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Abstract—Goal: Smartphones can be used to passively
assess and monitor patients’ speech impairments caused
by ailments such as Parkinson’s disease, Traumatic Brain
Injury (TBI), Post-Traumatic Stress Disorder (PTSD) and
neurodegenerative diseases such as Alzheimer’s disease
and dementia. However, passive audio recordings in natural
settings often capture the speech of non-target speakers
(cross-talk). Consequently, speaker separation, which iden-
tifies the target speakers’ speech in audio recordings with
two or more speakers’ voices, is a crucial pre-processing
step in such scenarios. Prior speech separation methods
analyzed raw audio. However, in order to preserve speaker
privacy, passively recorded smartphone audio and machine
learning-based speech assessment are often performed on
derived speech features such as Mel-Frequency Cepstral
Coefficients (MFCCs). In this paper, we propose a novel
Deep MFCC bAsed SpeaKer Separation (Deep-MASKS).
Methods: Deep-MASKS uses an autoencoder to reconstruct
MFCC components of an individual’s speech from an i-
vector, x-vector or d-vector representation of their speech
learned during the enrollment period. Deep-MASKS utilizes
a Deep Neural Network (DNN) for MFCC signal reconstruc-
tions, which yields a more accurate, higher-order function
compared to prior work that utilized a mask. Unlike prior
work that operates on utterances, Deep-MASKS operates
on continuous audio recordings. Results: Deep-MASKS
outperforms baselines, reducing the Mean Squared Error
(MSE) of MFCC reconstruction by up to 44% and the num-
ber of additional bits required to represent clean speech
entropy by 36%.

Index Terms—Mel-Frequency Cepstrum Coefficients
(MFCCs), overlapped speech, speaker representation,
speech separation,

Impact Statement—The proposed Deep-MASKS mitigates
cross-talk in speech encoded as MFCC features, which
are widely utilized to preserve voice privacy in passive
health assessment and other speech applications on smart-
phones.
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I. INTRODUCTION

GROWING evidence suggests that frequent monitoring of
speech can help clinicians diagnose and steer the course

of treatment for speech disorders at an early stage [1], [2].
Moreover, various neurological disorders such as Parkinson’s
disease and Traumatic Brain Injury (TBI) manifest in patients’
speech, making speech-based assessments an exciting,
emerging research area [2]–[5]. Current research utilizes
smartphones to remotely monitor patients more frequently due
to their near-ubiquitous ownership and powerful processing
capabilities, and advancements in speech processing techniques.
Consequently, cost-effective, passive, clinically valid voice
assessments are now feasible using smartphones [5]–[7].
Smartphones facilitate remote assessment of patients who
cannot visit the clinic regularly. Such assessments can be
done either in real-time or offline by analyzing recorded
speech. Passive, continuous speech assessments in natural
settings provide comprehensive insights into patients’ health
and lifestyles outside the clinic, augmenting traditional
screening performed by clinicians. Prior work has demonstrated
promising results for smartphone-based voice screenings to
detect speech impairments caused by Parkinson’s disease [8],
and neurodegenerative diseases such as Alzheimer’s disease
and dementia [9], [10], neurocognitive deficits, Traumatic Brain
Injury (TBI) and Post-Traumatic Stress Disorder [11].

