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Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even
though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have
developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid
enucleation, megakaryocyte endoreduplication, and platelet formation.This brings up a few questions that we try to address in this
review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic
origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between
mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss
recent data indicating that nonmammalian thrombocytes andmegakaryocytes are homologs. Finally, we hypothesize that erythroid
and thrombocytic differentiation evolved froma single ancestral lineage, whichwould explain the striking similarities between these
cells.

1. Introduction

Hematopoiesis is mediated by self-renewal and differentia-
tion of hematopoietic stem cells (HSCs) and their progenies,
which is tightly controlled through a complex array of
extrinsic and intrinsic factors [1, 2]. Dysregulation of some
of these pathways can lead to distinct hematopoietic disor-
ders, such as anemia, thrombocytopenia, and myelogenous
leukemia, predominantly caused by defects in the erythroid-
megakaryocytic compartment [3, 4]. It is well accepted
that mammalian megakaryocytes and erythrocytes are gen-
erated from common bipotent megakaryocyte-erythrocyte
progenitors (MEPs) [5]. In mammals, megakaryocytes are
formed by endoreduplication of megakaryoblasts to generate
polyploid cells. Once the ploidy state of 8–64N is reached,
megakaryocytes produce thrombocytes (in mammals also
referred to as platelets) [6].The keymediator of this process is
thrombopoietin (TPO) [7, 8]. Red blood cells (RBCs) do like-
wise develop fromMEPs through several stages of committed
progenitors, termed burst-forming units-erythroid (BFU-E),
colony-forming units-erythroid (CFU-E), and erythroblasts.
The most prominent factors regulating erythropoiesis in vivo
and ex vivo are erythropoietin (EPO) and stem cell factor
(SCF, or KIT ligand, KITL) [9, 10]. Notably, mammalian

erythroblasts undergo chromatin condensation and nucleus
extrusion, giving rise to enucleated mature erythrocytes [11,
12]. In contrast, nonmammalian vertebrates possess nucle-
ated oval-shaped diploid thrombocytes [13, 14] and RBCs
[15] (Figure 1). Similarly to mammals, both of these lineages
have been demonstrated to arise from bipotent progenitors,
termed thrombocyte-erythrocyte progenitors (TEPs), cells
equivalent to mammalian MEPs [16, 17].

The present review aims to summarize the ontology and
phylogeny of erythro-thrombocytic differentiation in verte-
brates. Here, we highlight the relationship between mam-
malian and nonmammalian erythroid and thrombocytic
cells. Moreover, despite the morphological and functional
differences between erythroid and thrombocytic cell lineages,
we provide a model underlining the common evolutionary
origin of these two cell lineages from a single ancestral
precursor.

2. Ontogeny of Thrombocytes and
Erythrocytes

2.1. Models of Adult Hematopoiesis. Both in vivo and ex vivo,
all terminally differentiated blood cells in adult organisms
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Figure 1: A comparative view of erythrocytes and thrombocytes
from zebrafish (Danio rerio), xenopus (Xenopus laevis), chicken
(Gallus gallus), or human (Homo sapiens) peripheral blood. Cells
were smeared on glass slides and stained with May-Grünwald
Giemsa. Photomicrographswere taken at 1000xmagnification. Scale
bar is 20 𝜇m.

arise from long-term HSCs (LT-HSC) [18, 19] that have
unlimited self-renewal capacity. Direct downstream proge-
nies ofHSCs, termed short-termHSCs (ST-HSCs) andmulti-
potent progenitor cells (MPPs), are progressively losing their
self-renewal capability upon commitment. According to the
most prevalent classical hierarchical model of hematopoiesis
(Figure 2) [20, 21], the MPPs further give rise to common
lymphoid progenitors (CLPs) and common myeloid pro-
genitors (CMPs). CLPs are responsible for production of
lymphoid cells, whereas CMPs differentiate into granulocyte-
monocyte progenitors (GMPs) and bipotent MEPs/TEPs
that are responsible for generation of thrombocytes and
erythrocytes [6, 16, 17], the most abundant and specialized
cell types in the adult organism.

