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Current computational technologies hold promise for prioritizing the testing of

the thousands of chemicals in commerce. Here, a case study is presented

demonstrating comparative risk-prioritization approaches based on the ratio of

surrogate hazard and exposure data, called margins of exposure (MoEs).

Exposures were estimated using a U.S. EPA’s ExpoCast predictive model

(SEEM3) results and estimates of bioactivity were predicted using: 1) Oral

equivalent doses (OEDs) derived from U.S. EPA’s ToxCast high-throughput

screening program, together with in vitro to in vivo extrapolation and 2)

thresholds of toxicological concern (TTCs) determined using a structure-

based decision-tree using the Toxtree open source software. To ground-

truth these computational approaches, we compared the MoEs based on

predicted noncancer TTC and OED values to those derived using the

traditional method of deriving points of departure from no-observed adverse

effect levels (NOAELs) from in vivo oral exposures in rodents. TTC-based MoEs

were lower than NOAEL-based MoEs for 520 out of 522 (99.6%) compounds in

this smaller overlapping dataset, but were relatively well correlated with the

same (r2 = 0.59). TTC-based MoEs were also lower than OED-based MoEs for

590 (83.2%) of the 709 evaluated chemicals, indicating that TTCsmay serve as a

conservative surrogate in the absence of chemical-specific experimental data.

The TTC-based MoE prioritization process was then applied to over

45,000 curated environmental chemical structures as a proof-of-concept

for high-throughput prioritization using TTC-based MoEs. This study

demonstrates the utility of exploiting existing computational methods at the

pre-assessment phase of a tiered risk-based approach to quickly, and

conservatively, prioritize thousands of untested chemicals for further study.
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Highlights

• Over 45,000 environmental chemicals have been used to

generate decision-tree-derived thresholds of toxicological

concern (TTCs) and predicted exposures for estimating

provisional margins of exposure (MoEs).

• In vitro-derived MoEs for 709 ToxCast compounds based

on oral equivalent doses (OED)s were compared with their

respective TTC-based MoEs to evaluate the consistency of

these alternative high-throughput risk-based prioritization

metrics.

• Published in vivo regulatory reference values were used to

demonstrate the potential to ground-truth the chemical

prioritization approaches.

• The comparison demonstrates that both TTCs and OEDs

provide a generally conservative surrogate for NOAELs in

the absence of traditional chemical-specific

experimental data.

1 Introduction

Chemical risk evaluation balances two fundamental

concepts: hazard and exposure. The ratio of hazard to

exposure, known as the margin of exposure (MoE), provides

an estimate of the relative risk from a chemical exposure. MoEs

have great utility if determined using well-documented measured

data and can influence chemical risk assessment decisions by

estimating the potential for a chemical to trigger an adverse

outcome in a defined exposure scenario (Pastoor et al., 2014). For

example, an MoE less than one, because of the interpretation that

estimated exposures are predicted to lead to bioactivity, would

indicate that a compound or use scenario might warrant

additional scrutiny. MoE provides a quantitative definition of

risk; however, the utility ofMoEs in decision-making frameworks

is limited by the lack of measured hazard and exposure data. As

the number of compounds in commerce today far exceeds

available resources for exposure assessment and for traditional

dose-response studies that depend on expensive in-life animal

testing, development of higher-throughput in silico methods for

estimating MoEs would be beneficial.

In lieu of a comprehensive database of hazard and exposure

information, an attractive starting point for making

environmental risk-based decisions is the use of new approach

methodologies (NAMs), and in particular, in silico tools, to

predict a chemical’s potential to adversely affect health for

specific exposure scenarios (Wambaugh et al., 2013,

Wambaugh et al., 2014; Moreau et al., 2017). While

traditional in vivo-based methods comprise the accepted

approach for targeted chemical testing, decision-makers across

government and industry are faced with tasks of optimizing

limited resources and evaluating which chemicals, of thousands,

need to undergo time and resource intensive testing protocols.

The process of using high-throughput risk prioritization to

identify chemicals for further testing is important to fulfill a

number of regulatory programs such as the Endocrine Disruptor

Screening Program (US EPA, 2015), and was highlighted by the

National Research Council as a critical part of the path towards

21st century risk assessment (National Research Council, 2007;

National Research Council, 2012; National Academies of

Sciences Engineering and Medicine, 2017). A few recent

studies have examined potential high (er) throughput, in silico

methods for chemical priority setting and have demonstrated the

validity of the technique (Paul Friedman et al., 2020; Beal et al.,

2022).

Under the amended Toxic Substances Control Act (TSCA),

the United States Environmental Protection Agency (EPA) has

developed a plan to promote alternative testing in a framework

that considers estimates for both hazard and exposure (US EPA,

2018).

