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Abstract: The role of vitamin D3 has been confirmed in female reproductive organs. This study
aimed to examine vitamin D3 metabolic enzymes, i.e., CYP27B1 and CYP24A1, mRNA transcript
and protein abundance, and protein localization in the uterus of pigs on days 2–5, 10–12, 15–16
and 18–20 of the estrous cycle. Additionally, we determined 1,25(OH)2D3 concentration in uterine
flushings and the effect of 1,25(OH)2D3 (10, 50 and 100 ng/mL) in vitro on CYP27B1 and CYP24A1
mRNA transcript abundance in endometrial and myometrial slices. In the endometrium, a greater
CYP27B1 mRNA transcript abundance was noted on days 10–12 and 18–20 than on days 15–16,
whereas encoded protein abundance was greater on days 18–20 when compared to days 15–16.
Endometrial CYP24A1 mRNA transcript abundance was greater on days 18–20 than on days 10–12
and 15–16. In the myometrium, CYP27B1 mRNA transcript abundance was greater on days 18–20
than on days 2–5 and 15–16, while protein abundance was larger in slices collected on days 18–20 than
on days 15–16. Neither CYP24A1 mRNA transcript nor encoded protein abundance were detected
in the myometrium. The highest 1,25(OH)2D3 concentration in uterine flushings was observed
on days 18–20. Furthermore, the 1,25(OH)2D3 increased the abundance of the CYP24A1 mRNA
transcript in endometrial slices. Overall, our results suggest that porcine uterus is an extra-renal
site of vitamin D3 metabolism. Both the endometrium and the myometrium possess the ability to
synthesize vitamin D3, while only the endometrium contributes to its catabolism.
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1. Introduction

In recent years, a broad role of vitamin D3 has been confirmed in various mammalian
extra-skeletal tissues, including female reproductive organs such as the ovary, uterus,
oviduct and placenta [1–3]. Given that vitamin D3 nuclear and membranous receptors, as
well as metabolic molecules, are expressed in tissues of reproductive organs, vitamin D3
can regulate female reproductive function [4]. Indeed, vitamin D3 receptor (VDR)- and
1α-hydroxylase-deficient mice were infertile, exhibited uterine hypoplasia and impaired
folliculogenesis [5,6]. In addition, disrupted vitamin D3 metabolism was described in re-
productive pathologies such as ovarian cysts, endometriosis and uterine leiomyoma [7–10].

Vitamin D3 is purchased either from a diet or endogenous production in the skin [11].
The first step of vitamin D3 synthesis includes the conversion of 7-dehydrocholesterol
to pre-vitamin D3 in keratinocytes under ultraviolet B irradiation, followed by thermal
isomerization to cholecalciferol [11]. Further vitamin D3 bioactivation involves two hydrox-
ylations; first, in the liver at position 25 to produce 25OHD3 (calcidiol) by 25-hydroxylases,
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and second, in the kidney at position 1 to generate 1,25(OH)2D3 (calcitriol) upon 1α-
hydroxylase (CYP27B1) [12]. Both circulating metabolites, i.e., 25OHD3 and 1,25(OH)2D3,
may be inactivated through 24-hydroxylase (CYP24A1) [13]. Of note, recent studies pro-
vided evidence of the novel pathway of vitamin D3 metabolism, which is dependent on
CYP11A1 activation [14–16].