Although the hierarchical model of hematopoiesis has
been generally accepted over years, recent development of
state-of-the-art technologies led to discoveries of alternative
hematopoietic pathways that are either bias or bypass certain
multipotent progenitors.This includes themyeloid/lymphoid
biased model [22], revised model for adult hematopoiesis
[23], myeloid based model [24], or myeloid bypass model
[25]. Some of these models are in accordance with the clas-
sical hierarchical model and provide alternative pathways for
development of more specialized cell types at a much higher
hierarchical level than previously realized. Although detailed
examination of these pathways goes beyond the scope of this
review, we would like to highlight those alternative models
that refer to production of erythroid andmegakaryocytic cells
(Figure 2).

First evidence suggesting a direct pathway leading from
HSCs to MEPs was based on the identification of a sub-
set of HSCs, marked by Lineage−Sca1+c-Kithigh (LSK) and
Flt3− antibodies, which may have given rise directly to
MEPs [22]. This is in agreement with recent findings,
further proving that the LSK CD150+CD48−CD34− subset
of HSCs is capable of short-term and long-term platelet

reconstitution as well as reconstitution of other erythro-
myeloid, but not lymphoid, cell lineages [26]. Extensive
single-cell transplantation experiments revealed the pres-
ence of long-term megakaryocyte repopulating progenitors
(MkRPs), megakaryocyte-erythroid repopulating progeni-
tors (MERPs), and common myeloid repopulating pro-
genitors (CMRPs) within the CD150+/−CD41+/−CD34−LSK
cells (Figure 2) [25]. While CMRPs were shown to be
generally present within the CD34−LSK fraction of cells,
MkRPs and MERPs seem to be present only within
the CD150+CD41−CD34−LSK or CD150−CD41+CD34−LSK
fraction of cells. As a follow-up, the intermediate path-
way bridging MkRP and megakaryocytes was identified,
and fully restricted unipotent megakaryocyte progenitors
CD41+CD42b+LSK were characterized recently [27].

Importantly, the experimental data suggesting alternative
erythroid and megakaryocytic pathways are solely based
on experiments performed in mammalian hematopoietic
models and there is a lack of evidence of their existence in
nonmammalian vertebrate species. We can only speculate
whether these pathways evolved inmammals only or whether
they are evolutionarily conserved. One may presume that
thesemechanismsmight play an important physiological role
in the steady-state and emergency hematopoiesis.

2.2. Extrinsic Factors Involved in Erythro-Thrombopoiesis.
Erythro-thrombocytic differentiation has been shown to be
regulated by multiple cytokines (Figure 3), many of which
have broad effects on all hematopoietic lineages. The most
important factors regulating erythropoiesis are EPO and SCF
[9, 10]. EPO interacts with its cognate receptor, EPOR, and
promotes erythroid progenitor self-renewal, survival, and
differentiation, while SCF mediates proliferation of these
progenitors. Other important factors that control erythro-
poiesis include fibroblast growth factor 2 (FGF2) [28], insulin
(INS), insulin-like growth factor 1 (IGF1) [29], transform-
ing growth factor 𝛼 (TGF𝛼) and TGF𝛽 family members
(TGF𝛽, bone morphogenetic protein 4, BMP4) [30–34], and
glucocorticoids (GCs, such as dexamethasone, Dex) [35].
These factors could either promote erythroid progenitor self-
renewal or take part in their differentiation, depending on the
cooperating signals. Further cytokines that act synergistically
with the lineage-restricted factors and that could instrument
both erythroid and thrombocytic differentiation pathways
are interleukin 3 (IL3), IL6, IL11, granulocyte-colony stim-
ulating factor (G-CSF), granulocyte-macrophage CSF (GM-
CSF) [36, 37], and the previously mentioned SCF [10, 38].
These factors act as early modulators of upstream progen-
itors in erythroid and thrombocytic differentiation, driving
their self-renewal, or promote megakaryocytic maturation.
Other cytokines involved in thrombocytic differentiation,
megakaryocytic maturation, or platelet biogenesis include,
besides TPO, also IL12 and SDF1 [36]. TPO interacts with
its cognate receptor, TPOR (c-MPL) [39, 40]. Its signalization
seems to be strongly required for thrombopoiesis, since mice
lacking c-MPL signaling are highly thrombocytopenic [41].

