high abundance 
of Gammaproteobacteria was significantly associated with low 
PD-L1 expression (p = .006, figure 4f), a finding that was also 
partly reflected in the response to ICI therapy (PR vs. SD vs. PD) 
(p = .275, Figure 4g). In line with these data, patients with a high 
abundance of Gammaproteobacteria in their tumors showed 
a significantly worse PFS (χ2 = 8.594, p = .003, Figure 4h), with 
OS revealing a similar trend without reaching statistical signifi-
cance (χ2 = 1.739, p = .187, Figure 4i). Taken together, 
Gammaproteobacteria appear to be enriched in the cancerous 
lung and their abundance in the tumor surroundings correlates 
with low PD-L1 expression and poor PFS and a trend toward 
worse OS under ICI therapy.

Figure 2. Tumor microbial diversity associates with NSCLC patient survival. (a-d) Analysis of the SDI in stratified subgroups of NSCLC patients. (e-h) Analysis of the SDI in 
terms of PD-L1 expression, ICI treatment responsiveness, and patient survival. (a-f) Boxes indicate the median (highlighted in bold) and interquartile ranges. Whiskers 
indicate the minimum and maximum values except in the case of outliers (outliers are indicated by circles). (G + H) cutoffs used for SDI stratification: 2.73 for PFS and 
2.65 for OS. ADC, adenocarcinoma; ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; OS, overall survival; PD, progressive disease; PFS, progression- 
free survival; PR, partial response; SCC, squamous cell carcinoma; SD, stable disease; SDI, Shannon diversity index.
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Discussion
The host microbiome serves important functions in health and 
disease and is particularly abundant in the GI tract,14 the respira-
tory tract,18 and on the skin.29 Commensal microbes are essential 
gatekeepers for epithelial barrier integrity30 and transient (e.g., 
antibiotics and infection) or chronic (e.g., long-term medication 
and underlying conditions) dysbiosis can prime to a variety of 
immune-related and metabolic disorders including inflammatory 
bowel disease, obesity, and type 2 diabetes.31–35 In contrast, ‘gain- 
of-function’ dysbiosis can lead to the overgrowth of particular 
microbial strains in specific anatomical compartments, thus caus-
ing local opportunistic infections.36,37 A high diversity of the host 

microbiome with a well-balanced and time-stable composition of 
bacteria, viruses and fungi is therefore essential to prevent disease 
and maintain health until old age.38–40 Interactions of the micro-
biome with host cells are mediated mostly by immunological and 
metabolic means, and can be local, distant, or systemic.18

While, with the notable exception of colorectal cancer,41 the 
significance of the microbiome for cancer development remains 
elusive, accumulating evidence suggests a pivotal role of host 
microbes in shaping the response to cancer therapy. Specifically, 
the use of antibiotics curtails ICI treatment efficacy42–44 and also 
has a negative impact on the performance of classical cytotoxic 
drugs such as platinum and cyclophosphamide.45 Importantly, 

Figure 3. Gammaproteobacteria are abundant in NSCLC tumors and associate with patient survival. (a) Pie charts illustrating the relative abundance of particular 
bacterial phyla and classes within the total detected tumor microbiome. (b) Results of a Cox proportional hazards model for the analysis of possible associations of 
bacterial classes with patient survival ranked according to statistical significance. HR, hazard ratio; NSCLC, non-small cell lung cancer; SE, standard error.

Figure 4. Gammaproteobacteria correlate with low PD-L1 expression and poor patient survival under ICI therapy. (a) Comparative analysis of Gammaproteobacteria abundance 
in healthy lung and NSCLC samples. (b-e) Analysis of Gammaproteobacteria abundance in stratified subgroups of NSCLC patients. (f-i) Analysis of Gammaproteobacteria 
abundance in terms of PD-L1 expression, ICI treatment responsiveness, and patient survival. (a-g) Boxes indicate the median (highlighted in bold) and interquartile ranges. 
Whiskers indicate the minimum and maximum values except in the case of outliers (outliers are indicated by circles and extreme outliers are indicated by stars). (H + I) cutoffs 
used for Gammaproteobacteria stratification: 480 for PFS and 811 for OS. ADC, adenocarcinoma; ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; OS, 
overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SCC, squamous cell carcinoma; SD, stable disease.
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unresponsiveness of germ-free or antibiotic-treated mice to 
checkpoint inhibition can be rescued through oral supplementa-
tion with certain bacteria.11,12 In ICI-treated melanoma, the fecal 
microbiome is significantly different between responding and 
non-responding patients,13 and fecal microbiome transplanta-
tion (FMT) from responding patients is clinically evaluated as an 
ICI re-sensitizing intervention in the subgroup of treatment- 
refractory patients.46 While these data clearly bear witness to 
a key role of host commensal microbes in cancer immunother-
apy outcome, most studies have prioritized the GI microbiome 
irrespective of the tumor site of origin. However, the host 
microbiome in its totality is much wider, and more proximal 
tumor ecosystems may be equally important, if not dominant, in 
governing disease progression and treatment 
responsiveness.19,20,47–51 Here, we have pictured the local 
tumor microbiome of NSCLC using 16S rRNA gene amplicon 
sequencing of tumor biopsies from patients treated with PD-1/ 
PD-L1-targeted ICIs.