Fig. 1 shows a passive speech assessment pipeline that is
typically utilized for smartphones, distinguishing the traditional
speech processing pipeline in comparison to our novel Deep-
MASKS pipeline. For instance, Huang et al. [12] utilized a
similar traditional speech pipeline to detect depressed speech,
Their pipeline utilized Support Vector Machines (SVMs) to
classify audio in the form of Mel-Frequency Cepstral Coeffi-
cients (MFCCs) features, which represent speech as the Discrete
Cosine Transform (DCT) of the log power frequency spectrum
on the Mel frequency scale – detailed computational steps are
provided in the supplementary materials. MFCCs have been
widely adopted in health-oriented speech technologies, and in
many modern speech technologies [13]–[15]. The MFCC repre-
sentation of speech is also attractive in smartphone-based speech
analytics because of its compact size and the fact that it exhibits
less correlations than filter bank features [16]. Consequently,
MFCC features are often utilized in most steps of a typical
smartphone voice analytics pipeline and related tasks, including
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Fig. 1. A comparison between our proposed pipeline and the traditional processing pipeline for passive smartphone-based speech assessment.
The smartphone simultaneously records audio and extracts speech features, which reduces data storage requirements and preserves speaker
privacy. In the traditional pipeline, the processing steps preceding speech assessment include Voice Activity Detection (VAD), which is used for
locating speech utterances, followed by overlapped speech detection, and speaker diarization (detecting turn-taking in speech). We introduce an
alternate Deep-MASKS pipeline which performs the pre-assessment step of removing the speech of non-target speakers that is then followed by
VAD.

automatic speech recognition, speaker diarization, and speech
assessment, as they have been found to outperform low-level fea-
tures such as fundamental frequency and loudness, zero-crossing
rate [13], [14]. In order to preserve the speaker’s privacy in
passive health assessments, which is important in healthcare,
audio is frequently featurized as MFCCs feature on the source
smartphone and utilized in subsequent speech processing steps.
Additionally, MFCC-based encryption algorithms for remote
healthcare systems have been proposed to make them more
secure [17], [18]. One known drawback of of MFCCs is that
they compromise the richness of the speaker’s voice.

The problem: MFCC features are not robust to background
noise and cross-talk (overlapped speech). Cross-talk, which
occurs when a smartphone captures background speech that
does not belong to its owner, is a common problem when
smartphones are used for passive assessment in natural
environments. Robust solutions for cross-talk are crucial to
avoid erroneously assessing the speech of a non-target speaker.
Cross-talk has been found [19], [20] to be one of the factors
that cause major degradation factors in speaker diarization.
They proposed introducing the detection of overlapped speech
into the traditional speech pipeline as illustrated in Fig. 1. If
detected, overlapped speech can be excluded prior to speech
assessment. While discarding overlapped speech improves
speaker diarization performance, it may not be appropriate for
applications with only limited data. In this paper, we present a
novel method to solve the cross-talk problem.

Background and prior work: Various speaker separation
strategies have previously been proposed to isolate the speech
of a specific speaker [21]–[23]. Speech produced by a speaker
is widely represented using speaker representations, such as
i-vector [24], d-vector [25] and x-vector [26], which map in-
dividual voice characteristics to a fixed-size vector in a high

dimensional feature-space. These speaker representations were
originally developed for the speaker recognition task and have
previously been utilized in speech separation [22], [23]. In their
VoiceFilter system, Wang et al. [22] used the d-vector represen-
tation to isolate target speech, utilizing a mask generated using
deep learning. Corresponding speech components contained in
a spectrogram were then filtered before transformation back to
raw audio. SpeakerBeam [23] used the i-vector representation
as one of their auxiliary speaker inputs to neural networks with
an architecture similar to that of Wang et al’s VoiceFilter. [22].

Speaker separation methods, which target scenarios in which
no prior information on the speaker, their identity or represen-
tations of their speech are required, have also been proposed.
Luo et al. [21] introduced deep attractor networks to separate
the speaker using an attractor point in speaker embedding-space
deep clustering. Nachamani et al. [27] proposed a multiple-step
model for situations in which the number of speakers is un-
known, and trained the model separately for all possible numbers
of speakers. Although these methods do not require knowing the
identity of the speaker, they require additional pre-processing or
post-processing step(s) to identify the number of speakers within
an audio segment. On smartphones, which typically have one
user and on which computational resources are often limited,
generating a representation of the speaker’s voice once in order
to obviate the need to perform the speaker identification step
many times, is a good trade-off.