The critical steps in vitamin D3 metabolism are catalyzed by two enzymes, CYP27B1
and CYP24A1 [12]. CYP27B1 is responsible for the hydroxylation of 25OHD3 to a hormon-
ally active form, 1,25(OH)2D3, which takes place in the mitochondria of the nephron’s
proximal tubules [13]. The expression of renal 1α-hydroxylase is tightly regulated by
parathormone (PTH), fibroblast growth factor 23 (FGF23) and calcitriol itself. In detail,
PTH stimulates, while FGF23 and calcitriol inhibit, CYP27B1 catalytic activity [12]. Since
CYP27B1 was found in non-renal tissues, the differences in the regulatory system of
CYP27B1 beyond kidney were also demonstrated [17,18]. To date, CYP27B1 was not exam-
ined in the uterus, but it seems to be crucial regarding the contribution of extra-renal tissues
to circulating vitamin D3 concentration. Both calcidiol and calcitriol levels are controlled
through CYP24A1 [13]. Their 24-hydroxylation leads to the production of 24,25(OH)2D3
and calcitroic acid, respectively [12,13]. Depending on the species, CYP24A1 may also ex-
hibit 23-hydroxylase activity and catalyze the production of biologically active lactones [19].
In most animal tissues, CYP24A1 is strongly stimulated by 1,25(OH)2D3 due to the presence
of two vitamin D response elements (VDREs) in the promoter, and it is recognized as a
marker of cell responsiveness to vitamin D3 [20].

The results of our past study documented VDR mRNA transcript and protein abun-
dance in the porcine uterus throughout the estrous cycle, and the presence of 25OHD in
uterine flushings [21]. Furthermore, it was found that active vitamin D3 affected myometrial
estradiol-17β release in vitro [21]. Notably, there is no research describing the local vitamin
D3 metabolism in the uterus of pigs. To fulfill this knowledge gap, we hypothesized herein
that the porcine uterus possesses the ability to metabolize vitamin D3 throughout the entire
estrous cycle and 1,25(OH)2D3 affects CYP27B1 and CYP24A1 mRNA transcript abundance
in uterine tissues. Accordingly, this study was designed to examine: (i) the concentration
of 1,25(OH)2D3 in uterine flushings; (ii) CYP27B1 and CYP24A1 mRNA transcript and
protein abundance, and proteins localization in the porcine endometrium and myometrium,
collected on days 2–5, 10–12, 15–16 and 18–20 of the estrous cycle; as well as (iii) the effect
of 1,25(OH)2D3 in vitro on CYP27B1 and CYP24A1 mRNA transcript abundance in the
endometrium and the myometrium, collected on days 12–13 of the estrous cycle.

2. Results
2.1. Concentration of 1,25(OH)2D3 in Uterine Flushings

The concentration of 1,25(OH)2D3 in uterine flushings collected from gilts on days 2–5,
10–12, 15–16 and 18–20 of the estrous cycle was measured using the ELISA method
(Figure 1). The level of 1,25(OH)2D3 was the highest on days 18–20 with significant dif-
ferences when compared to days 2–5 (p < 0.001), 10–12 (p < 0.01) and 15–16 (p < 0.001). A
lower 1,25(OH)2D3 concentration was found on days 15–16 than on days 10–12 (p < 0.01)
and 18–20 (p < 0.001) of the estrous cycle.