The ExpoCast program, developed at the U.S. EPA’s Center

for Computational Toxicology and Exposure (CCTE)

(Wambaugh et al., 2013) includes high-throughput exposure

(HTE) predictions. These predictions are based on an

optimized set of descriptors such as predicted physicochemical

properties and chemical use information, which have been used

as exposure surrogates in a prioritization scheme (Nicolas et al.,

2018). However, providing an appropriate estimate of hazard to

weigh against exposure context is essential for estimating a

compound’s potential risk to human health. In the absence of

toxicity data for most commercial compounds, the ToxCast

program at the CCTE has applied numerous high-throughput

assays across a set of over 4,500 chemicals to determine in vitro

bioactivity (Judson et al., 2014; Richard et al., 2016; Thomas et al.,

2018). For some of these compounds high-throughput in vitro to

in vivo extrapolation (HT-IVIVE) has been used to estimate an

oral equivalent dose (OED), essentially converting points-of-

departure from in vitro assays to the intake of the compound that

would be required to achieve the bioactive concentration in

plasma (Wambaugh et al., 2015; Wetmore, 2015). However,

only a fraction of ToxCast endpoints have been converted to

OEDs, because dosimetry parameters (i.e., fraction unbound,

hepatic clearance) are required to accurately perform HT-IVIVE

(Pearce et al., 2017). The relatively low throughput of these

methods for estimating OEDs experimentally makes the

extension to the larger number of chemicals in commerce

problematic. Nonetheless, efforts have been made to address

some of these issues by predicting dosimetry parameters from
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chemical structure using QSAR modeling (Pradeep et al., 2020;

Dawson et al., 2021; Mansouri et al., 2021).

The RISK21 (Embry et al., 2014) tiered risk assessment

approach recommends using a threshold of toxicological

concern (TTC)-based approach for chemicals that lack

adequate exposure data and/or NOAEL data to prioritize

“data-poor” chemicals of interest. In a previous application of

this approach to rapidly prioritize thousands of compounds

(greater than 8000), TTCs were evaluated as potential

bioactivity surrogates (Patlewicz et al., 2018). This study

demonstrates that TTC-based approaches can confidently

estimate bioactivity and could greatly enhance the efficiency

of risk-based prioritization of “data poor” compounds. A

follow up study was pursued to better evaluate the TTC

assignment approach, and while the approach reaffirmed that

TTCmay be a useful tool in the risk-based prioritization toolbox,

it also identified challenges in deconstructing the Kroes workflow

to move away from relying on some of the Leadscope tools to

denote functional groups (Nelms, Pradeep and Patlewicz, 2019).

The basis of the TTC concept is that “safe” levels of exposure (e.g.

levels that would not be expected to be a safety concern) for

humans can be determined from chemical structures, even when

directly applicable toxicity data are unavailable (Cramer, Ford

and Hall, 1978; Kroes and Kozianowski, 2002; Hartung, 2017).

This approach has been used by industry and regulatory bodies

(e.g., U.S. FDA and European Commission) for compounds that

are not currently regulated or that lack sufficient data for making

risk assessment decisions (Leeman, Krul and Houben, 2014;

Feigenbaum et al., 2015; Williams et al., 2016). In fact, the

EPA has reported on their own proof-of-concept case study

using a combined TTC and quantitative structure activity

relationship (QSAR) approach to help prioritize chemicals

based on data availability in a tiered approach (US EPA, 2021).

In this work, we have first determined whether the TTC-

based MoE approach would be conservative with respect to an

OED-based or NOAEL-based MoE approach and then applied

the TTC-based MoE approach to prioritize more than 45,000

commercial chemicals from the Collaborative Estrogen Receptor

Activity Prediction Project (CERAPP) (Kamel Mansouri et al.,

2016). Applying these high-throughput tools to derive various

comparative MoEs creates further opportunities to prioritize

chemical spaces for higher tiers of study (Moreau et al., 2017).

2 Materials and methods

2.1 In Silico exposure prediction

In vitrometabolism data for 998 chemicals was accessed from

the R “httk” package (v2.0.4) (Pearce et al., 2017) (specifically

from the embedded “chem.physical_and_in_vitro.data table)

and used for applying reverse dosimetry modelling. Exposures

were generated using the most updated estimates from the

Systematic Empirical Evaluation of Models (SEEM) calibrated

consensus exposure model from U.S. EPA’s ExpoCast program

(Wambaugh et al., 2013,Wambaugh et al., 2013). Estimates using

SEEM3 were pulled from the Supplementary Table S1 in Ring

et al., 2019 and were available for 750 of the chemicals in the

small ToxCast/httk dataset (Ring et al., 2019). The overall

filtering of chemicals and number of chemicals in each step

for the httk dataset is shown in Figure 1, with subsequent sections

describing the process in more detail.

2.2 Assignment of thresholds of
toxicological concern

Various structure-based decision trees from Toxtree

(v3.1.0.1851) (Patlewicz et al., 2008) were applied to the

750 chemicals from the httk/SEEM3 overlap dataset in

addition to a larger list of approximately 45,000 chemicals

(described more in Section 2.5, and also available to

investigate at https://scitovation.shinyapps.io/TTCApplet/)

(Nicolas et al., 2020). This approach categorized compounds

into four groups: Anti-cholinesterase, Cramer Class I, Cramer

Class II, and Cramer Class III. An extension here is the category:

TTC not appropriate, identified using the Kroes TTC Decision

Tree (Kroes and Kozianowski, 2002; Kroes et al., 2004) method

based on the result “Risk assessment requires compound-specific

toxicity data.” However, because we were looking to be more

inclusive for this exploratory (i.e. not a risk assessment) analysis,

we continued to include chemicals even if they were flagged in the

Kroes decision tree.