Our approach: Most prior speaker separation approaches
focused on analyzing the audio waveform. In contrast,
we propose a Deep MFCC bAsed SpeaKer Separation
(Deep-MASKS) network that separates speech in feature space
using MFCCs. Applying Deep-MASKS on MFCCs as a data
pre-processing step enables complete integration into the typical
MFCC-based speech assessment pipeline shown in Fig. 1, and
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is able to utilize any of the most popular speaker representa-
tions. Deep-MASKS makes novel use of a deep learning-based
autoencoder and speaker representation vector to reconstruct
MFCC components that correspond to the target speaker. The
method isolates the MFCCs produced by a registered user
(smartphone’s owner) while rejecting MFCC features produced
by other speakers in an overlapped speech segment. Including a
robust speaker separation step using Deep-MASKS ensures that
the speech assessed for impariments truly belongs to the owner
of the phone, increasing confidence in results produced.

While Deep-MASKS shares some similarities with Voice-
filter [22], our method is explicitly designed for frame-level
features – as opposed to the raw speech waveform – that are
now widely used in many recent speech processing and as-
sessment systems. Deep-MASKS can also flexibly utilize most
speaker representation (or embedding) methods and reconstructs
MFCCs from a long recording that are more relevant to con-
tinuous passive audio assessments rather than utterances, as in
VoiceFilter [22]. Deep-MASKS also improves on VoiceFilter
by using a DNN for MFCC signal reconstruction instead of a
mask, which yields a more accurate higher order reconstruction
function. This study evaluates Deep-MASKS on how much
the reconstructed MFCCs deviate from MFCCs generated from
clean speech using Mean Square Error(MSE), Kullback-Leibler
divergence, and Jensen-Shannon divergence error metrics. Our
method reduces cross talk from other speakers by up to 44% in
overlapped speech. We also include two additional evaluations
in which Deep-MASKS is employed as a pre-processing step for
Automatic Speaker Recognition (ASR) and speaker diarization
tasks in the supplementary materials

Challenges: Two main challenges presented by speech sepa-
ration methods that utilize speaker representations are 1) Insuffi-
cient information about speakers and 2) Speaker representations
are often restricted to a specific system. We address the limited
speaker information issue by considering only one speaker (the
smartphone owner) as a target when extracting speech compo-
nents from the mixture at a time. Threshold values that separate
target and non-target speakers are learned using the encoder,
speaker matching, and MFCC refinement networks. Our method
is also not restricted to a specific system as the speaker matching
network is able to adapt to all three previously proposed speaker
representations (i-vector, d-vector and x-vector).

II. MATERIALS AND METHODS

A. Speaker Representations

A speaker representation is a high-dimensional vector that
represents target speaker information, extracted from multiple
utterances in a task-independent fashion. It is included in most
speaker-independent tasks in order to cope with the speaker
adaptation problem [15], [28]. Saon et al. [28] demonstrated that
incorporating the i-vector speaker representation with MFCCs
improves ASR performance, obviating the need for additional
methods that personalize feature values to speakers such as
Vocal Tract Length Normalization (VTLN) and feature space
maximum likelihood linear regression. In a similar spirit, we

employed the i-vector, x-vector and d-vector speaker represen-
tation vectors, in the DNN to separate speech that belongs to a
smartphone owner.

The i-vector is based on a Universal Background Model
(UBM), which is a Gaussian Mixture Model (GMM) trained
on a multi-speaker corpus. It uses factor analysis to compute
low-dimensional total variability factors (w) from the super-
vector (M ) as shown in 1, where m is a speaker-independent
super-vector from UBM; T is a total-variability matrix. The
i-vector is obtained fromw and is the only speaker representation
method that is not a DNN-based speaker representation, but it
has previously been adopted in DNNs to adapt features learned
from multiple speakers [15], [28].