2.2. Abundance of CYP27B1 and CYP24A1 mRNA Transcripts in the Porcine Uterus

The abundance of CYP27B1 and CYP24A1 mRNA transcripts was examined in the
porcine endometrial and myometrial slices obtained on days 2–5, 10–12, 15–16 and 18–20
of the estrous cycle by real–time PCR (Figure 2). In the endometrium, CYP27B1 mRNA
transcript abundance was greater on days 10–12 (p < 0.001) and 18–20 (p < 0.05) than on
days 15–16 of the estrous cycle (Figure 2a), whereas CYP24A1 mRNA transcript abundance
was greater on days 18–20 in comparison to days 10–12 (p < 0.05) and 15–16 (p < 0.01)
(Figure 2b). In the myometrium, only the abundance of the CYP27B1 mRNA transcript,
but not CYP24A1, was found and it was higher on days 18–20 when compared to days 2–5
(p < 0.05) and 15–16 (p < 0.01) of the estrous cycle (Figure 2c).
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days 2–5, 10–12, 15–16 and 18–20 of the estrous cycle. ** p < 0.01; *** p < 0.001 (one-way ANOVA 
followed by Tukey post hoc test). n = 4 per each group. 
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respectively) and CYP27B1 in the myometrium (c) obtained from pigs on days 2–5, 10–12, 15–16 
and 18–20 of the estrous cycle. Relative mRNA transcript abundance (quantitative real–time PCR) 
was expressed as the ratio relative to GAPDH (glyceraldehyde–3–phosphate dehydrogenase) and 
was presented as 2−ΔCt. Each value represents the mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001 
(one–way ANOVA followed by Tukey post hoc test). n = 5 per each group. 
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Figure 1. The concentration of 1,25(OH)2D3 (mean ± SD) in uterine flushings obtained from pigs
on days 2–5, 10–12, 15–16 and 18–20 of the estrous cycle. ** p < 0.01; *** p < 0.001 (one-way ANOVA
followed by Tukey post hoc test). n = 4 per each group.
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Figure 2. Relative mRNA transcript abundance of CYP27B1 and CYP24A1 in the endometrium (a,b,
respectively) and CYP27B1 in the myometrium (c) obtained from pigs on days 2–5, 10–12, 15–16
and 18–20 of the estrous cycle. Relative mRNA transcript abundance (quantitative real–time PCR)
was expressed as the ratio relative to GAPDH (glyceraldehyde–3–phosphate dehydrogenase) and
was presented as 2−∆Ct. Each value represents the mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001
(one–way ANOVA followed by Tukey post hoc test). n = 5 per each group.

2.3. Abundance of CYP27B1 and CYP24A1 Proteins in the Porcine Uterus

The abundance of CYP27B1 and CYP24A1 proteins in the porcine endometrial and
myometrial slices was examined on days 2–5, 10–12, 15–16 and 18–20 of the estrous cycle by
a Western blot analysis (Figure 3). Antibodies recognized bands with predicted molecular
weights of 56 and 59 kDa, respectively (Figure 3a–c, upper panels).

In the endometrium and the myometrium, the abundance of CYP27B1 proteins was
greater on days 18-20 (p < 0.01 and p < 0.05, respectively) than in tissues collected on days
15–16 of the estrous cycle (Figure 3a,c, respectively). CYP24A1 protein was only detected in
the endometrium and its abundance did not change throughout the entire estrous cycle
(Figure 3b).
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tively) and CYP27B1 in the myometrium (c) obtained from pigs on days 2–5, 10–12, 15–16 and 18–20
of the estrous cycle. The relative protein abundance was examined with densitometry and expressed
as the ratio relative to β–actin (ACTB). Each value represents the mean ± SD. * p < 0.05; ** p < 0.01
(one–way ANOVA followed by Tukey post hoc test). n = 5 per each group.

2.4. Localization of CYP27B1 and CYP24A1 in the Porcine Uterus

Positive red immunofluorescence for CYP27B1 was found in both the endometrium
and the myometrium of the porcine uterus on days 2–5 (Figure 4a), 10–12 (Figure 4b),
15–16 (Figure 4c) and 18–20 (Figure 4d) of the estrous cycle. CYP27B1 was localized
in the cytoplasm of luminal and glandular epithelial cells as well as some stroma cells
(Figure 4a–d) and myocytes within circular and longitudinal myometrial layers (only
circular myometrium is presented herein) (Figure 4a–d).

The CYP24A1 protein was found only in the porcine endometrium on days 2–5
(Figure 5a), 10–12 (Figure 5b), 15–16 (Figure 5c) and 18–20 (Figure 5d) of the estrous cycle,
confirming the results from the Western blot analysis. A positive immunofluorescence was
observed in the cytoplasm of luminal and glandular epithelial cells and some stroma cells
(Figure 5a–d).

A positive signal for CYP27B1 (Figure 4a) and CYP24A1 (Figure 5a,c) was also found in
blood vessels. There was no color reaction when sections were incubated with non–immune
rabbit IgG (Figure 4c lower inset and Figure 5d inset) instead of a primary antibody.