Results from this study converge on three key messages as 
follows: (i) 16S rRNA gene amplicon sequencing is technically 
feasible in bronchoscopic tumor biopsies that typically provide 
limited sample input and are further enriched for host cells rather 
than metagenomic signals (very low microbial biomass). (ii) 
A higher diversity of the tumor microbiome represents 
a prognostic factor, as it correlates with improved OS of ICI- 
treated NSCLC patients irrespective of the clinical response to 
ICI treatment or PFS. (iii) A high abundance of 
Gammaproteobacteria, a diverse class of gram-negative 
bacteria,52 predicts low PD-L1 expression and poor response to 
PD-1/PD-L1-targeted checkpoint blockade, resulting in unfavor-
able patient survival. Importantly, the associations of SDI and 
Gammaproteobacteria with survival were cross-validated using 
random permutation of both strata based on the log-rank test Χ2 

statistics (data not shown).
While shotgun sequencing represents the gold standard for 

metagenomics in stool samples and additionally covers viruses, 
fungi and protozoa,28 16S rRNA sequencing is a valuable approach 
especially when microbial density is low such that sample compo-
sition is biased toward host cells as is the case for lung tissue53 and 
fetal organs.54 Here, we have characterized the local NSCLC 
microbiome as a potential mirror of the overarching pulmonary 
metagenomic landscape18 using the latter approach. Our data 
suggest high tumoral abundances especially of Firmicutes, 
Bacteroidetes, and Proteobacteria. Our observation that a higher 
α-diversity predicts improved OS independently from the clinical 
response to ICI treatment is interesting and may indicate that 
a more diverse microbiome is selected for patients with a better 
health status or other factors associated with favorable outcome 
(e.g., less disease burden or more indolent disease). In addition, 
a higher diversity of the tumor microbiome may increase the 
chances for protective immunological cross-reactivity between 
microbial-derived peptide products and current or future arising 
tumor neoantigens,15 indicating a more causal role of the micro-
biome as a mediator of a better tumor response to ICI therapy. It is 
challenging to uncouple prognostic vs. predictive features of α- 
diversity in the current study, and it cannot be inferred that 
a higher microbial diversity would also correlate with longer OS 
in untreated patients or patients not treated with ICIs but with 
other systemic agents. In comparison, a higher gut microbial 

diversity clearly represents a predictive biomarker in anti-PD 
-1-treated melanoma.13 Our finding that Gammaproteobacteria 
correlate with low PD-L1 expression and poor ICI-related survival 
suggests a new potential biomarker for ICI response prediction in 
NSCLC while leaving unanswered questions about the underlying 
mechanisms. Certainly, Gammaproteobacteria represent a highly 
diverse class of bacteria with numerous metabolic pathways 
involved, and member species can act as both facultative (e.g., 
E. coli) and bona fide pathogens (P. aeruginosa, S. typhimurium, 
H. influenzae, L. pneumophila).52 Whether the totality of 
Gammaproteobacteria downregulates PD-L1 expression and/or 
curtails anticancer immunity through metabolic or immunologi-
cal rewiring55 remains to be shown in future mechanistic studies.

The following limitations are applicable to the study, which 
lower the generalizability of the results: (i) The study is purely 
correlative and case numbers are limited. (ii) The study population 
was retrospectively selected and heterogeneous in terms of clinical 
parameters. (iii) Bronchoscopic biopsies provide a locoregional 
snapshot of the tumor and may not be representative of the tumor 
as a whole. (iv) The sampling and handling of bronchoscopic and 
surgical biopsies in non-sterile environments may have led to 
some degree of cross-contamination, a potential pitfall that 
might be more relevant to the smaller biopsy specimens. (v) No 
systematic data on the use of antibiotics immediately before or 
during checkpoint immunotherapy were available for the study 
population, thus prohibiting corresponding investigations. (vi) 
The study did not investigate non-bacterial microbes such as 
viruses and fungi. (vii) The bacterial signal in bronchoscopic 
tumor biopsies was low such that PCR amplification may have 
introduced some bias. In addition, results need to be interpreted in 
awareness of the fact that microbial signals detected in NTCs were 
subtracted from the test samples to account for reagent contam-
ination as reported.23–25 (viii) Many bacterial species were detect-
able in a few samples only such that species-level analyses could 
not be performed for statistical reasons.

We here show the technical feasibility of 16S rRNA gene 
amplicon sequencing-based bacterial identification in broncho-
scopic tumor biopsies and report the identification of novel micro-
biome-specific biomarkers for prognosis and checkpoint 
immunotherapy response prediction in NSCLC. Our proof-of- 
concept study sets the stage for larger validation trials and gives 
impetus for endeavors to mechanistically dissect the underlying 
mechanisms and define therapeutic leads. In the long run, it is 
hoped that basic knowledge about the role of the local tumor 
microbiome can inspire rational combination therapies to re- 
sensitize to – or boost – checkpoint blockade,56 e.g., through oral 
or inhaled supplementation with commensal microbes (re- 
installation of diversity) or the informed use of narrow-spectrum 
antibiotic/antiviral/antifungal agents (elimination of detrimental 
microbes).

Specific abbreviations used

ADC: Adenocarcinoma
CR: Complete response
FMT: Fecal microbiome transplantation
GI: Gastrointestinal
HR: Hazard ratio
ICI: Immune checkpoint inhibitor
NSCLCNon-small cell lung cancer

e1988403-6 M. BOESCH ET AL.



NTC: Non-template control
OS: Overall survival
OTU: Operational taxonomic unit
PD: Progressive disease
PFS: Progression-free survival
PRPartial response
SCC: Squamous cell carcinoma
SD: Stable disease
SDI: Shannon diversity index
SE: Standard error
SEM: Standard error of the mean
SNV: Single nucleotide variant
TMB: Tumor mutational burden
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