M = m+ Tw (1)

Due to its impressive performance in ASR systems [15], [28],
the d-vector utilizes Deep Neural Networks (DNNs) to generate
an embedding of the speaker for the speaker verification task.
The d-vector was initially developed for text-dependent [29]
and text-independent speaker verification [25] using Convo-
lutional Neural Networks (CNNs) and Fully-Connected (FC)
layers. The main advantage of the d-vector is that it requires
fewer utterance frames than the i-vector [25]. However, its
embedding vector does not follow a normal distribution likew in
the i-vector. X-vector utilizes Probabilistic Linear Discriminant
Analysis (PLDA), a generative probability model that assumes
that the input is a known distribution, to extend the d-vector in
a way that preserves a normal distribution. Similar to d-vector,
x-vector uses a time-delay neural network to build a speaker
representation (feature extraction) with classification done using
a PLDA classifier. In speaker recognition, X-vector often out-
performs i-vector for short utterances while having comparable
performance for long utterances [26].

B. Deep-Masks

We propose Deep-MASKS, a neural network that reconstructs
MFCC features corresponding to a (target speaker) using an
AutoEncoder (AE) and the i-vector, x-vector, d-vector or any
fixed-length speaker representation computed from clean speech
gathered during an enrollment period.

Deep-MASKS contains three neural networks: 1) encoder
network, 2) speaker matching network and 3) MFCC refinement
network as shown in Fig. 2. The encoder network follows the AE
concept by transforming an MFCC input into a compact bottle-
neck feature that maintains speaker information, constrained by
an objective function to extract speaker representation during
pre-training. Deep-MASKS recognizes a target speaker based
on a given speaker representation vector concatenated to the
bottleneck feature as an input to the speaker matching network,
which applies non-linear filters to remove non-target speakers
from the bottleneck representation. In the final stage, the MFCC
refinement network reconstructs MFCCs of the target speaker
from the bottleneck feature with access to the MFCC input to
recover information that might be lost during in the encoder
network. The encoder network is pre-trained to reconstruct the
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Fig. 2. Architecture of the Deep-MASKS using AE with speaker rep-
resentation, comprising (a) encoder network, (b) speaker matching net-
work, and (c) MFCC refinement network.

MFCC signal and extracts the speaker representation simulta-
neously, as illustrated in Fig. 3. The parameters of the encoder
network (fθ1 ) are pre-trained to reconstruct a clean utterance
(yij), where i denotes the MFCC frame and j denotes the
MFCC coefficient, using a decoder (h()) as shown in 2. The
encoder network also learns to extract speaker representation
vector (sij) from a clean utterance using shared parameters (fθ1)
and a network g(), which contains a global average pooling
layer to summarize a speaker representation vector by averaging
multiple speaker representations over frames.

Lpretrain = α

n∑

i=0

13∑

j=0

(yij − h(fθ1(yij)))
2

+ (1− α)

n∑

i=0

13∑

j=0

(sij − g(fθ1(yij)))
2 (2)

The encoder network is trained to reduce the loss, Lpretrain that
is a weighted combination of the MFCC reconstruction and L2
norm errors between the predicted speaker representation vector
(g(fθ1()) and the actual speaker representation generated from
clean speech gathered during speaker enrollment. The weight
(α) is set to 20%, which we found optimal for adapting the
networks to match speaker representation vectors from other
systems. This pre-training allows the whole model to learn
parameters of speaker matching (fθ2) and MFCC refinement
(fθ3 ), which occurs deeper in the neural network rather than
adapting to the speaker representation vector.

During pre-training, a bottleneck is created to encode the
speaker representation from the input MFCC. Two layers of
a bi-directional Long Short-Term Memory (bi-LSTM) with 64
filters and 32 filters are included in the encoder network to re-
construct a clean MFCC representation, followed by a temporal
Fully Connected (FC) in a decoder network. An LSTM neural

network was previously used to extract speaker representation
and remove noise from audio [30]–[32]. In this study, Deep-
MASKS employs bi-LSTM, a variation of LSTM that considers
the backward sequence in addition to the forward sequence, to
learn temporal patterns over the MFCC sequence.