2.5. Effect of 1,25(OH)2D3 on CYP27B1 and CYP24A1 mRNA Transcript Abundance in
Endometrial and Myometrial Slices

To examine the influence of active vitamin D3 in vitro on CYP27B1 and CYP24A1
mRNA transcript abundance in endometrial and myometrial slices of gilts, 1,25(OH)2D3 at
doses 10, 50 and 100 ng/mL was applied (Figure 6).

1,25(OH)2D3 at 10 and 100 ng/mL (p < 0.05 and p < 0.001, respectively) significantly
upregulated the abundance of the CYP24A1 mRNA transcript in endometrial tissue in
comparison to controls (Figure 6b). CYP27B1 mRNA transcript abundance was unaffected
by 1,25(OH)2D3 either in endometrial (Figure 6a) or myometrial (Figure 6b) slices.
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Figure 4. Representative micrographs of CYP27B1 immunofluorescent localization within porcine
uterus on days 2–5 (a), 10–12 (b), 15–16 (c) and 18–20 (d) of the estrous cycle. Immunoreactive proteins
were visualized using a Cy3 detection system (red). Nuclei were counterstained with DAPI (blue).
Positive signal (arrows) was found in the cytoplasm of luminal (LE) and glandular (GE) epithelial cells
of the endometrium, and myocytes within whole myometrial layer (only a circular myometrium (CM)
is presented herein). Negative control (c lower inset) was obtained by the replacement of primary
antibody by non–immune rabbit IgG. S, stroma; asterisks (*), blood vessels. Bar = 50 µm.
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Figure 6. In vitro effect of 1,25(OH)2D3 (0, 10, 50 and 100 ng/mL) on CYP27B1 and CYP24A1 mRNA
transcript abundance in endometrial slices (a,b, respectively), and CYP27B1 mRNA transcript abundance
in myometrial slices (c) harvested on days 12–13 of the estrous cycle. Relative mRNA transcript
abundance (quantitative real–time PCR) is expressed as the ratio relative to GAPDH (glyceraldehyde–3–
phosphate dehydrogenase) and is presented as 2−∆Ct. Each value represents the mean ± SD: * p < 0.05;
*** p < 0.001 (one-way ANOVA followed by Tukey post hoc test); n = 5 per each group.
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3. Discussion

Recently, we have shown that porcine uterus expresses VDR; therefore, it is a target
tissue for vitamin D3 [21]. The current study was undertaken to extend these results
and verify the hypothesis of whether porcine uterus possesses the ability to metabolize
vitamin D3 during the entire estrous cycle due to the presence of vitamin D3 metabolic
molecules. Depending on the day of the estrous cycle, we showed CYP27B1 mRNA
transcript and protein abundance, and protein localization in the porcine endometrium and
myometrium, while the CYP24A1 mRNA transcript and protein were found only in the
uterine endometrium. Apart from that we detected the 1,25(OH)2D3 in uterine flushings
throughout the estrous cycle and further noted that calcitriol increased CYP24A1 mRNA
transcript abundance in endometrial slices in vitro.

