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Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and

stressed cells as a member of the innate immune system. Recently, NK cells have

also emerged as key regulators of adaptive immunity and have become a prominent

therapeutic target for cancer immunotherapy and infection control. NK cells display a

diverse array of phenotypes and function. Determining how NK cells develop and are

regulated is critical for understanding their role in both innate and adaptive immunity. In

this review we discuss current research approaches into NK cell adaptive immunity and

how these cells are being harnessed for improving cancer and vaccination outcomes.
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NK CELL CELLS ARE INNATE IMMUNE KILLERS

Natural Killer (NK) cells are cytotoxic granular lymphoid cells that develop from a
common progenitor of B and T cells (Kondo et al., 1997; Abel et al., 2018). NK cells
have the innate ability to recognize both virally infected and tumor cells, play a key
role in tumor clearing (Rosenau and Moon, 1961; Smith, 1966; Herberman et al., 1975;
Kiessling et al., 1975; Yang et al., 2006), and the primary immunological response to
viral infection (Biron et al., 1999; Vidal et al., 2011). When cytotoxic NK cells are
activated, they release cytolytic granules and secrete inflammatory cytokines and chemokines
that activate and recruit components of both the innate and adaptive immune response
(Iannello and Raulet, 2013).

NK cell activation is governed by the ligand-receptor interactions of the activating and inhibitory
receptors expressed on the NK cell surface (Tassi et al., 2006; Lanier, 2008; Bryceson et al.,
2011). The balance of activating and inhibitory signals controls NK cell activation and function
(MacFarlane and Campbell, 2006). NK cell activating receptors have well documented interactions
with both viral (Alsheikhly et al., 1985; Mandelboim et al., 2001; Jarahian et al., 2009) and tumor
derived ligands (Sivori et al., 1997; Vitale et al., 1998; Pende et al., 1999). NK cells also have killer
cell immunoglobulin-like receptors (KIRs) that are vital to the normal function of NK cells and
are critical for the education of NK cells. It is through these receptors that NK cells learn tolerance
of self through HLA-I molecules, which serve as ligands to inhibitory KIRs (Ljunggren and Karre,
1990; Campbell and Purdy, 2011). Diversity of KIR genotypes among individuals that contribute
to KIR-HLA interactions have implications for NK cell function and response against tumors
and viruses.
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NK CELLS WITH ADAPTIVE IMMUNE CELL
PROPERTIES

Classically, NK cells are regarded as members of the innate
immune system, but recent studies have elucidated that NK cells
can display both adaptive andmemory-like phenotypes. Antigen-
specific NK cell memory was first described in T and B cell
deficient mice displaying hapten-specific contact hypersensitivity
(CHS) in skin cells after adoptive transfer of NK cells from a
previously sensitized donor (O’Leary et al., 2006).

In addition to NK cell memory against haptens, it was
discovered that murine NK cell receptor Ly49H showed
specificity for MCMV-derived m157 expressed in mice (Daniels
et al., 2001; Lee et al., 2001; Arase et al., 2002). This interaction
between host Ly49H and virally-derived m157 elicits the clonal
expansion ofMCMV-activated NK cells, as well as the persistence
of memory NK cells that possess increased responsiveness to
m157 (Dokun et al., 2001; Bubic et al., 2004; Sun et al., 2009).
This was an example of NK cell memory that was defined by
specific NK cell receptor recognition of viral antigens. Additional
adoptive transfer studies in mice have revealed that liver-resident
NK cells have responded to several other pathogens including
HSV-2 (Abdul-Careem et al., 2012), Vaccinia virus (Gillard et al.,
2011) and Influenza A (IAV) (Li et al., 2017). Both the hapten and
MCMV murine models demonstrated the specific recognition
of foreign antigens by NK cells that contributed to a memory-
like recall response but did not demonstrate if this occurred
in humans and the extent NK cell memory contributed to
virus control.

NK cell adaptive response can also be mounted by
stress signals expressed by infected host cells (Figure 1A).
In humans, hantavirus-infected endothelial cells have been
shown to upregulate HLA-E, a ligand for NK cell activating
receptor NKG2C, subsequently resulting in the expansion of
NKG2C+ NK cells, and the persistence of this subset up to
2 months post infection (Bjorkstrom et al., 2011). Similarly,
HCMV infection of peripheral blood cells and fibroblast
cells elicits expansion of NKG2C+CD57+CD56dimCD16+
circulating NK cells in humans in acute infection models
(Beziat et al., 2013; Newhook et al., 2017).

