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Abstract
Mast cells (MCs) are multifunctional immune cells implicated in both physiological
and pathological processes. Among the latter, MCs play a crucial role in cancer. Many
studies have shown a correlation between MCs and tumor progression in several solid
and hematological malignancies. In particular, MCs can directly promote tumor
growth via c-kit/stem cell factor–dependent signaling and via the release of histamine,
which modulate tumor growth through H1 and H2 receptors. At the same time, MCs
can increase tumor progression by stimulating angiogenesis via both proangiogenic
cytokines stored in their cytoplasm, and by acting on the tumor microenvironment
and extracellular matrix. With regard to NSCLC, the role of MCs has not yet been
established, with studies showing a correlation with a poor prognosis on the one hand
and suggesting a protective effect of MCs on the other hand. These controversial evi-
dences are at least, in part, due to the heterogeneity of the studies exploring the role of
MCs in NSCLC, with some studies describing only the MC count without specifica-
tion of the activation and degranulation state, and without reporting the intratumoral
localization and the proximity to other immune and cancer cells. A better knowledge
of the role of MCs in NSCLC is mandatory, not only to define their prognostic and
predictive proprieties but also because targeting them could be a possible therapeutic
strategy.

INTRODUCTION

Mast cells (MCs) are multifunctional immune cells which
play several roles in both physiological and pathological
contexts, including cancer. However, the role of MCs in
non-small cell lung cancer (NSCLC) remains controversial.
Mast cells exert both tumorigenic and antitumoral effects on
the basis of the biological context, tumor stage, and tumor
histotype. Moreover, the studies conducted on the interac-
tions between MCs, angiogenesis, and tumor progression
assessed both inter- and intratumor heterogeneity. Notably,
in the same analysis of data, several studies reported on dif-
ferent histotypes and tumor stages. On the other hand, the
studies exploring the role of MCs in NSCLC patients have
focused on different tumoral zones; some studies examined
the peripheral tumoral zone and others examined the central
tumoral zone, and many studies did not specify the tumoral
zone examined. At the same time, the state of degranulation

and the products of degranulation are not always specified.
As a result, the role of MCs in NSCLC has not yet been
established but understanding the cellular and molecular
mechanisms governing the interactions between MCs, can-
cer cells and other components of the tumor microenviron-
ment could contribute to the development of a novel
strategy to indirectly disrupt cancer cell interplay. This
review explores the major aspects concerning the role of
MCs in tumor progression and angiogenesis of NSCLC
patients, and at the same time also describes aspects related
to tumor surveillance and the potential role of MCs as
prognostic biomarkers.

A MULTIFACETED CELL

Mast cells are multifunctional immune cells which exert
several roles in both physiological and pathological contexts.
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Functional heterogeneity of MCs correlates with biological
differences of their compounds.1 MC specific proteases are
the major components of MC secretory granules, and are
classified according to their protease content. Tryptase+

chymase+ MCs (MCTCs) contain tryptase, chymase, car-
boxypeptidase, and cathepsin G, and are predominantly
located in the skin and intestinal submucosa. Tryptase+

chymase� MCs (MCTs), contain only tryptase, and are
located in the alveolar wall and small intestinal mucosa. The
presence of a third phenotype, expressing tryptases and car-
boxypeptidase, has been also reported in airway epithelium
and esophageal samples of patients with asthma and eosino-
philic esophagitis.2 Finally, tryptase�chymase+ MCs (MCCs)
is a rare MC subtype that only contains chymase and is
found in endometrial tissue.3 MCs heterogeneity is not only
due to the characteristics of their proteases, but also to dif-
ferent stimuli activating MCs, such as IgE-dependent activa-
tion, crosslinking of FcγRIII by IgG immune complexes,
complement receptor activation by C3a and C5a, c-kit
receptor binding by stem cell factor (SCF), and TLR2 (toll-
like receptor 2) activation.1 At the same time, MCs express
and release several different cytokines and chemokines. The
pattern of mediators released by MCs is variable, depending
on the tissue, context and kind of activation.1 Concerning
IgE-dependent activation of MCs,4,5,18 the relationship with
cancer is controversial, with chronic inflammation and Th2

immune skewing, increasing cancer risk and on the other
hand, immunosurveillance decreasing cancer risk.5 This het-
erogeneity, at least in part, explains the controversial role of
MCs in a tumor setting.

