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Abstract
Bayesian compartmental infectious disease models yield important inference on
disease transmission by appropriately accounting for the dynamics and uncer-
tainty of infection processes. In addition to estimating transition probabilities
and reproductive numbers, these statistical models allow researchers to assess
the probability of disease risk and quantify the effectiveness of interventions.
These infectious disease models rely on data collected from all individuals clas-
sified as positive based on various diagnostic tests. In infectious disease test-
ing, however, such procedures produce both false-positives and false-negatives at
varying rates depending on the sensitivity and specificity of the diagnostic tests
being used.We propose a novel Bayesian spatio-temporal infectious diseasemod-
eling framework that accounts for the additional uncertainty in the diagnostic
testing and classification process that provides estimates of the important trans-
mission dynamics of interest to researchers. The method is applied to data on
the 2006 mumps epidemic in Iowa, in which over 6,000 suspected mumps cases
were tested using a buccal or oral swab specimen, a urine specimen, and/or a
blood specimen. Although all procedures are believed to have high specificities,
the sensitivities can be low and vary depending on the timing of the test as well
as the vaccination status of the individual being tested.
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1 INTRODUCTION

Mathematical modeling of infectious diseases allows
researchers to study the complex dynamics of disease
transmission and the effectiveness of interventions, which
are of practical importance to public health organizations
attempting to stop the spread of such diseases. These
models offer essential tools to understand epidemiolog-
ical patterns, and accurate modeling gives researchers
increased knowledge of disease spread to help inform pol-
icy decisions on disease control measures (Heesterbeek

et al., 2015). However, these models often rely on imper-
fect diagnostic tests to identify individuals with the disease
despite the presence of test uncertainty, leading to incor-
rect results.
Compartmental models capture the dynamics of infec-

tious diseases by parameterizing the probabilities of
transitions between important disease states. The most
common such model is the SIR model, which has three
compartments: 𝐒usceptible, 𝐈nfectious, and 𝐑emoved.
These models can be implemented deterministically using
ordinary differential equations or stochastically, with the
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primary method for inference using Bayesian methodol-
ogy. There are two primary categories of stochastic com-
partmental models: population-averaged and individual-
level, with population-averaged models assuming all
individuals within the population or sub-population have
the same transition probabilities, and individual-level
models allowing these probabilities to be influenced by
individual characteristics.
Typical infectious disease data record either individ-

ual diagnosis dates, or counts of positive diagnoses
over time. However, in many cases, these diagnoses are
subject to uncertainty from one ormultiple imperfect diag-
nostic tests, (e.g., Evans et al., 2010; Akhtar and Carpen-
ter, 2013; Porter and Oleson, 2013). Currently, infectious
disease models generally assume that subjects with pos-
itive diagnostic test results are infectious and those with
negative test results are not. In other words, these mod-
els assume false positive and negative rates of 0. This may
be reasonable for highly sensitive and specific tests, but
could have severe consequences otherwise. This can be
especially challenging for researchers attempting to model
newly emerging infectious agents for which lab confir-
mation may take weeks, but convenient diagnostics with
short processing times are not as accurate (Chan et al.,
2017).
There is an established literature on diagnostic test inac-

curacy in the absence of a gold standard. Latent class
models (LCMs) were initially proposed by Hui and Wal-
ter (1980) and have been applied in various settings. Collins
andHuynh (2014) provide a thorough review of LCMsused
in medical applications. LCMs reformulate the probability
of obtaining a set of test results in terms of the sensitiv-
ity and specificity of the diagnostics, as well as the popu-
lation prevalence of the disease, allowing for inference on
the diagnostic characteristics. LCMs can be fit with max-
imum likelihood approaches, but more recent extensions
have focused on Bayesian models (Gastwirth et al., 1991).
The Bayesian framework offers the advantage of includ-
ing informative prior information about known diagnos-
tic characteristics.
In this paper, we present a novel individual-level model

(ILM) formulation that incorporates diagnostic testing
uncertainty. The diagnostic ILM blends ideas from tra-
ditional ILMs and LCMs to model disease transmission
and latent disease status simultaneously. We also present
a new method for estimating the infectious period in the
ILM framework. We show via simulation that account-
ing for diagnostic characteristics yields better estimates
of the transmission probability. To account for the addi-
tionalmodel complexity fromestimating disease status, we
describe amethod for accurate and efficient posterior sam-
pling of infectiousness status. Finally, the model is applied
to data from the Iowa 2006 mumps epidemic.