Simian-immunodeficiency virus (SIV) vaccination and
infection models in rhesus macaques have provided evidence
that hepatic and splenic NK cells had the capacity to specifically
target and kill SIV Gag and Env-specific dendritic cells (DC),
and that this killing was NKG2C-dependent (Reeves et al., 2015).
Recently published data by Nikzad et al. demonstrated that
human liver-resident NK cells in humanized BLT mice displayed
antigen-specific killing in vitro against HIV Env-loaded DC’s
14 days post vaccination with recombinant HIV Env (Nikzad
et al., 2019). Moreover, they demonstrated that human NK cell
memory is long-lived in humans. Individuals that had Varicella
Zoster Virus (VSV) infection in their youth were injected with
a VSV-STA vaccine and had a significantly higher percentage
of degranulating NK cells localizing at the site of injection,
compared to controls. Another study demonstrated NK cell
memory in Hepatitis B virus infection and vaccination (Wijaya

et al., 2020). These findings provide much-needed evidence that
antigen-dependent memory NK cells may be induced in humans,
and that NK cell memory might have the potential to persist
decades after initial sensitization.

CYTOKINE-INDUCED MEMORY-LIKE NK
CELLS

NK cells can undergo differentiation into memory-like effectors
once exposed to various cytokines such as IL-12, IL-15, and IL-18
(Figure 1A). These cytokine-induced memory-like (CIML) NK
cells display higher IFN-γ secretion upon re-challenge compared
to their naïve counterparts, and has been demonstrated in both
mice and humans (Cooper et al., 2009; Romee et al., 2012;
Keppel et al., 2013; Berrien-Elliott et al., 2015). CIML NK
cells may also be defined by up-regulation of CD25 (Leong
et al., 2014), as well as complete demethylation of IFN-γ
promoter regions and other epigenetic changes (Lee et al.,
2015; Wiencke et al., 2016). Indeed, IFN-γ promoter region
demethylation of NK cells is also observed in the expanding
NKG2C+ NK cells of HCMV-infected individuals, independent
of the presence cytokine treatment (Luetke-Eversloh et al., 2014;
Schlums et al., 2015). This similarity might imply that CIML
expansion and persistence might depend on HCMV infection
and/or NKG2C+ expansion, and that CIML phenotypes can
be evoked independent of cytokine treatment (Goodier et al.,
2016). One key difference in HCMV-expanded NKG2C+ NK
cells is that in vitro or vaccine-induced CIML NK cells have
been associated with expansion of less differentiated NK cells.
CIML NK cells have been a key player in recent developments in
cancer immunotherapy and have shown enhanced killing against
a variety of cancer cell lines in vitro, including leukemia and
ovarian cancer (Romee et al., 2012, 2016; Uppendahl et al., 2019).
More recently, Romee et al. demonstrated enhanced killing of
leukemic targets after adoptive CIML transfer into patients with
acute myeloid leukemia (AML) and have conducted a clinical
trial evaluating the safety of ALT-803—an IL-15 super agonist
complex that activates NK cell and CD8T cell function—in
patients with hematologic malignancies who had suffered a
relapse post-Hematopoietic cell transplant (HCT) (Romee et al.,
2016, 2018). Another ongoing clinical trial aims at evaluating the
efficacy of adoptively transferred CIMLNK cells in relapsed AML
patients after HCT (NCT03068819). Future studies optimizing
the ex-vivo generation of CIML NK cells for immunotherapy of
cancer as well as determining if CIML NK cells can be generated
in vivo through a vaccine, adjuvant, or other cytokine-stimulating
molecule will be necessary to further advance this area of research
in the clinic.

NK CELLS INFLUENCE ADAPTIVE
IMMUNITY THROUGH REGULATION OF T
AND B CELLS

NK cells and B cells have long been known to associate, given
that NK cells mediate antibody-dependent cellular cytotoxicity
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FIGURE 1 | NK cells and adaptive immunity. (A) NK cells can develop memory-like attributes in response to infection (left) or cytokine stimulation (right). (B) NK cells

have been shown to regulate adaptive immunity by targeting dendritic cells (left) that can change the quality of the T cell response and T follicular helper cells (right)

that can regulate B cell maturation (somatic hypermutation) and function. (C) Therapeutic manipulation of NK cell function using soluble NK cell receptors that target

tumor or viral infected cells to improve NK cell targeting (top left) or monoclonal antibodies that block or stimulate NK cell receptors (top right) to modulate NK cell

function are under current development. Vaccine components such as adjuvants (bottom) could also be utilized to generate CIML NK cells in vivo with a vaccine.