The expression of vitamin D3 activating and inactivating enzymes was confirmed
in various female reproductive organs, indicating that reproductive tissues might be an
important site of vitamin D3 metabolism beyond the kidneys [4,17]. In the current study,
we demonstrated CYP27B1 mRNA transcript and protein abundance in the porcine en-
dometrium and myometrium throughout the estrous cycle. Using immunofluorescence,
the CYP27B1 protein was detected in the cytoplasm of luminal and glandular epithe-
lial cells, and stroma cells within the endometrium, as well as in myocytes. Our results
are in agreement with previous research conducted on human cycling and pregnant en-
dometrium [22,23], human myometrium [8] and pregnant porcine endometrium [24]. More-
over, the CYP24A1 mRNA transcript and protein were exclusively detected in the porcine
endometrium, and its immunofluorescent localization reflected the aforementioned pattern
of CYP27B1 distribution. At this time, research by Vigano et al. [22] showed CYP24A1
mRNA transcript abundance in human endometrium, but protein abundance and tissue
distribution have not yet been determined. As observed herein, the lack of vitamin D3
catabolic enzyme in the porcine myometrium is inconsistent with currently available results
for the human myometrium, showing a low level of CYP24A1 mRNA transcript abundance
in normal myometrium and its overexpression in uterine leiomyoma [8]. It should be
stressed that the myometrium of pigs has not been previously examined in the context of
vitamin D3 metabolism and the revealed discrepancies might be species-specific. Taken
together, our results implicate that, in pigs, both the endometrium and the myometrium
are able to synthesize active vitamin D3 due to the expression of CYP27B1, while only the
endometrium expresses the catabolizing enzyme, CYP24A1.

The present research demonstrates variations in the abundance of mRNA transcript
and protein for vitamin D3–metabolizing enzymes within uterine compartments, depend-
ing on the studied days of the cycle. In the endometrium, a greater CYP27B1 mRNA
transcript abundance was noted on days 10–12 and 18–20 than on days 15–16, whereas
protein was more abundant on days 18–20 in comparison to days 15–16 of the estrous
cycle. Contrastingly, no significant variation in the expression of CYP27B1 was found
in the human endometrium during the menstrual cycle [22,23]. Furthermore, herein we
observed that the myometrial CYP27B1 mRNA transcript and protein abundances were
greater on days 18–20 than on days 15–16 of the cycle. The high CYP27B1 level in the
uterus in the follicular phase and low CYP27B1 expression in late luteal phase correspond
to elevated and diminished 1,25(OH)2D3 concentrations in uterine flushings noted in these
periods, respectively. According to research showing the release of 1,25(OH)2D3 by human
endometrial cells in vitro [22], and detecting calcitriol in human myometrial tissue [8], it is
likely that both uterus layers contribute to 1,25(OH)2D3 concentration in uterine microen-
vironment in pigs. Given that 1,25(OH)2D3 induced cell proliferation in goat granulosa
cells [25] as well as in rat endometrial cell line [26], we further propose the possible role
of a high intrauterine 1,25(OH)2D3 level within the follicular phase of the estrous cycle
in the repairment of the porcine endometrium by modulation of cell proliferation and
differentiation [27].

Apart from findings regarding CYP27B1, we showed changes in endometrial CYP24A1
abundance only at the transcript level; CYP24A1 mRNA transcript abundance was higher



Int. J. Mol. Sci. 2022, 23, 3972 8 of 13

on days 18–20 than on days 10–12 and 15–16 of the estrous cycle. CYP24A1 was shown to
be directly regulated by 1,25(OH)2D3 due to the presence of VDRE in gene promoter [20,28].
Thus, we assumed that the endometrial abundance of the CYP24A1 mRNA transcript was
caused by an intrauterine calcitriol concentration that might serve as a local negative feed-
back mechanism. Despite the lack of variation in CYP24A1 protein abundance, we are not
able to unequivocally state whether the local vitamin D3 inactivation in the endometrium
contributes to 1,25(OH)2D3 concentration in uterine flushings in pigs.