In the speaker matching network (fθ2 ), the target-speaker
representation vector is concatenated on every temporal slice
of the speaker representation with two FC layers with 64 filters.
This part of the network performs similarity matching between
the speaker representation in the model and the speaker rep-
resentation vector. In the last part (fθ3 ), this latent vector is
concatenated to the input MFCC followed by an LSTM with
64 filters and a temporal FC layer to reconstruct and refine
the speech-separated MFCC. The size of the filters in the last
FC layer must match the number of MFCC features, which we
specify to be 13 in this study. Batch normalization and ReLU
activation layers follow every FC layer. The final loss function
is defined in 3.

L =
n∑

i=0

13∑

j=0

(yij − fθ1,θ2,θ3(xij))
2 (3)

III. EXPERIMENTAL EVALUATION

Deep-MASKS was evaluated on a mixture of speech from
multiple speakers using three reconstructions errors: Mean
Squared Error (MSE), Kullback-Leibler (KL) divergence and
Jensen-Shannon (JS) divergence. This section describes the
preparation of the corpus and data, followed by experimental
setup and baseline models.

A. Corpora and Data Preparation

AMI corpus: The AMI meeting corpus [33] contains 100
hours of video and audio recordings of naturally occurring (non-
scenario) as well as elicited (scenario) meetings. The dataset was
originally gathered to study the effectiveness of work groups and
has been utilized for various speech research such as as speaker
diarization and overlapped speech detection [19], [20]. In the
scenario meetings, participants were assigned and played vari-
ous roles in a design team in varied contexts. The non-scenario
meetings are actual meetings and speakers were not assigned to
any roles or contexts. The audio was recorded using close-talking
and far-field microphones with an annotation that represent
speakers. This study only used audio from the AMI corpus
that was recorded by a microphone on a headset and contains
recordings in which approximately 18% are non-speech, 66%
are speech without any overlap, and 16% are overlapped speech.
The overlapped speech in this dataset is actual cross-talk, where
we consider the recording from this microphone as clean speech.
We simulated the dynamics of near-field talking on smartphones
by using only the recordings captured by individual headsets.

Overlapped speech mixtures were generated by combining
the audio from multiple headsets recorded simultaneously in the
same meeting. This mixture consists of continuous recordings
containing both speech and non-speech segments except for
a speech utterance used as a reference for the target speaker
representation vector. For evaluation purposes, the reference
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Fig. 3. AE used for pre-training encoder network.

utterance was determined by selecting the speaker representation
(Vi) with the highest cosine similarity, as shown in 4, to all
other speech utterances (V) in the clean speech as a speaker
enrollment process.

arg max
i

Vi ·V
‖Vi‖‖V‖ (4)

We evaluated the Deep-MASKS on all possible subsets of 1-4
speakers; however, mixtures with five speakers were not evalu-
ated as the number of overlapped segments with five speakers
was considered insufficiently large.

Feature extraction: MFCC features were extracted using
Kaldi [34] configured to compute 13 MFCCs with a window
length of 25 ms and a step length of 10 ms. Kaldi is a speech
processing framework built specifically for ASR tasks, which
eased the integration of our speech separation method into
an ASR that is included in the supplementary materials. The
MFCCs were split into chunks (data instances) of 6000 MFCC
frames (1 minute) to generate mini-batches during training. Each
mini-batch contained 8 data instances (6000 MFCC frames, or
1 minute) randomly selected to train the Deep-MASK model.

Speaker representations: To implement the i-vector and
x-vector, we followed the Kaldi recipes provided by [26] but
modified MFCC feature extraction to match the Deep-MASK.
For the d-vector speaker embedding, we followed the implemen-
tation of PyanNet [19] but extracted MFCCs to train the model
with a triplet loss function instead of a waveform. All speaker
representation methods were pre-trained on the whole VoxCeleb
dataset [35] with slight augmentation of speech utterance in
AMI training sets that were longer than 5 seconds. VoxCeleb
consists of short clips of human speech, extracted from interview
videos uploaded to YouTube. The resulting i-vector, x-vector,
and d-vector have dimensions of 400, 512, and 512, respectively.