(ADCC) through the NK cell Fc receptor, CD16. Recent evidence
suggests that NK cells impact B cell affinity maturation and
immune function (Figure 1B). Recent reports by Rydyznski et al.
have elucidated that murine NK cells impair humoral immunity
through the inhibition of CD4T follicular helper (Tfh) and
germinal center (GC) B cell expansion and function (Rydyznski
and Waggoner, 2015; Rydyznski et al., 2015, 2018). Using
an NP-KLH (4-hydroxy-3-nitrophenylacetyl; keyhole limpet
hemocyanin) conjugate model for immunization in mice, they
demonstrated that NK cell-depleted mice, compared to control
mice, had higher Tfh and GC B cell populations, greater
expansion of splenic germinal centers, and an increase in
the production of NP-specific antibodies that displayed higher
affinities for NP following immunization. NK cell impairment
of B cell affinity maturation in mice was shown to occur in a
perforin-dependent manner, as perforin-deficient mice displayed
a similar level of affinity maturation as NK cell depleted mice
did (Rydyznski et al., 2018). Other studies have shown that NK
cells directly activate B cell IgG and IgM production, as well as
facilitate immunoglobulin class-switching and can control HIV-
1 neutralizing antibody responses (Snapper et al., 1994; Gao
et al., 2008; Bradley et al., 2018). Conversely, NK cells have also
been shown to have inhibitory roles in B cell function. Poly:IC
injection in mice inhibited IgM primary response, via NK cell

activation (Abruzzo and Rowley, 1983). T-cell dependent (IL-
2) NK cell activation has also been shown to have negative
outcomes for antibody production after EBV and pokeweed
mitogen stimulation (Rydyznski andWaggoner, 2015). In human
NK cell-B cell co-culture experiments, NK cells have been shown
to activate B cell antibody production via TNFα (Becker et al.,
1990) and CD40-CD40 ligand interactions (Blanca et al., 2001).

Studies in humans and mice have revealed that NK cells
indirectly influence the T cell repertoire via direct interaction
with antigen presenting cells, most notably immature Dendritic
Cells (iDC) and mature Dendritic Cells (mDC; Figure 1B).
Human DC-NK cell cross-talk and subsequent activation of both
cell types was first reported in vitro, where it was reported
that DC-NK cell interaction enhances NK cell activation and
DC maturation, with the former expressing IFN-γ, stimulating
the latter to mature, secrete IL-12, and amplify expression of
the co-stimulatory molecule CD86 (Gerosa et al., 2002). In
subsequent studies, mDC-derived IL-12 was shown to enhance
CD8T cell responsiveness and activation (Mocikat et al., 2003;
Adams et al., 2005). The tendency for NK cells to kill iDCs
while sparing mDCs, termed “DC editing” is another example
of indirect changes to T cell immunity modulated by NK
cells (Morandi et al., 2012; Ferlazzo and Moretta, 2014). The
elimination of iDCs is hypothesized to enhance T cell priming,
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by decreasing competition between iDCs and mDCs which
have the costimulatory molecules needed for T cell activation.
In humans, this process is thought to be governed by ligand-
receptor interactions of NKp30 ligands expressed on iDCs, and
inhibitory KIR ligands expressed onmDCs (Ferlazzo et al., 2002).

During infection, NK cells target and kill infected host cells,
which release antigen available for DC uptake. This enhancement
of DC cross-presentation effectively improves cytotoxic T cell
mediated immunity. After transfer of allogeneic B cells in mice,
NK cell killing of the B cells resulted in apoptotic bodies taken
up and presented by dendritic cells (Iyoda et al., 2002). NK cell
killing of Ova-expressing splenocytes also resulted in release of
antigen, leading to the enhancement of CD8 and CD4T cell
priming (Krebs et al., 2009). Activated murine NK cells are also
capable of shaping T cell immunity directly. After activation,
murine NK cells localize to the lymph nodes where they release
IFN-γ, eliciting CD4+ T cell differentiation into the Th1 subtype
(Martin-Fontecha et al., 2004).