TABLE 1 Test results from the Iowa mumps epidemic

Swab
Urine Serum Positive Negative No test
Positive Positive 1 7 1

Negative 3 9 1
No test 1 0 1

Negative Positive 29 609 17
Negative 61 1,983 66
No test 9 204 31

No test Positive 35 539 233
Negative 56 1,076 858
No test 19 233 0

2 METHODS

2.1 Motivating data

The data motivating the development of the diagnostic
ILM come from the 2006 Iowa mumps epidemic (Marin
et al., 2008) and consists of 6,082 individuals that were
tested for mumps between January 3, 2006 and June 23,
2006. All diagnostic testing for this data set was done at
the State Hygienic Laboratory at the University of Iowa.
Two diagnostics are recommended by the CDC to detect
mumps in patients with compatible symptoms: a buccal or
oral swab specimen for detection of viral RNAbyRT-qPCR,
and a serum specimen for IgM detection (CDC, 2019). In
some cases, urine specimens are also tested by RT-qPCR,
particularly if patients are presenting with mumps com-
plications. We shall hereafter refer to the three diagnostics
simply as the swab, serum, and urine tests. Of the 6,082
subjects tested, 2,702 were tested with all three diagnos-
tics, 1,706 received only the serumand swab tests, and 1,091
received only the serum test. Table 1 summarizes the test
results for all subjects included in this analysis. Previous
infectious disease modeling of this epidemic used only the
214 positive swab tests (Porter and Oleson, 2013).
Mumps has an incubation period of 16–18 days, with

extremes of 12–25 days (Hamborsky et al., 2015). Because of
this, mumps epidemics are well approximated using SEIR
compartmentalmodels that add a latent𝐄xposed compart-
ment to the traditional SIR model (e.g., Chen et al., 2007;
Porter and Oleson, 2013; Trotz-Williams et al., 2017). The
infectious period is less well-known, but is often between 5
and 9 days (Polgreenet et al., 2008). This epidemic occurred
in a primarily vaccinated population, with estimates indi-
cating 6% of patients were unvaccinated, 12% had one
dose of the measles, mumps, and rubella (MMR) vaccine,
51% had received 2 doses, and 31% did not have vaccina-
tion records (CDC, 2006). Evidence suggests that immu-
nized patients have a different serological reaction to the
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infection, causing the sensitivities of the tests to be as low
as 30–50% (Sanz et al., 2006; Peltola et al., 2007; Brockhoff
et al., 2010; Rota et al., 2013). With such low sensitivities,
we can expect many false negative results. Incorporating
diagnostic testing uncertainty in the transmission model
is therefore important.
In addition to the results of three diagnostics tests, the

mumps epidemic data also included symptom onset date,
date of specimen collection, city of residence, age, and
sex for each tested individual. Symptom onset date was
missing for 31.8% of individuals, but specimen collection
date was always recorded. The data do not differentiate
between tested individuals without symptoms and symp-
tomatic individuals with missing symptom onsets. Due to
this, we assume symptom onset dates are missing at ran-
dom and used a linear regression to impute these dates
from the collection date prior to the main analysis.

2.2 Diagnostic ILMmodel

The diagnostic ILM framework can be incorporated into
various compartmental structures (e.g., SIR, SEIR, and
SIS), but we present it as SEIR model for generality. Let
𝑖 = 1, … ,𝑁 index individuals and 𝑡 = 0, … , 𝜏 denote dis-
crete calendar time since the beginning of the epidemic to
recovery (or removal) of the last infectious individual. Let
𝐙𝐒,𝐙𝐄,𝐙𝐈, and𝐙𝐑 each be𝑁 × 𝜏matrices that describe the
state of each individual at each time-point. The 𝑖𝑡th ele-
ment of these matrices, 𝑍𝑐