Normalization parameters: MFCCs were normalized us-
ing Short-Time Cepstral Mean and Variance Normalization
(STMVN) [36] to reduce the segmental differences between
speakers. We applied STMVN with a sliding window (w) of 3
seconds, as shown in 5 where C(m, k) denotes MFCC at frame
m and kth coefficient; μ(m, k) and σ(m, k) are mean value and
standard deviation of kth coefficient overw frames, accordingly.

CSTMVN (m, k) =
C(m, k)− μ(m, k)

σ(m, k)
(5)

μ(m, k) =
1

w

m+0.5w∑

i=m−0.5w

C(i, k) (6)

σ(m, k) =
1

w

m+0.5w∑

i=m−0.5w

(C(i, k)− μ(m, k))2 (7)

Normalization parameters were computed from the mixture
and applied to the mixture and also individually on each Mel
coefficient in the ground truth MFCCs.

B. Deep-MASKS: Speech Separation Experiment

Pre-training: The encoder part of the Deep-MASKS net-
work was trained to extract the speaker representation from
MFCCs using the speaker representation vector, generated as
visualized in Fig. 4(A), as one of the targets. The model was
trained on each embedding method separately until the loss
stopped decreasing, usually within five epochs.

Training: All data included the MFCC mixture, speaker
representation vector, and ground truth MFCC that were pre-
generated. The MFCC mixture was prepared as visualized in
Fig. 4(B) while ground truth MFCC was prepared similarly
but without summing across speakers. We used the Tensorflow
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Fig. 4. Data preparation steps for Deep-MASKS evaluation.

library [37], a computation library that has implementations of
state-of-the-art DNN models. We trained the proposed model
on NVIDIA K80 and NVIDIA V100 GPUs with a batch size of
8, randomly selected from the data. RMSprop [38] was used to
optimize the parameters based on Mean Squared Error (MSE)
loss ( 3) in the mini-batch. The training was evaluated on the
epoch with the lowest validation loss after training for 20 epochs.

Evaluation and metrics: To evaluate overlapped speech
utterances, only speech segments were evaluated based on the
number of speakers they contained. For continuous recording,
we evaluated the model on the whole recording that contains
for instance, a mixture of 3 headsets, non-speech segments,
speech without overlap, two-speakers overlapped speech, and
three-speaker overlapped speech.

We evaluated the reconstructed MFCC on the MSE, Kullback-
Leibler (KL) divergence [39] and Jensen-Shannon (JS) diver-
gence [40] metrics. MSE was computed using the loss function
in 3 and was normalized across coefficients since the ranges
of Mel coefficients are wider in lower coefficients. The KL-
divergence measured the difference between the clean MFCC
vs. noisy MFCC distributions, as previously used in [41], [42].
Intuitively, KL-divergenceDKL(p||q)measures the inefficiency
of using q to approximate p. [43]. DKL(p||q) is computed using
8 where p(xi) and q(xi) is a normalized histogram bin i of
clean MFCC and mixture MFCC respectively. We quantized
values in each MFCC to a histogram of 50 bins and add a
constant (1× 10−8) to p(xi) and q(xi) to preserve numerical
stability. If p has a uniform distribution, the Shannon entropy of
distribution p is − log(0.02), which needs 5.64 bits to represent
p. Additional bits needed to describe p from q (H(p, q)) can be

computed as H(p) +DKL(p||q). We also used JS-divergence,
another distribution measurement metric, as KL-divergence is
not symmetric (i.e., DKL(p||q) �= DKL(q||p)). JS-divergence
extends KL-divergence by introducing r as a mixture between
p and q, and measures the loss of using r to describe p and
q. This can be computed as in 9. In our work, in addition to
the signal loss captured by KL-divergence, JS-divergence also
captures artifacts generated by the Deep-MASKS model.

DKL(p||q) =
50∑

i=1

p(xi)log
p(xi)

q(xi)
(8)

DJS(p||q) = 1

2
DKL(p||r) + 1

2
DKL(q||r),

where r = (p+ q)/2 (9)

C. Baseline

We compared Deep-MASKS to two state-of-the-art speech
separation methods: Deep Attractor Network (DAN) [21] and
Voice-Filter-Lite (VFL) [44].