TUMORIGENIC EFFECTS OF MAST CELLS

Mast cells play a critical role in tumor development
(Figure 1), and express a large number of molecules induc-
ing tumor cell proliferation and survival also contributing to
metastasis and modulation of the tumor microenvironment.
The tyrosine kinase receptor kit (c-kit) is upregulated in
tumor cells and its mutation is associated with mast cell leu-
kemia, mastocytosis, and gastrointestinal stromal tumors.6,7

MCs express high levels of both c-kit and SCF, its ligand.
SCF may contribute to cancer cell migration8 and tumor
progression by increasing the production of vascular endo-
thelial growth factor (VEGF), IL-6, IL-10, tumor necrosis
factor (TNF)-α, and histamine.9–13 The latter modulates
tumor growth through H1 and H2 receptors14 and is also
capable of promoting NSCLC epithelial-mesenchymal tran-
sition (EMT) via increasing the phosphorylation of PI3K/
Akt/mTOR and MEK/ERK signaling pathways.15 Moreover,
MCs promote tumor growth by expanding its vascular
supply. As a result, MCs directly produce a plethora of

F I G U R E 1 Multiple roles of mast cells (MCs) in non-small cell lung cancer (NSCLC). MCs have the capability to play both protumor and antitumor
roles according to the tumor context. MCs express a large quantity of molecules which promote tumor progression such as histamine, SCF, FGF-2, IL-8,
VEGF, PDGF, and NGF. At the same time, MCs secrete TGF-β and TNF-α, molecules with ambivalent features, able to exert both antitumoral and
tumorigenic effects based on the context. Moreover, MCs produce serine proteases activating metalloproteinases and remodeling extracellular matrix (ECM).
In particular, tryptase degrades the ECM increasing the space of neovascularization and releasing angiogenic factors included in the matrix. At the same time,
tryptase activates PAR-2 inducing endothelial cells proliferation. Another serine protease, namely chymase, induces angiogenesis by converting angiotensin I
to angiotensin II. On the other hand, MCs can contribute to tumor rejection by activating dentritic cells and inhibiting Treg cells and myeloid-derived
suppressor cells (MDSCs). Moreover, chondroitin sulfate, secreted by MCs, inhibits the development of metastasis
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angiogenic factors, such as fibroblast growth factor (FGF)-2,
IL-8, transforming growth factor beta (TGF)-β, nerve
growth factor (NGF), and already mentholated VEGF and
TNF-α. At the same time, MCs can act indirectly to induce
tumor angiogenesis. For example, tryptase, which is able to
induce endothelial cell proliferation, can also stimulate
angiogenesis which acts on the extracellular matrix.2,16

Tryptase digests isolated extracellular matrix and also acti-
vates metalloproteinases, which are mandatory in the
angiogenic process.2 The degradation/remodeling of the
extracellular matrix increases the space for neovascularisa-
tion and releases angiogenic factors included in the matrix,
such as VEGF and FGF2. Moreover, tryptase, through its
proteolytic activity, acts as an agonist of the protease-
activated receptor-2 (PAR-2), a G protein expressed on
endothelial cells that is involved in their proliferation. Likely
tryptase, and another MC serine protease, namely chymase,
are able to act indirectly to induce tumor angiogenesis. In
particular, chymases activate MMP-9 and convert angioten-
sin I to angiotensin II.2 Therefore, MCs are able to induce
tumor progression in a multimodal manner.

ANTITUMORAL EFFECTS OF MAST CELLS

Mast cells not only have a role in tumor progression but also
in tumor surveillance (Figure 1). The mechanisms concern-
ing this dual role of MCs are not completely understood. Sev-
eral hypotheses have been reported concerning tumor type,
biological context, and tissue of origin.12,17-20 Mast cells can
contribute to tumor rejection by producing molecules such
as IL-1, IL-4, IL-6, INF- α, and others, inhibiting tumor
growth and tumor cell apoptosis. Moreover, chondroitin sul-
fate, which is secreted by MCs, inhibits the development of
metastasis. Interestingly, some molecules produced by MCs
have both beneficial and detrimental effects with regard to
tumor growth.12 As a result, TNF-α, the most widely studied
MC associate cytokine, has an emblematic behavior. In a
similar context, TNF-α from MCs has been previously
reported to show direct cytotoxicity.21,22 At the same time,
TNF-α from MCs may contribute to dendritic cell
(DC) mobilization,23-25 to CD3-T cell proliferation26 and
Tregs modulation reducing their suppressive function.27,28