It is interesting that EPO and TPO signaling share
many common features. Both ligands belong to the four-
helix bundle cytokine family and share a highly conserved
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Figure 2: Models of mammalian adult hematopoiesis with respect to the megakaryocytic-erythroid compartment (grey box). Hierarchical
[20, 21] (black arrows) and myeloid bypass [25] (red arrowheads) models of hematopoiesis are shown. According to the conventional
hierarchical model of hematopoiesis, the bipotent megakaryocyte-erythroid progenitors (MEPs) are able to give rise to megakaryocytes
and erythrocytes. The alternative myeloid bypass model predicts the existence of various myeloid repopulating progenitors (MyRPs) as
a subset of long-term hematopoietic stem cells (LT-HSCs), such as common myeloid repopulating progenitors (CMRPs), megakaryocyte
repopulating progenitors (MkRPs), and megakaryocyte-erythroid repopulating progenitors (MERPs).These progenitors are capable of long-
term repopulation and differentiation into the particular cell lineages. ST-HSC: short-term HSC; MPP: multipotent progenitor cell; CLP:
common lymphoid progenitor; GMP: granulocyte/monocyte progenitor; CFU-Mk: colony-forming unit-megakaryocyte; BFU-E: burst-
forming units-erythroid; CFU-E: colony-forming units-erythroid.

amino-terminal EPO/TPO domain [42]. In mammals, TPO’s
C-terminal portion encodes a highly glycosylated domain
[43, 44] that is missing in nonmammalian vertebrates [16,
17] and its role in mammals is to regulate the half-life
of TPO in the circulation [41]. EPO and TPO share four
conserved cysteine (Cys) residues that form disulfide bonds
[16, 17, 45] responsible for keeping the ligand’s tertiary
structure. Importantly, EPOR and TPOR are also reminiscent
of each other. Both receptors belong to the family of type
I cytokine receptors [46, 47]. The extracellular domains
of these receptors [48] are characterized by the presence
of four conserved Cys residues and a tryptophan-serine-
x-serine-tryptophan (WSXSW) motif, involved in ligand
binding and receptor signaling. Class I receptors possess
one transmembrane domain, and their intracellular region
consists of two conserved domains, Box1/Box2, involved
in mediating downstream signals. Other important features
of these receptors are intracellular tyrosine residues, many
of which are conserved throughout the vertebrate species
(Figure 3). The only structural difference between EPOR and

TPOR is that the extracellular domain has been duplicated
in TPOR, having eight conserved Cys residues and two
WSXSW motifs [46]. The activation of EPOR as well as
TPOR occurs through the receptor homodimerization upon
ligand binding, which in turn triggers similar downstream
signaling pathways. These similarities between EPO/TPO
ligands and their receptors suggest that they might have
evolved from a single ligand/receptor by a duplication event
during evolution.

2.3. Intrinsic Factors Involved in Erythro-Thrombopoiesis. The
intracellular signaling pathways mediated by EPOR and
TPOR overlap to a large extent (Figure 3). Neither EPOR
nor TPOR have an intrinsic enzymatic activity and their
signaling is primarily dependent on associated Janus kinase
2 (JAK2) [49, 50]. Particularly, receptor homodimerization
leads to autophosphorylation of JAK2 that is bound to
Box1/2 and that in turn phosphorylates the receptor itself
as well as other signaling molecules. Both EPOR and TPOR
stimulate JAK2-mediated phosphorylation of STAT5 (signal
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Figure 3: Composite summary of the most prominent factors and signals involved in the regulation of erythro-thrombopoiesis. Erythroid
signals are in red, thrombocytic signals are in blue, and signals involved in both differentiation pathways are depicted in black. Human TPO
ligand and TPOR are shown in blue; human EPO and EPOR are shown in red. Tyrosine residues (Y, pink lines) in TPOR/EPOR intracellular
domains important for receptor signaling are shown. Some of them are highly conserved throughout the vertebrate species as demonstrated
in the table. Cytokines’ signal peptides are in black and EPO/TPO domains are shown. Receptors’ WSXSW motifs are in grey and squared
boxes represent Box1/Box2. Cs represent conserved Cys residues; ∗s represent glycosylation sites.

transducers and activators of transcription), activate the
phosphatidylinositol 3-kinase (PI-3K)/AKT pathway, and
promotemitogen-activated protein kinase (MAPK) signaling
[49, 50]. This is achieved by recruitment of GRB2 either
directly or indirectly via the adaptor molecule SHC, while
GRB2 further activates SOS, RAF, and MEK proteins, finally
triggering MAPK activation [51, 52]. In contrast to EPOR,
TPOR is amuchmore potent activator of theMAPK pathway
and STAT3 signaling [53]. Conversely, it has been shown
that EPOR interacts with LYN kinase, which can bind to
JAK2 and affects STAT5 [54]. EPOR and TPOR signaling
is limited by a negative feedback loop employing SHP1 and
SHIP phosphatases and suppressors of cytokine signaling
(SOCS1, SOCS3) [49, 55, 56].