Our current findings, showing the presence of vitamin D3 metabolic enzymes in
the porcine uterus, prompted us to undertake research revealing whether 1,25(OH)2D3
regulated CYP27B1 and CYP24A1 mRNA transcript abundances in that tissue. In the
in vitro experiment, 1,25(OH)2D3 upregulated CYP24A1 mRNA transcript abundance in
endometrial explants, but did not influence CYP27B1 mRNA transcript abundance either
in the endometrium or the myometrium of pigs. This part of the above mentioned re-
sults obtained for endometrium is consistent with data presented by Jang et al. [24], who
also showed an increased CYP24A1 gene transcription after 1,25(OH)2D3 treatment and
unchanged CYP27B1 mRNA transcript abundance in porcine endometrial explants. To
date, this is the first study describing the in vitro effect of calcitriol on mRNA transcript
abundance of vitamin D3–metabolic enzymes in the porcine myometrium. Regarding
CYP24A1 regulation by 1,25(OH)2D3 in extra-renal tissues, this enzyme is strongly induced
by calcitriol in most cells showing its expression, i.a., in keratinocytes [29] and syncytiotro-
phoblast cells [30]. The calcitriol-driven induction of CYP24A1 transcription results from
the presence of two VDREs in the promoter region [20]. Additionally, calcitriol can also
enhance CYP24A1 mRNA transcript abundance by recruiting histone H4 acetyltransferases
and RNA polymerase II [31]. It is known that 1,25(OH)2D3 downregulates CYP27B1 mRNA
transcript abundance in the kidney; however, research has so far demonstrated different
pathways of its regulation in non-renal tissues [12,17]. In keratinocytes and immune cells,
calcitriol did not directly inhibit CYP27B1 [29,32]. On the other hand, in the placenta,
1,25(OH)2D3 inhibited CYP27B1 transcription through VDR- and the cAMP-dependent
mechanism [30]. Overall, the current research provides evidence of the direct regulation
of endometrial CYP24A1 mRNA transcript abundance by 1,25(OH)2D3, with no effect on
CYP27B1 in both the endometrium and the myometrium of pigs.

4. Materials and Methods
4.1. Animals and Sample Collection

The use of animals was in accordance with the Act of 15 of January 2015 on the Pro-
tection of Animals Used for Scientific or Educational Purposes and Directive 2010/63/EU
of the European Parliament and the Council of 22 of September 2010 on the protection of
animals used for scientific purposes.

Porcine uteri were harvested from sexually mature crossbred gilts (Large White ×
Polish Landrace; 100–110 kg body weight) at a local slaughterhouse under veterinarian
control and transported on ice to the laboratory within ~1 h. Tissues were collected on
days 2–5 (early luteal phase; n = 5), 10–12 (mid luteal phase; n = 5), 15–16 (late luteal phase;
n = 5) and 18–20 (follicular phase; n = 5) of the estrous cycle following the verification
of the estrous cycle stage by ovarian morphology and corpus luteum quality [33]. The
uteri were flushed with 20 mL of phosphate-buffered saline (PBS, pH 7.4), and flushings
were stored at −20 ◦C for analysis of 1,25(OH)2D3 concentration. Uterine horns were
longitudinally opened on the mesometrial surface. The perimetrium was careful scraped
using a scalpel blade and fragments of the endometrium and the myometrium were
collected with scissors [34]. To assess CYP27B1 and CYP24A1 mRNA transcript (real–time
PCR) and protein abundances (Western blot), small endometrial and myometrial sections
of the middle part of uterine horns were snap–frozen in liquid nitrogen. Fragments of
the uterine wall containing the endometrium and myometrium were fixed in 10% neutral-
buffered formalin for immunofluorescence labeling of CYP27B1 and CYP24A1 proteins.
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Thereafter, fixed tissues were dehydrated in an increasing gradient of ethanol, cleared in
xylene and embedded in paraplast (Sigma-Aldrich, St. Louis, MO, USA).