As such, the 750 httk chemicals (and 45,015 CERAPP

chemicals) were first run through the Structural Alerts for

Functional Group Identification (ISSFUNC) (Munro, Renwick

and Danielewska-Nikiel, 2008; Benigni, Tcheremenskaia and

Worth, 2011) method to identify compounds that were 1)

“carbamate esters” or 2) “organophosphate esters” based on a

“YES” for “FG52_2” or “FG81_2”, respectively, for each chemical

in the Toxtree output file. Structures that were found to have

either functional group were labeled as cholinesterase inhibitors

and were assigned a TTC value of 0.3 μg/kg-BW/d. The workflow

was run twice, once with the usual filtering for genotoxicity and

once without. The latter workflow was used for any comparisons

of TTC-basedMoEs with OED- or NOAEL-basedMoEs. Cramer

Rules (original) and Cramer Rules with Extensions (Cramer,

Ford and Hall, 1978; Munro, Renwick and Danielewska-Nikiel,

2008; Patlewicz et al., 2008; Lapenna and Worth, 2011) methods

were used to assign the other three classes: Low (Class I),

Intermediate (Class II), and High (Class III), which

correspond to 30, 9, 1.5 μg/kg-BW/d, respectively. These TTC

values represent the lowest 5th percentile of the distribution of

NOAELs for the compounds in the class with in vivo data,

divided by a safety factor of 100. When filtering for the

Genotoxic category was included in the workflow, compounds
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identified by structural alerts for genotoxic carcinogenicity or S.

typhimurium mutagenicity were assigned a TTC value of 0.0025

μg/kg-BW/d.

The chemical structures of the HTTK dataset were retrieved

via the U.S. EPA Comptox Chemicals Dashboard (Williams

et al., 2017) using Chemical Abstracts Service Registry

Numbers (CASRN). Valid TTCs were computed for 745 httk

chemicals.

2.3 Chemicals with in.vitro oral equivalent
doses

The ToxCast in vitro database (v. 3.4a) includes data from

thousands of chemicals that underwent ToxCast high-

throughput in vitro assay screening and was used to obtain

half-maximal activity concentration (AC50) values for

chemicals in the httk dataset. Using “httkpop” functionality

within the httk package, human oral equivalent doses (OEDs)

in mg/kg-BW/d were derived using the 5th percentile of the

distribution of AC50 values, based on the estimated 95th

percentile steady-state concentration (Css) for each

chemical. Using these criteria, OEDs were

derived for 714 chemicals based on the 5th

percentile distribution of their respective ToxCast

AC50 values.

2.4 Chemicals with in vivo reference doses
and No adverse effect levels

U.S. EPA’s ToxVal Database (ToxValDB v. 9.1.1b) was used

to identify chemicals that have NOAELs based on oral exposures

corresponding to various studies performed on laboratory

animals. The pertinent NOAEL values were generated by first

filtering ToxValDB according to the following: the “type” was

filtered to only “NOAEL”, the “units” were filtered to “mg/kg-

day”, and the exposure route was filtered to “oral”. From there,

the NOAEL estimates were calculated by taking the 5th percentile

of the NOAEL values available (or lowest available value

if <20 NOAEL values are provided) for a given chemical and

assuming a discontinuous function with averaging between

discontinuities (type 2 in R quantile () function as in Paul

Friedman et al., 2020) (Paul Friedman et al., 2020). NOAELs

were available for 538 of the httk chemicals.

2.5 Selection of large chemical dataset

We enlisted a structural database of 45,015 compounds that

had been featured in the Collaborative Estrogen Receptor

Activity Prediction Project (CERAPP) (Kamel Mansouri et al.,

2016a). During the CERAPP project, this dataset underwent a

rigorous curation process using an automated workflowc to

FIGURE 1
Total chemical counts andworkflow for the httk dataset for both the entire study (left) and for generation of specific TTC categorizations (right).
The total chemical workflow began with chemicals in both the chem. physical and in vitro.data list embedded in httk (n = 998) and the
SEEM3 published values (Ring et al., 2019) (n > 600 k) list. Lists for TTC, OED, and NOAEL MoE calculations are separated out based on data available
for the httk chemicals from a unique source (ToxTree, ToxCast, and ToxValDB, respectively). The number of chemicals in the merge between
those datasets is shown in bold. Finally, the overlap between TTC and OED lists yields 709 chemicals while the overlap between TTC/OED/NOAEL
lists yields 522 chemicals. The TTCworkflow did not utilize the Kroes exclusion step (greyed out), which is discussed inmore detail in Section 4.1. The
workflow was run twice, excluding (n = 0) or including (n = 216) the genotoxicity filter.
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standardize the chemical structures in preparation for

quantitative structure activity relationships (QSARs) modeling.

This workflow performs a series of operations on chemical

structures including desalting, standardizing tautomers and

nitro groups, correcting valence, neutralizing when possible,

and removing duplicates resulting in standardized forms

called “QSAR-ready” that are used on the U.S. EPA Comptox

Chemicals Dashboard among other applications (K. Mansouri

et al., 2016; Mansouri et al., 2018). The QSAR-ready structures

from the chemical dataset are provided in terms of simplified

molecular-input line-entry system (SMILES) (Weininger, 1988)

strings in a. csv file. TTC values were available for all 45,015 of the

chemicals (referred to as the large dataset) (Nicolas et al., 2020).