The described signaling networks work either in concert
or antagonistically to drive specification of erythroid and
thrombocytic cell lineages. This is mainly governed by the
balanced activity of transcription factors binding to GATA

or ETS motifs and others [57], including GATA binding
factors, GATA1, GATA2; ETS factors, ETS1, ETS Variant 6
(ETV6/TEL), friend leukemia virus integration 1 (FLI1), GA-
binding protein transcription factor (GABP𝛼); and other
factors, runt-related transcription factor 1 (RUNX1/AML1),
c-MYB (MYB), friend of GATA1 (FOG1), growth factor
independent 1B (GFI1B), nuclear factor-erythroid2 complex
(NFE2, NFE2, and MAFK subunits), LIM domain only 2
(LMO2), T-cell acute lymphocytic leukemia 1 (TAL1/SCL),
andKrüppel-like factor (KLF1) [3, 57–59]. It is the interaction
and crosstalk between these transcription factors that makes
the system complex. A number of these transcription factors,
such as FOG1, GATA1/2, GFI1B, LMO2, NFE2, and TAL1,
are critical for both erythroid and thrombocytic develop-
ment, whereas others are rather dedicated to unilineage
differentiation, such as the erythroid EKLF and MYB or
the thrombocytic ETS1, ETV6, FLI1, GABP𝛼, and RUNX1
(Figure 3). From this overview, it is more than apparent that
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Figure 4: Nonmammalian and mammalian model of erythropoiesis and thrombopoiesis. According to the integrated model of
hematopoiesis, mammalian erythrocytes and megakaryocytes have likely evolved from their nonmammalian erythroid and thrombocytic
homologs as an evolutionary improvement. Nonmammalian erythrocytes and thrombocytes are phenotypically similar (nucleated, diploid
oval-shaped cells), whereas mammalian megakaryocytes and erythrocytes are very different from each other. Numbers indicate the
proliferation potential of particular progenitors. TEP: thrombocyte-erythroid progenitor; CFU-T: colony-forming unit-thrombocyte.
Modified from Bartunek et al. [16] and Svoboda et al. [17].

erythroid and thrombocytic signaling share many common
features, further suggesting a common evolutionary origin of
EPO/TPO signaling pathways.

3. Phylogeny of Erythrocytes and
Thrombocytes in Vertebrates

Mammalian and nonmammalian erythro-thrombocytic cells
appear to be phenotypically very different as a result of
divergent evolution. It has been shown that mammals and
birds split off from their lizard-like ancestors 310 million
years ago [60]. Since that time, certain aspects of erythroid
and thrombocytic differentiation have changed; adult mam-
malian RBCs possess the unique feature of being enucle-
ated, and mammalian thrombocytes are not individual cells
but fragments of megakaryocytes. These adaptations likely
enhanced the biological performance of the corresponding
cells, which could be demonstrated on a few examples.
Enucleated erythrocytes are more flexible and the lack of the
nucleus creates more intracellular space for hemoglobin.This
provides a typical biconcave shape, increasing the surface area

for an efficient oxygen exchange [61]. Mammalian platelets
are generated in very high numbers (thousands of platelets
per one megakaryocyte), as compared to nonmammalian
thrombocytes, and aremuch smaller andmore flexible.These
features ensure their efficient spreading and increased resis-
tance to fluid shear forces [62]. Both of these improvements
in erythrocytes and thrombocytes allowed development of
thinner capillaries in mammals, preventing their possible
blockage [61, 62]. It is likely that these enhancements pro-
vided a survival advantage to early mammalian species.