𝑖𝑡
for 𝑐 ∈ {𝑆, 𝐸, 𝐼, 𝑅} is either a 0

or a 1, which indicates the infection state of the 𝑖th indi-
vidual at time 𝑡. As an individual cannot be in more than
one compartment at any one time, 𝐙𝐒 + 𝐙𝐄 + 𝐙𝐈 + 𝐙𝐑 =
 𝑁×𝜏, where  𝑁×𝜏 is a matrix of ones.
Diagnostic testing results are incorporated in the data

model. We assume dichotomous results on each test and
specify 𝑌𝑖𝑘 to contain individual 𝑖’s test results on all tests,
𝑘, where 𝑘 = 1,… , 𝐾𝑖 . Let 𝜂𝑖 represent the latent disease
status with 𝜂𝑖 = 1 indicating true disease status and 𝜂𝑖 =
0 indicating otherwise. In terms of the matrices defined
previously, 𝜂𝑖 = 𝐼(

∑𝜏

𝑡=0
𝑍𝐼
𝑖𝑡
≥ 1). Assuming that the test

results are independent given the latent disease status, the
likelihood can be written as 𝑃(𝐘𝑖 = 𝐲𝑖|𝜂𝑖) =∏𝐾𝑖

𝑘=1
𝑃(𝑌𝑖𝑘 =

𝑦𝑖𝑘|𝜂𝑖), where𝑃(𝑌𝑖𝑘 = 𝑦𝑖𝑘|𝜂𝑖) is a function of the sensitivity
or specificity of test 𝑘, depending on the underlying disease
status 𝜂𝑖 ∈ {0, 1}.
Process models describe the transitions between com-

partments. Let 𝑍∗
𝑖𝑡

𝐸 , 𝑍∗
𝑖𝑡

𝐼 , and 𝑍∗
𝑖𝑡

𝑅 denote individual indi-
cators for transitioning to the superscripted compartment
in the interval (𝑡, 𝑡 + 1]. The timing of these transitions
depends on observed data. Most commonly, symptom
onset date will be used to inform the time at which

𝑍∗
𝑖𝑡

𝐼
= 1 for individuals with 𝜂𝑖 = 1, and the timing of

the other transitions depends on the estimated length of
time spent in each compartment. These components are
assigned a chain Bernoulli structure: 𝑍∗

𝑖𝑡

𝐸
∼ 𝐵𝑒𝑟𝑛(𝜋

(𝑆𝐸)
𝑖𝑡

),
𝑍∗
𝑖𝑡

𝐼
∼ 𝐵𝑒𝑟𝑛(𝜋

(𝐸𝐼)
𝑖𝑡

), and 𝑍∗
𝑖𝑡

𝑅
∼ 𝐵𝑒𝑟𝑛(𝜋

(𝐼𝑅)
𝑖𝑡

).
We use the transition probability defined by Deardon

et al. (2010) to describe the infection process, with a modi-
fication allowing transmissibility to change over epidemic
time. The probability is written as

𝜋
(𝑆𝐸)

𝑖𝑡
= 1 − exp

[{
−Ω𝑆(𝑖)

∑
𝑗

𝐼(𝑍𝐼
𝑗𝑡
= 1)Ω𝑇(𝑗, 𝑡)𝜅(𝑖, 𝑗)

}
− 𝜖

]
,

(1)

where Ω𝑆(𝑖) describes risk factors associated with suscep-
tibility of individual 𝑖,Ω𝑇(𝑗, 𝑡) describes risk factors associ-
ated with transmissibility of infectious individual 𝑗 at time
𝑡, 𝜅(𝑖, 𝑗) is the infection kernel (usually based on separation
distance, 𝑑𝑖𝑗), and 𝜖 > 0 is the sparks term that accounts
for infections not explained by the data or the modeling
framework. In the diagnostic ILM, the sparks term incor-
porates transmission from untested infectious individuals
and tested infectious individuals that may be misclassified
in the model.
We assume individuals are not retested at a later time