NK CELL REGULATION OF T CELL
IMMUNITY DURING VIRAL INFECTION

LCMV and MCMV infection studies in mice have produced
variable results outlining the effect NK cells have on T cells
during acute and chronic viral infection. Waggoner et al.
demonstrated that NK cells targeted and killed CD4T cells
during LCMV infection in mice (Waggoner et al., 2011).
However, other studies of LCMV infection have suggested that
NK cells directly eliminated CD8 cells either through anNKG2D-
dependent manner or another undefined mechanism during
LCMV infection (Soderquest et al., 2011; Lang et al., 2012).
Recently published data suggests that NK cells directly kill CD8T
cells during LCMV infection in mice, and that this killing is
NCR-1 dependent (Pallmer et al., 2019). The presence of NK
cells during LCMV infection in mice was reported to elicit T-
cell exhaustion, and subsequently reduce both CD4 and CD8T
cell response to LCMV, and that NK cell depletion enhances
T-cell mediated viral clearance (Cook and Whitmire, 2013). In
chronic models of MCMV infection, TRAIL+NK cells have been
reported to target CD4T cells in the salivary gland, which the
authors suggest is to limit autoimmunity during chronic infection
(Schuster et al., 2014). Other experiments showed that IL-10
secretion by NK cells during MCMV infection inhibited CD8T
cell response (Lee et al., 2009).

VACCINATING FOR MEMORY NK CELL
GENERATION

Vaccines have historically relied on eliciting antigen-specific
effector and memory B and T cells to protect against subsequent
infection, but for challenging pathogens such as HIV-1 and TB,
alternative strategies to boost immunity must be pursued.

CIML NK cell induction during vaccination has a clear
advantage over antigen-specific NK cell memory, as it is not
restricted to certain antigens. CIML NK cells have been proven
to be elicited after immunization with several human vaccines,

including TIV, YF-17D, and BCG (Marquardt et al., 2015;
Goodier et al., 2016; Suliman et al., 2016; Darboe et al., 2017).
IL-15 has been demonstrated to prime TIV-vaccinated human
PBMC to produce innate myeloid cytokines, as well as generate
CIML NK cells that have enhanced responsiveness to H3N2
influenza virus (Wagstaffe et al., 2019b). The persistence and
functional significance of vaccine induced CIML NK cells during
vaccination requires further investigation.

Although the recent findings of antigen-specific human NK
cell memory are useful, there is a dearth of literature outlining
how human NK cells mediate antigen-specific killing as well as
how long human NK cell memory can persist in vivo. Findings
on VZV-specific NK cell memory was limited by the fact that
VZV-naïve individuals are rare, and thus were not available to be
used as controls in the Nikzad et al. study. The HCMV-induced
differentiation of CD56dimNKG2C+ into adaptive like NK cells
was shown to occur via an epigenetic mechanism, however, it
is not clear if all disease models that display NKG2C+ NK cell
expansion go through the same epigenetic changes that HCMV
infection elicits.

It is hypothesized that some models of vaccine-dependent,
antigen-specific memory NK cells occur through genomic
rearrangement, rather than the epigenetic mechanisms displayed
in HCMV infection/host stress signal models. Several studies
have elucidated the correlation between antigen-specific CD4T
cell derived IL-2 and improved NK cell response in a number of
different vaccination models (Figure 1C) (Horowitz et al., 2012;
Jost et al., 2014; Goodier et al., 2016). Thus, the mechanisms
of adaptive NK cell memory generation must be studied
on a pathogen-dependent basis, if they are to be implicated
in vaccination.

ENHANCING CLASSICAL NK CELL
EFFECTOR FUNCTIONS FOR BETTER
VACCINATION OUTCOMES

A roadblock inhibiting vaccine-induced NK cell effector function
is the limited understanding of how these processes occur in
humans, and how these processes vary across different human
vaccine models. To date, much of the work concerning NK cell
effector function has centered around IAV and HIV models in
mice and humans. Prophylactic and therapeutic vaccine trials
need to investigate key NK cell effector functions—namely PAMP
and myeloid cytokine-induced NK cell activation, DC editing,
and NK cell ADCC induction.

Pathogen-associated molecular patterns (PAMPs) are often
incorporated as adjuvants in vaccines (Miyaji et al., 2011). PAMP-
induced NK cell activation has been correlated with overall
vaccine immunogenicity (Feng et al., 2013; Martins et al., 2014).
A recent report suggested that the presence of IFN-g derived
from PAMP-induced activated human NK cells amplifies the
pro-inflammatory cytokine profile of dendritic cells (Oth et al.,
2018). Although these findings need to be further investigated
in specific infection and vaccination models, they suggest that
the presence of PAMPs in conjunction with IL-2, enhance DC
editing, and thus could be a contributing factor to the enhanced
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immunogenicity of PAMP-containing vaccines. Future efforts
to determine which adjuvant or combinations of adjuvants
that elicit superior NK cell function that results in improved
protective adaptive immune responses should be considered for
all vaccines to increase vaccine efficacy and durability.