However, these enhancements also bring up the question
of the evolutionary origin of these cells. Hypothetically,
mammalian erythrocytes and megakaryocytes could have
evolved de novo, functioning as analogs of nonmammalian
erythrocytes and thrombocytes [17]. Conversely, they might
have evolved as a possible improvement from ancestral
erythro-thrombocytic cells, as previously discussed, indicat-
ing that mammalian and nonmammalian erythrocytes and
thrombocytes are homologs. Indeed, the following lines of
evidence suggest that the latter hypothesis may be more
probable (Figure 4).
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First, the initial commitment of both lineages requires
involvement of similar signaling pathways and transcrip-
tion factors throughout the vertebrate phylum. The most
prominent factors required for erythroid differentiation that
were found to be functionally conserved from fish to man
are FOG1, GATA1, GATA2, KLF1 (zebrafish ortholog Klf4),
LMO2, MYB, NFE2, TAL1, and others [17, 63–66]. Similarly,
the list of conserved factors that are involved in vertebrate
thrombopoiesis includes ETS1, FLI1, FOG1, GATA1, GATA2,
NFE2, RUNX1, TAL1, and others [17, 64, 67–69]. Second,
multiple zebrafish mutant lines or knockdowns have been
generated that recapitulate common human disorders, such
as various types of anemia, protoporphyria, or thrombocy-
topenia [64, 70, 71]. Many of these mutants and knockdowns
are affected in the same loci that are relevant to human
diseases, which further highlights the similar mechanisms
underpinning these processes. Third, the processes involved
in hemostasis are highly conserved among mammalian and
nonmammalian vertebrates; platelets and thrombocytes are
activated by the same stimuli, and blood clotting takes place
in an almost identical way [62, 71].

Finally, the last piece of evidence favoring the hypoth-
esis that megakaryocytes likely evolved as a thrombocytic
improvement is based on characterization of the relationships
between zebrafish hematopoietic progenitors and on map-
ping their proliferation kinetics.Multiple studies indicate that
mammalian BFU-E progenitors are capable of 9 to 16 cell
divisions during theirmaturation, depending on the presence
of cooperating factors [72]. The CFU-E progenitors are
capable of at most 6 cell divisions [72] and megakaryocytes
endoreduplicate approximately 2 to 5 times [73] to form 8–
64N cells. In line with this observation is the study indicating
that the number of cell divisions during zebrafish erythroid
and thrombocytic terminal differentiation is closely matched
to mammalian species [17]: the zebrafish BFU-E progenitors
are capable of 9 to 15 cell divisions, depending on cooperative
signals, the CFU-E progenitors can undergo 6 cell divisions,
and thrombocytes can undergo 5 cell divisions during their
terminal differentiation.

Taken together, these data led to the establishment of the
“integrated model of hematopoiesis” [17] (Figure 4), propos-
ing that despite striking phenotypic differences between
mammalian megakaryocytes and nonmammalian throm-
bocytes, there is a clear link between mammalian and
nonmammalian erythroid and thrombocytic cells in terms
of their molecular control and their proliferation potential.
This model further suggests that mammalian erythrocytes
and megakaryocytes have evolved from nonmammalian ery-
throcytes and thrombocytes as their possible improvements,
which implies their homologous relationship.

4. Origin of Erythrocytes and
Thrombocytes in Vertebrates

Up to now, we have discussed the evolutionary development
of mammalian erythrocytes and megakaryocytes from non-
mammalian homologous cells. However, in this chapter we
would like to focus on the hypothetical origin of erythroid

and thrombocytic differentiation programs from ancestral
vertebrates. According to the generally well-accepted evolu-
tionary hypothesis, the invertebrate and vertebrate species
bifurcated approximately 520–550 million years ago [60].
This resulted in enormous divergence of these species and
led to de novo parallel formation of various analogous
features. Even though many invertebrate animals possess
both erythrocyte-like and thrombocyte-like analogous cells,
commonly referred to as amebocytes, coelomocytes, hemo-
cytes, or thrombocytoids, these cells are not considered to
be the progenitors of vertebrate erythro-thrombocytic cells
[74–77]. Therefore, erythrocytes and thrombocytes found in
cyclostomates and fish are the first cells that have evolved to
be particularly specialized in oxygen transport or hemostasis
[13, 78–80]. Both cell lineages likely first appeared in direct
fish ancestors and it is highly probable that both differenti-
ation programs split from one ancestral differentiation pro-
gram after its duplication (Figure 5). This view is supported
both by similar cell characteristics (similar oval shape, con-
densed nuclei, and proliferation coupled to differentiation)
and by similar or shared regulatory molecules, as previously
discussed.This includes the structural and functional resem-
blance between EPO and TPO signalosomes, likely derived
from a single ligand-receptor complex due to a duplication
event. As discussed above, both EPO and TPO mediate
substantially redundant signaling and activate similar sig-
naling pathways and transcription factors. This has been
well illustrated experimentally as TPO expanded erythroid
progenitors [7, 81] and, strikingly, TPO in combination with
SCF and IL11 was shown to substitute for EPO signaling in
the erythroid progenitors derived from Epor deficient mice
[82]. Conversely, EPO was shown to synergize with TPO
to promote megakaryocyte colony growth and maturation
[36, 83].