and that tested individuals who are not classified as infec-
tious do not later contract the disease. As symptom onset
date is used as a proxy for the start of infectiousness, indi-
viduals with 𝜂𝑖 = 1 transition from 𝐄 to 𝐈 at this time (and
from 𝐒 to 𝐄 prior to symptom onset) while individuals
with 𝜂𝑖 = 0 transition directly from 𝐒 to 𝐑. This assump-
tion could be relaxed in practice, however, the motivating
data did not include individuals that were tested at multi-
ple times. Additionally, it is plausible that those individuals
that were tested but do not have the disease are sick with
something else and will modify their behavior to avoid
future transmission. For epidemics where individuals are
repeatedly tested, this assumption could be relaxed by hav-
ing tested individuals that are not classified as infectious
remaining in 𝐒with the possibility of transitioning at mul-
tiple time points, but this would require estimation of the
latent disease status for an individual for each time they
were tested.
The transitions from 𝐄 to 𝐈 and 𝐈 to 𝐑 can be fixed or

modeled in terms of the transition probabilities. We pro-
pose a fixed latent period and an ILMextension of the path-
specific approach of Porter and Oleson (2013) to model the
infectious period as simultaneous estimation of both peri-
ods is challenging with limited data and the latent period
for mumps is well known. Using a fixed latent period
implies that the timing of the 𝐒 to𝐄 transition for infectious
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individuals is also fully characterized by the observed data.
The transition probability is defined as𝜋(𝐼𝑅)𝑤 = 𝑃(𝑊 ≤ 𝑤 +

1|𝑊 > 𝑤), where 𝑤 denotes the discrete time spent in
the compartment and 𝑊 is a random variable defining
the infectious period. Common choices of distribution for
𝑊 are exponential, gamma, or Weibull. The amount of
time an individual has spent infectious, 𝜏𝐼(𝑖) =

∑𝜏

𝑡=0
𝑍𝐼
𝑖𝑡
,

changes the probability, not epidemic time, so wewrite the
individual contribution to the log-likelihood for the transi-
tion from 𝐈 to𝐑 as 𝜂𝑖[{

∑𝜏𝐼(𝑖)−1

𝑤=1
log(1 − 𝜋

(𝐼𝑅)
𝑤 )} + log(𝜋

(𝐼𝑅)

𝜏𝐼(𝑖)
)].

𝜏𝐼(𝑖) is unobserved and must be estimated as part of the
modeling process. Theoretically, 𝜏𝐼(𝑖) can range between 1
and∞, but it is better to choose an upper bound reflective
of knowledge on the disease process, after which𝜋(𝐼𝑅)𝑤 ≡ 1.
Combining the data and process models, the full log-

likelihood can be written as

log 𝐿(𝐘, 𝐙∗𝐸, 𝐙∗𝐼, 𝐙∗𝑅|𝜽)
=

𝑁∑
𝑖=1

[
𝐼(𝑦𝑇

𝑖
= 1)

𝐾∑
𝑘=1

log 𝑃(𝑌𝑖𝑘 = 𝑦𝑖𝑘|𝜂𝑖)
+

𝜏∑
𝑡=0

𝐼(𝑍𝑆
𝑖𝑡
= 1)

{
𝑍∗𝐸
𝑖𝑡
log(𝜋

(𝑆𝐸)
𝑖𝑡

)

+ (1 − 𝑍∗𝐸
𝑖𝑡
) log

(
1 − 𝜋

(𝑆𝐸)
𝑖𝑡

)}
+𝜂𝑖

[{
𝜏𝐼(𝑖)−1∑
𝑤=1

log
(
1 − 𝜋

(𝐼𝑅)
𝑤

)}
+ log

(
𝜋
(𝐼𝑅)

𝜏𝐼(𝑖)

)]]
,

(2)

where 𝑦𝑇
𝑖
is an indicator for individual 𝑖 getting tested dur-

ing the epidemic.

3 COMPUTING

3.1 Infectious classifications

When fit to large populations, ILMs are computationally
challenging and generally rely on MCMC sampling tech-
niques (Deardon et al., 2010). An important consideration
in constructing a sampling scheme for the diagnostic
ILM is the proposal for 𝜂𝑖 . Disease status is latent and
must be proposed within the Markov chain and accepted
or rejected with probability preserving the stationary
distribution. This is not straightforward, as the inclusion
or removal of an individual in the infectious state also
involves changing the dimension of the collection of
infectious periods, that is, if 𝜂𝑖 = 0, then 𝜏𝐼(𝑖) does not
exist. To account for the changing dimension, we use a
reversible-jump MCMC (RJ-MCMC, Green (1995)) step in

the proposal of infectious classifications. Technical details
about the RJ-MCMC specifications for the diagnostic ILM
can be found in Web Appendix A.