ExpoCast SEEM3 upper 95% exposure estimates were available

for 27,116 chemicals in the large dataset. Of the remaining

17,899 chemicals, 10,064 were not run in SEEM3. An

additional 7,835 had been examined with SEEM3 and were

determined to be outside the domain of applicability due to

inability to assign an exposure pathway that was similar to the

chemical training set (pesticidal, consumer product, dietary, and

industrial chemicals) (Ring et al., 2019). Predictions from the less

accurate model SEEM2 were available for all 17,899 chemicals

not covered by SEEM3 and were higher (more conservative) than

the SEEM3 median estimates for the 7,835 chemicals that had

estimates. As such, the exposure values for these chemicals were

pulled from SEEM2 upper 95% estimates.

2.6 Application of margins of exposures
(MoEs)

Margins of exposure were calculated using the general

equation:

MoE � PoD

SEEM95

Where PoD is one of the three point of departure estimates,

either in vitro OEDs derived from the 5th percentile ToxCast

AC50 value (for OED-MoE), TTC value (for TTC-MoE), or

NOAEL value (for NOAEL-MoE), and SEEM95 is the upper 95%

confidence bound for the median ExpoCast SEEM exposure

estimate. OED, NOAEL, TTC, ExpoCast SEEM, and MoE

values for chemicals in the small (HTTK.Toxtree) and large

(CERAPP.Toxtree) datasets are provided in Supporting

Information.

All analysis was done with R software (v 4.2.1) integrated

with RStudio (build 2022.07.1). An R markdown (rmd) file has

been provided in the Supplementary Materials (along with the

supporting documents) that can be run to replicate the analysis

and figures escribed here. Figures and MoE outputs can be found

in the “Risk_Prioritization” sub-folder.

3 Results

3.1 Comparisons of chemical prioritization
metrics

TTC values were assigned for all 709 ToxCast chemicals in

the small dataset. A total of 18.3% (n = 130) of the chemicals

evaluated using the Kroes Decision Tree method were deemed

inappropriate for Cramer classifications. These chemicals were

nonetheless carried forward in the investigation. The

distribution of OED values across each TTC category was

plotted side-by-side with ExpoCast SEEM exposure estimates

(Figure 2) with the TTC standard values for each chemical

category plotted and represented by the dotted black

horizontal lines. The panels are arranged such that TTCs

increase from left to right (Genotoxic < Anti-

cholinesterase < Cramer Class III < Cramer Class II <
Cramer Class I). TTCs were generally lower than ToxCast

OEDs. The number of chemicals in each of the four noncancer

TTC categories is summarized in Table 1. There were

significant differences between medians (Wilcoxon rank

sum test) and distributions (Two-sample Kolmogorov-

Smirnov test) for exposures and OEDs for chemicals

categorized as Genotoxic, Anti-cholinesterase, Cramer Class

III, and Cramer Class I (p < 0.01), but no apparent differences

between those measures for Cramer Class II (p > 0.1).

The ratio of ToxCast OEDs to ExpoCast SEEM exposure

predictions, yielded an OED-based MoE of less than 1 for 15.9%

of the 709 compounds (n = 113) (Table 1; Supporting Material).

TTC-based MoEs, calculated by dividing TTC-estimates by

ExpoCast SEEM exposure estimates, yielded MoEs of less than

1 for 35.3% of the compounds (n = 250). Cramer Class II yielded

the lowest median OED-based MoE at 5.6, while anti-

cholinesterase yielded the highest with 2297.5. Median TTC-

based MoEs for chemicals in the order: Genotoxic (0.00255) <
Cramer Class II (0.229) < Cramer Class I (0.857) < Anti-

cholinesterase (2.28) < Cramer Class III (3.81). The overall

lower values for noncancer TTC-based MoEs compared to

OED-based MoEs are driven by the inherent conservativeness

of the TTC values, particularly for chemicals with flags for anti-

cholinesterase activity, which is lower than the TTC value for the

most potent Cramer class (Class III) by a factor of 5.

As a proof of concept for comparing the two prioritization

schemes in terms of chemical ranking, the top 25 ranked

chemicals were compiled for the small dataset based on the

smallest OED- and noncancer TTC-based MoE values (Table 2).

All four noncancer TTC categories were represented in the top

25 chemicals ranked by both OED-based MoEs and TTC-based

MoEs. Ten of the chemicals overlapped between the two sets of

data indicating some overlap between prioritization using either

method.
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FIGURE 2
Side-by-side box and whiskers comparisons of oral equivalent doses (OEDs) and ExpoCast SEEM exposures across TTC category thresholds for
709 ToxCast chemicals that have metabolism data to support HT-IVIVE. The analysis was conducted without (top) and with (bottom) filtering for
Genotoxicity. Top: The category TTC values represented by the horizontal dotted lines are 0.0025 (bottom only), 0.3, 1.5, 9, and 30 μg/kg/d. Dots
above each box and whisker plot signify chemical outliers for a given range of OED or ExpoCast SEEM exposure estimates in mg/kg-BW/d.