Myeloid cell-derived cytokines (IL-12, IL-15, IL-18, IL-27)
as well as T-cell derived IL-2 have all been documented to be
involved with NK cell priming and activation. As described
earlier, the IL-12, IL-15, IL-18 cytokine cocktail activated IFN-
γ expression in NK cells during vaccination. A recent report has
demonstrated that IL-27 promotes murine NK cell cytotoxicity
and IFN-g production in an NKG2D-dependent manner
during influenza infection (Kumar et al., 2019). Nanogram
concentrations of IL-15 have been demonstrated to boost IL-12
production and boost human NK cell function after exposure to
H3N2 in vitro (Wagstaffe et al., 2018). Many of these cytokines
have been explored in terms of immunotherapy but have not
been examined as extensively as adjuvants for vaccines against
infectious disease. Influenza models would provide a convenient
avenue to investigate the role that IL-27 plays in human models
of influenza vaccination.

Improving NK cell ADCC via vaccination is also a key goal
for Influenza, HIV-1, and other viruses (Hashimoto et al., 1983;
Mielke et al., 2019). Recently, it was demonstrated that IL-15
is capable of improving ADCC-mediated killing against HIV-
infected cells in seropositive donor plasma, and HVTN-100
vaccine trial (Fisher et al., 2019). In influenza-infected adults,
ADCC antibodies specific to highly conserved viral proteins
nucleoprotein (NP) and matrix 1 (M1) were found for both
H1N1 and H5N2 strains of IAV (Vanderven et al., 2017). ADCC
antibodies for M2, another highly conserved IAV protein, has
been shown to elicit ADCC in mice, however human trials
have not yet been conducted. Ebola-specific ADCC antibodies
have been confirmed in vitro in human PBMCs and NK cell
lines. Recently, it was reported that Ebola-specific ADCC is
activated after various vaccination schedules of Adenovirus
type 26.ZEBOV and modified vaccinia Ankara (MVA)–BN-Filo
(Wagstaffe et al., 2019a).

Influenza and HIV remain persistent pathogens responsible
for the deaths of millions every year. NK cell effector functions
have been implicated in both disease models and should continue
to be investigated. NK cells display direct recognition of influenza
infected cells via interaction of NKp46 and hemagglutinin (HA).
In mice, NK cells have been observed to localize to the lymph
nodes during primary response to influenza vaccination and
have ultimately been observed to regulate antibody production
in an NK cell IFN-g and DC IL-6 dependent manner (Garcia
et al., 2012; Chatziandreou et al., 2017; Farsakoglu et al.,

2019). The exact mechanism behind the infection-induced IL-
6 response remains unclear and should be investigated further
in mice. The mechanisms by which NK cells regulate humoral
immunity during influenza vaccination should be examined
in mice and humans in order to investigate if an influenza
vaccine with appropriate adjuvant combination can elicit a
similar immune response as seen in the murine infection model.
The positive effect that murine NK cells display during acute
viral infection is interesting, given that chronic HIV infection

models have suggested that functional NK cells play an inhibitory
role in humoral immunity both in mice and humans—namely
through inhibition of B cell maturation and decreased HIV-
1 broadly neutralizing antibody production (Rydyznski et al.,
2015, 2018; Bradley et al., 2018). In addition to cytokines and
adjuvants, the use of soluble NK cell receptors and antibodies
targeting activating or inhibitory NK cell receptors could be
utilized to modulate NK cell function and influence the adaptive
immune response during infection, autoimmunity and cancer
(Figure 1C). The role that NK cells play in humoral immunity
are dependent on the nature of an infection (acute vs. chronic)
and the types of adaptive immune responses that are required
to be protective.

CLOSING REMARKS

Here, we have summarized how NK cell phenotype and function
can be manipulated to improve immunity to vaccines and cancer,
and howNK cells can influence other arms of innate and adaptive
immunity. Future efforts should attempt to elicit memory-like
NK cell phenotypes, while enhancing innate NK cell effector
functions. Limiting NK cell phenotypes that negatively impact
the generation of protective immune responses must also be
pursued. It should also be noted that future vaccination efforts
should not seek to replace aspects of cell-mediated and humoral
immunity with NK cell-mediated immunity but seek to modulate
NK cell function in tandem with adaptive immunity.
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