In summary, based on the integrated model of
hematopoiesis we propose the “Common ancestral erythro-
thrombocytic hypothesis.” This hypothesis predicts the exis-
tence of ancestral vertebrate organisms with unilineage dif-
ferentiation, leading to ancestral erythrocytes/thrombocytes
or erythro-thrombocytes with dual function.This unilineage
differentiation program might have been further duplicated
during the evolution of early vertebrates, giving rise to
specialized erythroid and thrombocytic differentiation
programs in conjunction with EPO/TPO signaling.

5. Conclusions

Erythroid and thrombocytic differentiation share many
common features. Besides phenotypic similarities between
erythrocytes and thrombocytes found in nonmammalian
vertebrates, this includes the common progenitors of these
cells (TEPs/MEPs), similarities between EPO and TPO
signaling, and shared signaling mechanisms mediating the
lineage commitment. These similarities are also present in
mammalian species, while the basic molecular mechanisms
driving erythro-thrombocytic lineage commitment seem to
be evolutionarily highly conserved. The integrated model
of hematopoiesis (Figure 5) suggests that mammalian
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megakaryocytes and erythrocytes likely evolved as an
improvement of their ancestral counterparts (found in
nonmammalian vertebrates) to increase their biological
performance during oxygen transport and hemostasis. This
indicates that mammalian and nonmammalian erythrocytes
and thrombocytes did not evolve de novo but instead are
homologous.

Finding the actual relationship between the mammalian
and nonmammalian blood cells might have a major impact
on hematopoietic research. Since the employment of mam-
malian model organisms brings only partial progress due to
the interference with sophisticated mammalian megakary-
ocytic and erythroid enhancements, nonmammalian model
organisms, such as chicken or zebrafish, could then be
efficiently utilized to identify novel key regulators of cell fate
determination.

In addition to this and based on the described similari-
ties between erythroid and thrombocytic differentiation, we
suggest that both cell lineages have evolved from a single
ancestral differentiation program.Thiswas likelymediated by
the duplication of the ancestral cell type and its signalosome
during the evolution of early vertebrates.
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[22] J. Adolfsson, R. Månsson, N. Buza-Vidas et al., “Identifi-
cation of Flt3+ lympho-myeloid stem cells lacking erythro-
megakaryocytic potential: a revised road map for adult blood
lineage commitment,” Cell, vol. 121, no. 2, pp. 295–306, 2005.

[23] S. Luc, N. Buza-Vidas, and S. E. W. Jacobsen, “Delineating
the cellular pathways of hematopoietic lineage commitment,”
Seminars in Immunology, vol. 20, no. 4, pp. 213–220, 2008.

[24] H. Kawamoto, H. Wada, and Y. Katsura, “A revised scheme for
developmental pathways of hematopoietic cells: the myeloid-
based model,” International Immunology, vol. 22, no. 2, Article
ID dxp125, pp. 65–70, 2010.

[25] R. Yamamoto, Y. Morita, J. Ooehara et al., “Clonal analysis
unveils self-renewing lineage-restricted progenitors generated
directly from hematopoietic stem cells,” Cell, vol. 154, no. 5, pp.
1112–1126, 2013.

[26] A. Sanjuan-Pla, I. C. Macaulay, C. T. Jensen et al., “Platelet-
biased stem cells reside at the apex of the haematopoietic stem-
cell hierarchy,” Nature, vol. 502, no. 7470, pp. 232–236, 2013.

[27] H. Nishikii, Y. Kanazawa, T. Umemoto et al., “Unipotent
megakaryopoietic pathway bridging hematopoietic stem cells
andmaturemegakaryocytes,” StemCells, vol. 33, no. 7, pp. 2196–
2207, 2015.
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