TABLE 1 Summary of 709 ToxCast chemicals with computed oral equivalent doses (OEDs) in the small dataset that are classified into four noncancer
TTC categories based on Cramer decision tree results, along with the number of chemicals with estimated OED- and noncancer TTC-based
margins of exposure (MoEs) of less than one.

TTC class and MoE
results

Number of compounds
(% of compounds)

OED-based MoEs <1 (%
of compounds in
class)

TTC-based MoEs <1 (%
of compounds in
class)

Anti-cholinesterase Inhibitors 34 (4.8%) 1 (2.9%) 16 (47.1%)

Cramer Class III 525 (74.0%) 69 (13.1%) 168 (32.0%)

Cramer Class II 10 (1.4%) 4 (40.0%) 6 (60.0%)

Cramer Class I 140 (19.7%) 39 (27.9%) 60 (42.9%)

Total 709 (100%) 113 (15.9%) 250 (35.3%)
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3.2 Prioritization of 45000+ chemicals in
commerce

Despite the many thousands of chemicals that are currently

in commerce in the United States, sufficient in vitro metabolism

data exists to estimate oral equivalent doses for only a few

hundred compounds. To inform prioritization of these data-

poor compounds, we determined TTC values for the chemicals in

the CERAPP dataset (45,015), of which 677 were also in the

smaller dataset of chemicals with ToxCast/Tox21-based OEDs.

There was an overlap of only 1 chemical (nitrapyrin) between the

top 25 ranking chemicals in small dataset and the top 25 ranked

chemicals in the large dataset based on TTC.

Due to limitations in the structures considered by the model,

the Kroes Decision Tree criteria indicated that TTC estimates

were considered inappropriate for use with 5,165 (11.5%)

chemicals, comparable with the smaller dataset. Like the

analysis presented above, these chemicals were carried forward

in this analysis. The breakdown of chemicals into the various

TTC classes were 1506 (3.3%), 35,772 (79.5%), 1346 (3.0%), and

6391 (14.2%) respectively, in the Anti-cholinesterase, and

Cramer Classes III, II, and I (Table 3). TTC-based MoEs of

less than one were calculated for 9.4% (n = 4216) compounds.

For the large dataset of CERAPP chemicals, the distribution

of TTC-based MoEs within each TTC category was plotted side-

by-side for all categories (Figure 3). Median TTC-based MoEs

increased from left to right and varied in orders of magnitude:

Genotoxic (0.0289) < Anti-cholinesterase (3.17) < Cramer Class

III (15.5) < Cramer Class II (38.2) < Cramer Class I (106).

3.3 Ground-truthing NAM-based chemical
risk prioritization using traditional in vivo
data

To anchor our computationally derived noncancer TTC-

MoEs against more conventional estimates, we compared them

with MoEs derived using OEDs developed in the ToxCast

TABLE 2 Summary of top 25 chemicals for the small dataset ranked by increasing value of estimated margins of exposure (MoEs). OEDs were divided
by ExpoCast SEEM exposure estimates to obtainOED-basedMoEs. Noncancer TTCswere divided by ExpoCast SEEM exposure estimates to obtain
TTC-based MoEs. Chemicals in both lists have been bolded and underlined.

OED-based Noncancer TTC-Based

Ranking Chemical Ranking Chemical

1 Saccharin 1 Nitrapyrin

2 Octane 2 Caprolactam

3 Coumarin 3 2-Mercaptobenzimidazole

4 Sodium 2-mercaptobenzothiolate 4 Oleyl sarcosine

5 Diallyl phthalate 5 Bis(2-ethylhexyl) nonanedioate

6 Dibutyl adipate 6 Acrylonitrile

7 2,6-Di-tert-butyl-4-[(dimethylamino)methyl]phenol 7 Cyazofamid

8 Nicotinic acid 8 1-Benzylquinolinium chloride

9 Methanol 9 1,2-Dichloroethane

10 Estrone 10 Nicotinic acid

11 Caprolactam 11 3-Isopropylphenol

12 1,2-Dimethyl-3-nitrobenzene 12 Quinoline

13 Nitrapyrin 13 Methanol

14 2,29-Methylenebis(ethyl-6-tert-butylphenol) 14 1-Dodecyl-2-pyrrolidinone

15 2-Phenoxyethanol 15 Pentachloropyridine

16 Octanoic acid 16 Dibutyl adipate

17 meso-Hexestrol 17 2,29-Methylenebis(ethyl-6-tert-butylphenol)

18 Di (2-ethylhexyl) phthalate 18 Sodium 2-mercaptobenzothiolate

19 Allura Red C.I.16035 19 Methenamine

20 Dinoseb 20 Glycidyl trimethylammonium chloride

21 Decane 21 Saccharin

22 2-Mercaptobenzimidazole 22 4-Morpholinecarboxaldehyde

23 Sulisobenzone 23 4-Cumylphenol

24 Perfluorohexanoic acid 24 FD&C Yellow 6

25 Triphenylphosphine oxide 25 1,2-Dimethyl-3-nitrobenzene
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TABLE 3 Summary of the large dataset of CERAPP chemicals that are classified into four TTC categories based on Cramer decision tree results along
with the number of chemicals with estimated TTC-based margins of exposure (MoE) of less than one.