We compared Deep-MASKS against other two state-of-
the-art speech separation methods: Deep Attractor Network
(DAN) [21] and Voice-Filter-Lite (VFL) [44].

DAN [21] is a speaker-independent speech separation method
proposed for a mixture with an unknown number of speakers.
In this method, an “attractor” is created to represent a speaker
using a centroid of an embedding space. In our implementation
of DAN, we specify the number of centroids to match the number
of speakers in each mixture. We also computed the error of DAN,
based on the speaker centroid that is closest in distance to the
clean speech (lowest error), and extract MFCCs using the same
configuration for the AMI dataset.

Voice-Filter-Lite (VFL) [44] is a speech separation method
that exploits d-vector to identify target speakers. The archi-
tecture of VFL was extended from the previously proposed
VoiceFilter [22], but the two-dimensional CNN layers were
replaced by a one-dimensional CNN layer. We selected VFL
over the VoiceFilter because the input of the VFL is a log-Mel
filterbank, which is a closer speech representation to MFCCs.
We reduced the number of filterbanks in VFL from 128 to 40
to make it consistent with Deep-MASKS. The architecture of
the final VFL model architecture is the same that proposed
by Wang et al. [44].

IV. RESULTS

Tables I and II show the MSE, KL-divergence and JS-
divergence errors for reconstructing MFCCs on the AMI corpus.
Only overlapped speech segments are evaluated in Table I with
two to four speakers. The mean and standard error (in parenthe-
ses) of all metrics are computed using 10-fold cross-validation.
Using normalized MSE as the comparison metric, d-vector out-
performs x-vector and i-vector in overlapped speech with more
than one-speaker experiments. The differences between these
speaker representation methods are more prominent on the KL-
divergence plot in Fig. 5, showing that d-vector is significantly
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TABLE I
NORMALIZED MSE, KL-DIVERGENCE AND JS-DIVERGENCE OF MFCC RECONSTRUCTIONS IN OVERLAPPED SPEECH (BOLD INDICATES THE LOWEST ERROR

FOR EACH SPEAKER)

TABLE II
NORMALIZED MSE, KL-DIVERGENCE AND JS-DIVERGENCE OF MFCC RECONSTRUCTIONS IN CONTINUOUS RECORDINGS (BOLD INDICATES LOWEST

ERROR FOR EACH MAXIMUM SPEAKER)

more superior to i-vector and x-vector. Compared to the two
baselines, Deep-MASK with d-vector has a significantly lower
normalized MSE error than VFL and DAN while slightly outper-
forming VFL and DAN on the KL-divergence and JS-divergence
metrics. For all methods, increasing the number of speakers in
the overlapped speech increased the MFCC reconstruction error
as measured by all three metrics, especially going from two to
three speakers.

The results of continuous recording are shown in Table II
and Fig. 6. The MFCC reconstruction errors in a one-speaker-
maximum experiment show equal MSEs for the empty vector,
i-vector, and x-vector while d-vector has a lower normalized
MSE error. In scenarios with more than one speaker, d-vector
has lower errors than other speaker representation methods and

the two baselines on all three metrics. To assess the effective-
ness of speech-separated MFCCs visually, we visualized the
enhanced MFCCs of two speakers in Fig. 7. The proposed
method is able to remove MFCC components that are produced
by other speakers in the meeting with some minor artifacts
generated.

V. DISCUSSION

In the experiment with no overlapped speech (one speaker),
Deep-MASKS has a slightly higher MSE than the empty vector
due to some artifacts generated by the networks. The presence
of artifact is supported by the fact that the JS-divergences are
lower than KL-divergences in an empty vector but higher when
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Fig. 5. Normalized MSE, KL-divergence and JS-divergence errors of MFCC reconstructions in overlapped speech.