Mast cells may also express TNF-related apoptosis-inducing
ligand (TRAIL) which is able to induce apoptosis of tumor
cells. Finally, MC tryptase, which is renowned for its tumori-
genic role by promoting angiogenesis, appears to have a dual
outcome, also exerting antitumor effects. Rabelo Melo et al.29

demonstrated that MC tryptase drives nuclear remodeling in
human melanoma cells, inhibiting their proliferation and
altering their expression of antigens. According to these data,
a high number of tryptase-positive MCs have been found in
the melanoma regression zones.30 The dual features of MCs,
at least in part, explain their controversial role in NSCLC. Of
note, higher MCs count have been reported to correlate with
better prognosis in some studies as well as with poor progno-
sis in others.

MAST CELLS AND PROGNOSIS IN NSCLC

In several malignancies, MCs are protumorigenic and have
been found to correlate with poor prognosis.10,29,31–33 In
NSCLC the link between MCs and prognosis is controver-
sial, with studies reporting associations with good
prognosis,34,35 compared with studies showing a detrimental
effect of MC infiltration36 (Table 1). Imada et al.38 showed a
correlation with a higher MC count and poor prognosis in
patients with resected NSCLC, in particular in stage I lung
adenocarcinoma. On the other hand, Carlini et al.40 showed
that low MC density in the peritumoral zone of stage I
NSCLC correlates with worse prognosis. In contrast,
Tataro�glu et al.37 reported a higher MC concentration in
earlier stage NSCLC, but without a prognostic role. At the
same time, no correlation with outcome or other features
was reported by Niczyporuk et al.39 in a cohort of 90 resected
NSCLC patients, including adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma histotypes. This discor-
dance is almost in part explained by the high heterogeneity
of the studies concerning MCs and NSCLC. These studies
used different methodologies and often nonsquamous and
squamous histotype were evaluated together as a unique dis-
ease. In fact, few studies have separately explored adenocar-
cinoma and squamous lung cancer. Recently, Tamminga
et al.41 compared adenocarcinoma and squamous cell carci-
noma, reporting a higher MC concentration in adenocarci-
noma, which correlated with longer OS. Moreover, the
studies concerning MCs and NSCLC explored different
tumoral zones, some studies examined peripheral tumoral
zone and other studies examined the central tumoral zone,
and many studies did not report the tumoral zone exam-
ined, making it difficult to compare them. In this regard, a
link between MC distribution and clinical outcome has been
reported in NSCLC patients. The presence of tumor islet
MCs and an increased islet/stromal MC ratio resulted in
favorable independent prognostic factors. In particular, MCs
infiltrating tumor islets and expressing TNF-α, seem to have
a favorable prognostic value, suggesting an antitumoral
role.42 Interestingly, increased tumor islet TNF-α density
resulted in a favorable prognostic factor, while stromal
TNF-α density resulted in a predictor of poor survival.
Furthermore, in NSCLC patients with better prognosis,
100% of TNF-α cells were macrophages and mast cells,

TAB L E 1 Mast cells as a poor or good prognostic marker in non-small
cell lung cancer (NSCLC)

Good prognosis Poor prognosis Indeterminate prognosis

Pang et al.34 Takanami et al.36 Tatarglu et al.37

Tomita et al.35 Imada et al.38 Niezyporyk et al.39

Carlini et al.40

Tamminga et al.41

Shikotra et al.42

Leveque et al.43
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compared to only 28% in the islets and 50% in the stroma of
patients with a poor prognosis, thus confirming the role of
MC microlocalization.44 In addition to the microlocalization
of mast cells, degranulation status also plays a major role in
the relationship between tumor cells and tumor microenvi-
ronment. In a cohort of surgically-resected NSCLC patients,
MCs were more degranulated in patients with extended sur-
vival than patients with poor survival. These results are at
least partially in contrast to the tumorigenic activities of
some products released during MC degranulation.42 For
example, the tumorigenic effect of histamine, which is
able to increase NSCLC proliferation acting on ERK phos-
phorylation.13 At the same time, the cross-talk between MCs
and lung cancer cells is not unidirectional, but tumor cells
also activate MCs to release cytokines, and affect
their migratory ability by tumor-derived microvescicles.45