TTC class and MoE
results

Number of compounds
(% of compounds)

OED-based MoEs <1 (%
of compounds in
class)

TTC-based MoEs <1 (%
of compounds in
class)

Anti-cholinesterases 1506 (3.3%) 1 (0.1%) 207 (0.1%)

Cramer Class III 35,772 (79.5%) 84 (0.2%) 3,158 (8.8%)

Cramer Class II 1346 (3.0%) 6 (0.4%) 120 (8.9%)

Cramer Class I 6391 (14.2%) 23 (0.4%) 731 (11.4%)

Total 45,015 (100%) 114 (0.3%) 4216 (9.4%)

FIGURE 3
Top: TTC-based Margins of Exposure by TTC category. From left to right: Anti-cholinesterase (n = 1506), Cramer Class III (n = 35,772), Cramer
Class II (n = 1346), Cramer Class I (n = 6391), for compounds that have both TTC and ExpoCast SEEM exposure estimates. Dots above each box and
whisker represent chemicals withMoEs outside the 5th and 95th percent of the range. Bottom: Same as top, butwith Genotoxic (n= 11,407) category
included.
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program and withMoEs derived fromNOAELs from ToxValDB.

If a TTC value was lower than either of the respective OED or

NOAEL values, then it was designated as more protective

(conservative) at the pre-assessment phase. Of the

709 chemicals in the small dataset that have corresponding

TTC and OED values, TTCs were more protective for 83.2%

(n = 590) of them. Figure 4 demonstrates the lowest 100 NOAEL-

based MoEs from 522 chemicals that have MoE values based on

NOAELs, OEDs and TTCs, with increasing NOAEL-basedMoEs

from left to right. Of the 522 chemicals with all 3 measures, TTC-

based MoEs were lower than OED-based MoEs for 84.1% (n =

439) of them.

Figure 5 shows a scatter plot of 522 NOAEL-based MoEs vs.

OED-based MoEs and one of NOAEL-based MoEs vs. TTC-

based MoEs. Chemicals on or close to the unity line (dotted)

show good agreement between the different MoEs. Of these

522 chemicals, OED-MoEs were lower than NOAEL-MoEs for

87.5% (n = 457) and TTC-MoEs were lower than NOAEL-based

MoEs for 99.6% (n = 520). Values of the NOAEL-based MoEs

and OED-based MoEs were most similar for carbendazim and

methidathion, while the greatest similarity in values of NOAEL-

and TTC-MoEs was seen for hepatochlor epoxide B. The median

of the ratio of NOAEL-based MoEs to OED-based MoEs was

about 97.4 while the median of the ratio of NOAEL-based MoEs

to TTC-based MoEs was 2000.

To further illustrate the difference between TTC-based and

OED-based prioritization of the HTTK dataset, 70 chemicals

with a wide range of OED-based MoEs were plotted by 5th

percentile OED estimates, attached to their median OED

estimates (Figure 6). The OED ranges were colored by their

corresponding TTC categories: Anti-cholinesterase, Cramer

Class III, Cramer Class II, and Cramer Class I. Also plotted

were corresponding ExpoCast SEEM exposure ranges from

median to upper 95th percentile confidence interval.

Compounds with overlapping OED and ExpoCast SEEM

ranges, such as diallyl phthalate, would be prioritized higher

than those with higher MoEs.

4 Discussion

Traditional methods for chemical safety assessment (i.e. in

vivo animal studies) are not efficient for meeting risk assessment

demands in a timely manner. Thus, a tiered paradigm becomes

FIGURE 4
Plot of margins of exposure estimated by dividing TTCs, OEDs, and NOAELs, by ExpoCast SEEM exposures yielding TTC-, OED-, and NOAEL-
based MoEs, respectively. This plot shows the lowest 100 NOAEL-based MoEs (from the dataset of 522) and shows those MoEs in increasing order
from left to right. For this analysis, the filter for Genotoxicity was not applied for determining the TTC value, because theOEDs and NOAELs represent
non-cancer endpoints.
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attractive because it allows for the formal integration of emerging

NAMs with traditional toxicity testing and fosters a transparent

prioritization process. Even use of limited available data and

computational tools could provide methods to prioritize

compounds requiring the most immediate attention based on

pre-assessment. While the use of in silicomethods for estimating

hazard and exposure values introduces uncertainty, they should

enable industries to evaluate whether particular chemicals in

development would have the potential to lead to exposures with

some level of risk. However, case studies are needed to

demonstrate how high-throughput risk prioritization methods

can be combined with tools to estimate end-point specific toxicity

and incorporate available data for structurally similar

compounds (i.e., QSAR, read-across). Furthermore, success in

these prioritization efforts also requires high-throughput

exposure estimation tools that account for use-specific metrics

(i.e., near-field use, chemical emissivity, chemical life-cycle).