Fig. 6. Normalized MSE, KL-divergence and JS-divergence of MFCC reconstructions in continuous recordings.

using the speaker representation method as well. Among the
three speaker representations, d-vector achieves the lowest MSE
for speech separation on MFCCs. However, it is worth noting
that the d-vector might generate more artifacts, as reflected in
a higher JS-divergence than x-vector. The performance gaps
between i-vector and d-vector might be due to the use of PLDA
in training the i-vector speaker representation method. In all
speaker representations, the errors are increased as the number
of speaker increased, especially from two to three speakers.

Compared to the VFL and DAN baselines using normalized
MSE, Deep-MASKS with any speaker representations outper-
forms the DAN method, while only Deep-MASKS with d-vector
outperforms VFL. One reason that Deep-MASK outperforms
VFL, although they exploit d-vector and share some similarity in
their architectures, is due to the pre-training step (Section III-B).
Pre-training the encoder network in Deep-MASKS allows the
network to adapt to any speaker representation, which is not
restricted to the D-vector as in VFL, prior to learning the speech
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Fig. 7. Speech-separated MFCC features reconstruction from two speakers mixture (with channel-wise normalization).

separation. Another reason that Deep-MASK outperforms VFL
is the choice of using a DNN for signal reconstruction instead
of a mask. While using a mask limits the final operation to be
a linear operation, Deep-MASKS utilizes a DNN approach to
reconstruct the signal, yielding a more accurate, higher order
function.

In the experiments with continuous recording, we note that the
d-vector is more robust to non-speech segments and specifically
to speech separation of MFCC that has no prior VAD applied
compared to other speaker representation methods, which create
some arbitrary values. KL-divergence and JS-divergence errors
are consistent with the MSE, in that the maximum number of
the speaker does not affect the reconstruct errors substantially
when going from two to four speakers. This is likely due to the
low ratio of overlapped speech frames compared to non-speech
and non-overlapped frames.

Deep-MASKS is capable of mitigating the cross-talk, which
is inevitable in processing speech recorded in a real-life environ-
ments, as manifested in section IV and supplementary materials,
and which is a major potential hinderance to using speech in
smartphone-based biomedical applications. The application of
Deep-MASKS ranges from core speech technologies such as
ASR, to biomedical speech assessment. Deep-MASKS ensures
that the speech processed by such a system belongs to the target
speaker/patient, hence improving the application’s performance
and delivering accurate diagnoses. A future study will apply
Deep-MASKS in passive assessment of speech impairments on
smartphones.

VI. CONCLUSION

We proposed Deep-MASKS, a novel speech separation
method that is suited to continuous recordings as common
on smartphones instead of utterances utilized in prior work.
Deep-MASKS preserves speaker privacy by utilizing MFCCs
and can also be adapted to a wide variety of existing speaker
representations. The model uses an autoencoder to isolate the
target-speaker MFCC components from overlapped speech,
which improves the MFCC reconstruction error (MSE) by up
to 44% compared to Deep Attractor Network that does not
use speaker representations, and reduces the number of ad-
ditional bits required to explain a clean MFCC from 1.22 to
0.68 using d-vector in a cross-talk scenario with two speakers.
Our d-vector outperforms Voice-Filter-Lite that exploits the

speaker representation for speech separation. In a comparison
of the speaker representation, D-vector explicitly outperforms
i-vector and x-vector in both speech utterance and continuous
recording evaluations. Deep-MASKS performed especially well
for overlapped speech separation, a task that is growing in
importance with the rise of smartphone-based audio analyses.
Future work will apply Deep-MASKS in passive assessment of
speech impairments on smartphones.
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SUPPLEMENTARY MATERIALS

We provide two additional experiments that evaluate Deep-
MASKS for ASR and speaker diarization tasks. In the ASR,
Deep-MASKS with d-vectors significantly reduces the word-
error-rate by 30.87 and 49.66 in cross-talks with two and three
speakers, respectively. By extending Deep-MASKS for speaker
diarization, it obtains a lower diarization error rate than a base-
line that performs on the cross-talk.
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