Recently, Leveque and coworkers43 described two distinct
phenotype of MCs in NSCLC, based on the expression of a
alphaE integrin, namely CD103. In particular, CD103+ MCs
seem to have a higher interplay with CD4+ T cells and a
localisation closer to cancer cells than CD103� MCs.
However, no different prognostic role has been reported for
these distinct phenotypes, while a higher concentration of
total MCs correlated with a better prognosis. Further stud-
ies, focusing not only on the MC count, but also on MC
microlocalization, state of degranulation, characterization of
products of degranulation, and cross-talk between lung
tumor cells and MCs may contribute to a better knowledge
of how MCs affect NSCLC prognosis.

MAST CELLS AND ANGIOGENESIS IN
NSCLC

Similarly, to other malignancies, angiogenesis appears to
play a role in tumor progression of NSCLC. The majority
of studies report a correlation between microvessel density
(MVD), VEGF expression, and poor prognosis in
NSCLC.46–48 However, there is a high heterogeneity
between the different studies, with studies also suggesting
that angiogenesis has little or no predictive value in
NSCLC.49,50 Moreover, some studies have reported disap-
pointing results for different histotypes; for example, Pajares
et al. reported a correlation with VEGF, VEGFR1, and
VEGFR2 expression and lower risk of tumor progression in
patients with earlier squamous tumors of the lung, but no
correlation has been found in adenocarcinoma hystotype.51

More recently, Qin et al. reported an association of VEGFA
and angiopoietin 2 with tumor size and lymph nodes metas-
tasis, only in adenocarcinoma, and not squamous tumors of
the lung.52 Notably, studies concerning angiogenesis in
NSCLC used different assessments to examine tumor vascu-
larity, with endothelial cells identified by different immuno-
histochemical factors, CD31, factor VIII, and CD34.
Moreover, MVD varies within a tumor, and at the same
time the significance of MVD changes on the basis of tumor
localization. Notably, several studies showed a correlation

beteween peripheral but not central MVD and poor prog-
nosis and also a correlation between high peripheral MVD,
high VEGFA expression, and poor prognosis.53 As is
already known, MCs are able to promote tumor angiogene-
sis in several malignancies, both directly by angiogenic
mediators, including IL-8, TNF-α, TNF-β, histamine, bFGF,
and heparin, as well as indirectly by acting on the tumor
microenvironment and extracellular matrix.16 However,
data concerning the link between MCs and angiogenesis in
NSCLC patients are controversial and there are also few
studies on this subject. First, Tomita et al. described a direct
correlation between the number of mast cells and tumor
angiogenesis in patients with NSCLC, independently by
VEGF expression.35 In agreement with studies reporting a
correlation of high MVD in the border region of NSCLC
and poor prognosis, Ibaraki et al. demonstrated a higher
count of MCs in the peripheral zone of the tumors than in
the central zone, correlating with a higher MVD and a poor
prognosis.54 Ullah et al.reported a correlation between MC
count and MVD, but only high MVD showed a correlation
with poor prognosis.55 On the other hand, Niczyporuk et al.
did not show a correlation between MC count and angio-
genesis, except for patients with stage I adenocarcinoma of
the lung.39 A similar correlation was found by Imada et al.
in a cohort of 53 patients with stage I adenocarcinoma of
the lung.38 However, some authors described higher MC
counts in the early stages of NSCLC without an analysis of
angiogenesis, suggesting a role of MCs in the fight against
cancer. Further studies with a more uniform assessment of
angiogenesis and MC infiltration are needed. In particular,
these studies should define the tumor area examined and
also consider the different subtype of NSCLC as well as the
tumor stage.

CONCLUSIONS

MCs are crucial players in cancer, affecting outcome and
therapy efficacy. However, despite many studies describing
the role of MCs in several malignancies, the role of these
multifaceted immune cells in NSCLC is far from being
understood. Unfortunately, a number of studies focusing on
the link between MCs and NSCLC is limited in reporting
the count of these cells without describing other major fea-
tures, such as the degranulation state, localization, character-
ization of secretory cytokines and proteases, as well as the
cross-talk between other immune and lung cancer cells. This
is a major limitation in the era of single cell sequencing,
and further studies with higher quality methodology for a
deeper understanding of MC biology in NSCLC patients are
urgently needed.
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