4.1 Typical thresholds of toxicological
concern process

The typical procedure for estimating the TTC involves

4 steps: Kroes decision tree inclusion, genotoxicity assessment,

anti-cholinesterase identification, and finally, Cramer class

determination (Kroes et al., 2004; Nelms, Pradeep and

Patlewicz, 2019). In the first step, the Kroes TTC decision tree

would be used to filter out chemicals that either did not fall into

the chemical domain space (e.g., organo metallics, dioxin) or

where daily exposures are estimated to be high enough to indicate

bioaccumulation, rendering TTC less relevant in cases of lifetime

exposure. From there, the chemicals would be run through the

carcinogenicity and in vitro mutagenicity (Ames test) decision

trees to determine genotoxic potential. Finally, the structural alert

for functional group identification and Cramer rules (with

extension) trees would be used, as in this investigation, to

identify anti-cholinesterase and Cramer class I-III chemicals.

The first step (Kroes TTC decision tree) was run for this

investigation and identified 57 of the 709 chemicals as being

outside the typical chemical domain from TTC and an additional

80 chemicals that need additional information when daily intake

values (SEEM3 median estimates) were provided. While these

chemicals would typically be removed from further analysis, we

decided to include them as the purpose of this investigation was

exploratory, and they did not appear to have any outsized effect

on the end results (e.g., exclusion of Kroes chemicals slightly

improves r2 value in Figure 5B from 0.59 to 0.61).

The second step (genotoxicity assessment) was also

performed and used for some aspects of this analysis. The

rationale for exclusion from comparisons with OED- and

FIGURE 5
Relationship between various margins of exposure based on various estimates of chemical hazard for the 522 compounds that have all three
values (NOAEL, OED, and TTC). (A)Margins of exposure derived from in vivoNOAEL values are compared tomargins of exposure derived fromOEDs
based on ToxCast. Grey dashed line represents equivalence between the twometrics. (B)Margins of exposure derived from in vivoNOAEL values are
compared to TTCs. For this analysis the filter for Genotoxicity was not applied in determining the TTC value, because the OEDs and NOAELs are
based on non-cancer endpoints. All but two compounds (perfluorooctanesulfonic acid and perfluorononanoic acid) have a NOAEL-basedmargin of
exposure that is higher than the TTC-based margin of exposure. Coefficient of determination between log10-transformed NOAEL-based MoE and
OED-basedMoE for these compounds is (r2 = 0.38), whereas coefficient of determination between log10-transformedNOAEL-basedMoE and TTC-
based MoE is (r2 = 0.59). Labeled points provide examples of the chemicals with the most divergent (saccharin, 3-chloro-4-methylaniline, icaridin)
and similar (carbendazim, methidathion, hepatochlor epoxide B) MoE ratios.
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NOAEL-based MoEs was that the recommended TTC value for

genotoxic compounds (216 chemicals of 709 which were

classified as such), is exceptionally low (0.0025 μg/kg BW/day)

even compared to anti-cholinesterase compounds TTC

(0.3 μg/kg BW/day), based on an assumption of low-dose

linearity for carcinogenicity. The result of using this very

conservative TTC value was that a greater portion of the

chemicals appeared to have TTC-MoEs << 1 and this skewed

the comparison/correlation with OED-MoE and NOAEL-MoE

values, which are based on noncancer effects. Although screening

for carcinogenicity is an important part of risk prioritization, it is

not necessarily expected that the methodologies developed for

non-cancer effects should be directly applicable to cancer

assessment (Thomas et al., 2013). In vitro and in silico

methods have traditionally been used qualitatively to identify

potential genotoxins, but quantitative assessment of genotoxicity

and cancer continues to rely on in vivo studies. Quantitative

applications have been limited by assay sensitivity, low-

throughput, and lack of metabolism in the in vitro systems.

Efforts to compare first generation ToxCast/Tox 21 data to in

vivo cancer results demonstrated low predictivity, presumably

due to the aforementioned limitations of the available assays, as

FIGURE 6
ExpoCast SEEM3 exposure estimates in black vs. oral equivalent doses (OEDs) for 70 ToxCast compounds with HT-IVIVE data grouped by the
non-cancer TTC categories: Anti-cholinesterase, Cramer Class III, Cramer Class II, and Cramer Class I. The lower end of the OEDs are dots
representing the OED derived from the 5th percentile AC50 values while the adjoining line segment extends up to the OED derived from themedian
AC50. The upper end of the exposures are black dots that represent the 95% confidence interval for themedian exposure and the lower limit of
the black line segments represent themedian exposure estimates. The ratio of 5th percentile OED to the 95% CI formedian exposure increases from
bottom to top. The first 10 chemicals from each set of 100 are displayed, with dotted lines separating each set such that the first chemicals are 1–10
(the lowest ratio), the next set are 101–110, etc. For this analysis, the filter for Genotoxicity was not applied for determining the TTC value, because the
OEDs are not based genotoxicity or cancer endpoints.
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well as the limited concentrations used in ToxCast (<100 µM)

(Knight et al., 2009; Kligerman et al., 2015). A number of efforts

are ongoing to develop and validate sufficiently sensitive, and

reliable quantitative in vitro methods for genotoxicity endpoints

e.g., (Clewell, Thompson and Clewell, 2019; Wheeldon et al.,

2020; Buick et al., 2021), and to add this data to the chemistry

dashboard (Hershman et al., 2017). Here, we focused on non-

cancer endpoints where data is available for large numbers of

chemicals. Extensions of this work to specifically focus on

carcinogens are recommended as the data becomes available,

however due to the complexity of the mode of action for cancer,

and the widely-held assumptions embedded in the risk

assessment process for carcinogens (i.e., low-dose linearity,

1 in a million lifetime acceptable risk), comparison of in vitro

PoDs to in vivo cancer risk may not be as straightforward as those

used for non-cancer risk assessment.