4.2. Incubation of Endometrial and Myometrial Slices In Vitro

To examine the effect of 1,25(OH)2D3 on CYP27B1 and CYP24A1 mRNA transcript
abundance in endometrial and myometrial slices in vitro, uteri (n = 5) were collected from
gilts on days 12–13 of the estrous cycle and prepared as described above. Endometrial
and myometrial slices (200–210 mg weight, 3 mm thick) were incubated separately in
culture vials containing 2 mL of Medium 199 (Sigma-Aldrich) supplemented with 0.1%
bovine serum albumin (BSA) fraction V (Carl Roth GmbH þ Co KG, Mühlburg, Karlsruhe,
Germany) and 1% antibiotic-antimycotic solution (AAS; Sigma-Aldrich) as previously
shown [21]. After 18 h of preincubation in a shaking water bath under an atmosphere
of 95% O2 and 5% CO2 at 37 ◦C, culture medium was replaced with fresh medium, then
incubated for 6 h in the presence of control medium and supplemented with 1,25(OH)2D3
(Sigma-Aldrich) at doses 10, 50 and 100 ng/mL [21]. Next, tissue samples were collected and
snap-frozen for RNA isolation and real–time PCR analysis. Each treatment was conducted
in duplicate and the experiment was carried out five times (n = 5).

4.3. Quantitative Real-Time PCR Analysis

Total RNA was extracted from frozen endometrial and myometrial samples with TRI
Reagent solution (Ambion, Austin, TX, USA) following the manufacturer’s instructions.
The quantity and quality of the RNA were assessed by determining the A260/A280 ratio
using a NanoDrop™ Lite Spectrophotometer (Thermo Scientific, Wilmington, DE, USA),
and RNA integrity was evaluated by electrophoresis on 1 % formaldehyde–agarose gel.
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA)
was used to obtain total cDNA from 1 µg of RNA of each sample. Quantitative real–time
PCR was conducted with TaqMan Gene Expression Master Mix (Applied Biosystems)
and porcine–specific TaqMan Gene Expression Assays (Applied Biosystems) for CYP27B1
(assay ID: Ss03391198_m1) and CYP24A1 (assay ID: Ss03391412_m1) following manufac-
turers’ protocol [35]. Glyceraldehyde–3–phosphate dehydrogenase (GAPDH; assay ID:
Ss03373286_u1) was employed as an endogenous control. Real-time PCR reactions were
performed in duplicate with StepOne™ Real-Time PCR System (Applied Biosystems) ac-
cording to the recommended cycling program (2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles
of 15 s at 95 ◦C, and 1 min at 60 ◦C). The amplification of contaminating genomic DNA
was checked by control experiments in which reverse transcriptase was omitted during
the reverse transcription step. The amount of each target cDNA was normalized with
respect to the GAPDH (∆Ct value) as previously described [35]. The relative CYP27B1 and
CYP24A1 mRNA transcript abundance was presented as 2−∆Ct, and these values were used
to calculate statistical differences.

4.4. Western Blot Analysis

Total protein extraction and Western blot analysis were conducted as previously
described [10,35]. Samples were separated by 10% SDS–PAGE (Mini-Protean TGX Precast
Gels; Bio-Rad Laboratories Inc., GmbH, Munchen, Germany) and electroblotted onto a
PVDF membrane (Trans-Blot Turbo Mini 0.2 µm PVDF Transfer Packs; Bio-Rad Laboratories
Inc.) using a semi–dry Trans-Blot Turbo Transfer System (Bio-Rad Laboratories Inc.). The
blotted membranes were blocked for 1 h at room temperature (RT) in 5% non–fat dry milk
containing 0.1% Tween20 followed by overnight incubation at 4 ◦C with primary antibodies
and then with secondary horseradish peroxidase–conjugated antibody for 1.5 h at room
temperature (Table 1). Proteins were detected by chemiluminescence and images were
captured with a ChemiDocTM XRS+ System (Bio-Rad Laboratories Inc.). Each membrane
was stripped and reprobed with anti–β–actin antibody followed by respective secondary
antibody (Table 1). The bands were densitometrically quantified and normalized to their
corresponding β–actin bands using the public domain ImageJ program v. 1.8.0 (National
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Institutes of Health, Bethesda, MD, USA). Primary anti–CYP27B1 and anti–CYP24A1 were
validated for porcine tissues in our previous experiment [35].

Table 1. Primary and secondary antibodies used for Western blot (WB) and immunofluorescence (IF).