Another point of interest is the need for filtering

chemicals in large databases that may not be appropriate

for TTC-MoE based analysis/prioritization. One particular

chemical class that may be included in these databases are

volatile chemicals, which may not be valid to run through

Cramer Classification, which only accounts for oral

exposures, and are excluded from HTS assays. In these

large databases, chemicals could be filtered out by using

boiling points (e.g., OPERA-predicted boiling

points <260°C) and/or vapor pressures (e.g., > California

Air Resources Board cutoff, > 0.1 mmHg), indicative of a

volatile chemical (US EPA, 2014; CARB, 2021).

4.2 Advances in comparative chemical risk
prioritization metrics

OED-based MoEs require collection of basic in vitro

pharmacokinetic (PK) parameters, including estimates of

metabolic clearance. However, very limited in vitro

metabolism data are available for most chemicals that need to

be prioritized. In contrast, TTC-based MoEs can be applied to a

larger number of compounds, could be used to prioritize across a

greater chemical space, and for this subset of chemicals, appears

to correlate better with in vivo NOAEL data as shown in

Figure 5B. Our results diverge somewhat from a previous

study that applied a TTC-based MoE approach to over

8,000 chemicals with exposure ranges consistent with

biomonitoring data from the National Health and Nutrition

Examination Survey (NHANES) (Patlewicz et al., 2018). In

this earlier study, 47% of compounds were classified into TTC

Cramer Class III compared to 79% in the CERAPP data set from

our work. The majority of this discrepancy however, is due to the

former study’s use of the genotoxicity categorization. When that

category is used for this study, only 57% of the CERAPP

chemicals are classified as TTC Cramer Class III, which is

better aligned with the Patlewicz et al. results.

A variety of risk prioritization tools could be used in tandem

and provide opportunities for triaging chemicals for further

testing. In this study, chemical rankings varied between in

vitro-derived OED-based MoEs and TTC-based MoEs,

demonstrating that there may be chemical space bias even

with the relatively small 709-chemical dataset.

4.3 Applications of thresholds of
toxicological concern-based MoE as a
conservative screening level approach

Comparing TTC-based MoEs and OED-based MoEs

provided opportunities to explore the chemical space in

which TTCs provide lower MoEs than OEDs, an outcome

that may lead to the prioritization of efforts to collect

reverse toxicokinetic data. To the extent that TTCs provided

lower MoEs than either OEDs or NOAELs, they can be

regarded as a more conservative approach to high-

throughput screening assessment that correlate well (r2 =

0.59 for 522 chemicals) with NOAEL-based MoEs.

Furthermore, TTC-based MoEs appear useful as a

conservative high-throughput approach for pre-assessment

level risk prioritization especially because TTCs are more

protective than NOAELs for 520 out of 522 chemicals. This

observation further supports TTCs as a useful approach for

evaluating the limited landscape of regulatory data. It should be

noted that use of NOAELs to determine a human-relevant point

of departure generally requires extensive curation and is a much

more extensive undertaking than the scope of this study.

However, for this study, we had a different focus–using the

most conservative NOAEL value (or the 5% ile if > 20 NOAELs

were available). As a result, we were able to compare TTC-based

MoEs to NOAELs that are most likely to be protective, and it

was found that the TTC-based approach was even more

protective. The use of the TTC-based MoE metric as an

alternative approach to looking across large numbers of

compounds creates opportunities for additional read-across

case studies that are based on both prioritized chemical and

biological spaces (McMullen et al., 2018).

The value of applying structure-dependent TTC-based

MoEs was demonstrated as a pre-assessment chemical

prioritization approach to over 45,000 compounds. A slight

limitation of this study was that 17,899 of the ~45,000 chemicals

investigated in our large dataset did not have SEEM3 95% upper

CI estimates readily available and so SEEM2 estimates were

substituted for those chemicals. While lack of the updated

SEEM3 values for those chemicals may somewhat affect the

outcomes for whether the MoEs are <1, the SEEM2 upper 95%

ile values provide the next best estimates. Additionally, so long

as all 3 MoE estimation methods (NOAEL-, OED- and TTC-

based) are being normalized by the same exposure value for a

given chemical, we would not expect a significant influence on
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the overall comparison of which method was more conservative

for that chemical.

Chemical space analysis may be useful in assisting

prioritization by evaluating chemical features that lead to

larger TTC-based MoEs relative to those determined from

lower-throughput methods. The comparison of TTC- to

OED-based MoEs, where available, provided cases where

the most protective value could be considered when

determining which chemicals should undergo further study.

Furthermore, lower-throughput exposure tools based on real-

world usage patterns or exposure information could then be

utilized with the high priority chemicals. The use of NOAEL-

based MoEs was shown to be a potential ground-truth

mechanism for TTC-based MoEs and called for both

chemical and biological spaces to be prioritized for read-

across case studies.
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