Antibody Serum Host Species Vendor WB
Dilution

IF
Dilution

Anti–CYP27B1 5% NGS Rabbit Invitrogen, Carsband, CA, USA
cat no. PA5-79128 1:3000 1:300

Anti–CYP24A1 5% NGS Rabbit Invitrogen, Carsband, CA, USA
cat. no. PA5-79127 1:1000 1:300

Anti–β–actin - Mouse Sigma-Aldrich, St. Louis, MO, USA cat. no. A2228 1:4000 -
Anti–rabbit

IgG, Cy3 - Goat Thermo Fisher Scientific, DE, USA
cat. no. A10520 - 1:100

Anti–rabbit
IgG - Goat Invitrogen, Carsband, CA, USA

cat. no. 31460 1:3000 -

Anti–mouse
IgG - Horse Bio-Rad Laboratories Inc., GmbH, Munchen, Germany

cat. no. 170-6516 1:3000 -

Abbreviations: CYP24A1, 24-hydroxylase; CYP27B1, 1α-hydroxylase; Cy3, cyanine3; NGS, normal goat serum.

4.5. Immunofluorescence

Immunofluorescence labeling was performed as previously described [36]. Briefly,
unmasking procedure with microwave heating in 0.01 M citrate buffer (pH 6.0) and block-
ing of non-specific binding sites with 5% normal goat serum prior to incubation with
anti–CYP27B1 and anti–CYP24A1 primary antibodies was performed (Table 1). After
overnight incubation at 4 ◦C in a humidified chamber, the antigens were visualized using
Cy3–cojugated secondary antibody for 1.5 h in the dark (Table 1). Finally, sections were
mounted in Vectashield Antifade Mounting Medium with 4′,6–diamidino-2-phenylindole
(DAPI; Vector Lab., Burlingame, CA, USA) and examined with epifluorescence microscope
Nikon Eclipse Ni-U (Nikon, Tokyo, Japan) with corresponding software. Negative controls
were prepared by section incubation with non–immune rabbit IgG (NI01, Calbiochem,
Darmstadt, Germany) instead of primary antibodies.

4.6. Analysis of 1,25(OH)2D3 Concentration in Uterine Flushings

The concentration of 1,25(OH)2D3 in the porcine uterine flushings was determined
using an enzyme–linked immunosorbent assay kit (1,25(OH)2 Vitamin D ELISA; cat no.
KAP1921; DIAsourceImmunoAssays, Louvain-la-Neuve, Belgium) following the manufac-
turer’s recommendation. Assay sensitivity was 0.8 pg/mL with ranges of 0–180 pg/mL.
Intra- and interassay coefficients of variation were 5.0% and 13.2%, respectively. All analy-
ses were performed in duplicate.

4.7. Statistical Analysis

Statistical analysis was performed using GraphPad Software (La Jolla, CA, USA). To
verify the normal distribution of data, the Shapiro–Wilk and Lilliefors tests were applied.
Due to the normal distribution, one–way ANOVA followed by Tukey post hoc test was used.
All data are presented as the overall mean ± standard deviation (SD), and differences were
considered statistically significant at the 95% confidence level (p < 0.05).

5. Conclusions

The present study demonstrates the capability of the porcine uterus to metabolize
vitamin D3 within the course of the estrous cycle. In detail, the synthesizing enzyme,
CYP27B1, was found in the porcine endometrium and myometrium, while the inactivating
enzyme, CYP24A1, was detected only in the endometrial compartment. Furthermore,
the presence of 1,25(OH)2D3 in uterine flushings contributes to our statement about the
plausible intrauterine vitamin D3 metabolism (Figure 7). We further confirm the direct
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regulation of endometrial CYP24A1 mRNA transcript abundance by 1,25(OH)2D3 in vitro,
indicating the possible mechanism that might control calcitriol level in the uterus. Taken
together, vitamin D3 could be considered as an important local regulator of uterine function
in pigs.
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