3.2 Infectious period

Another consideration is the proposal for 𝜏𝐼(𝑖), as propos-
ing times for all infectious individuals at once leads to
poor acceptance. For this reason, we recommend propos-
ing 𝜏𝐼(𝑖) for a small proportion of individuals at each
MCMC iteration, and found updating around 5% of the
individuals tested led to a satisfactory acceptance rate.
We investigated proposals with independent draws from
the prior distributions for the parameters defining 𝑊

and a Gaussian random walk, but found that a proposal
with a 50% chance of increasing or decreasing the cur-
rent length by one worked well. One advantage of this
scheme is that the proposal can account for the prede-
fined range for 𝜏𝐼(𝑖) by mandating that proposals from
the endpoints stay in the specified range. Although this
approach improves convergence, slow mixing and high
autocorrelation remain problematic in the parameters
defining𝑊.

4 SIMULATION STUDY

4.1 Simulation set-up

To determine the effectiveness of incorporating diagnos-
tic testing uncertainty, we implement a simulation study.
Although the simulation is designed to mimic the char-
acteristics of mumps and its associated diagnostics, the
assumptions can also be extrapolated to other infectious
diseases. The sample size used was𝑁 = 500 and each indi-
vidual was given a unique spatial location in one of four
Iowa counties with equal probability—Black Hawk, John-
son, Dubuque, or Polk. To incorporate false positive and
truenegative test results, susceptible individualswere sam-
pled for testing using a logistic model that allows the test-
ing probability to vary with disease prevalence in each of
the four counties over the course of the epidemic. If tested,
susceptibles thenmove to the removed compartment aswe
do not allow for repeat testing.
Although the observed data included three diagnos-

tics, only two were considered in the simulation, with
diagnostic characteristics chosen to reflect the serum and
swab tests used to classify mumps. Sensitivities of 50% and
59% were chosen for the serum and swab tests, respec-
tively, to reflect sensitivities when performed on samples
from vaccinated individuals (Rota et al., 2013). These low
sensitivities result in many false negative tests. Many
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studies have indicated high specificities (> 99%) for both
diagnostics (Krause et al., 2006; Boddicker et al., 2007;
Hatchette et al., 2009), so specificities for both testswere set
at 99%. For infectious individuals, testing occurred at the
time of transitioning from 𝐄 to 𝐈, and for tested susceptible
individuals, it occurred on the day the individual was sam-
pled for testing. Test date is also used as the time of transi-
tioning from 𝐄 to 𝐈when tested susceptible individuals are
misclassified as infectious during model fitting. Untested
individuals are assumed to remain susceptible throughout
the epidemic.
Transmission was modeled using a simplified form

of Equation (1) with Ω𝑆(𝑖)Ω𝑇(𝑗, 𝑡) = 𝜓𝑒−𝜔𝑇(𝑡−𝑡
∗)+ and

𝜅(𝑖, 𝑗) = 𝑑
−𝜌

𝑖𝑗
, where (𝑡 − 𝑡∗)+ = (𝑡 − 𝑡∗)𝐼(𝑡 ≥ 𝑡∗), result-

ing in a final form of 𝜋(𝑆𝐸)
𝑖𝑡

= 1 − exp{−𝜓𝑒−𝜔𝑇(𝑡−𝑡
∗)+ ×∑

𝑗
𝐼(𝑍𝐼

𝑗𝑡
= 1)𝑑

−𝜌

𝑖𝑗
}. In this formulation, 𝜓 is an infectivity

parameter, and we model constant transmissibility until
the time of an exponential decay intervention, 𝑡∗. The dis-
tance, 𝑑𝑖𝑗 , between susceptible individual 𝑖 and infectious
individual 𝑗 is scaled by 𝜌 > 0 such that individuals closer
together are more likely to transmit disease. Although not
an issue in our simulations, in the event that 𝑑𝑖𝑗 = 0, the
kernel would become infinite and the transmission proba-
bility would be 1. This can be avoided by setting distances
of 0 to some pre-specified “small” value, 𝑑0 or incorporat-
ing an additional parameter for subjects sharing the same
spatial location. The true parameter values in the simula-
tion were 𝜓 = 0.1, 𝜔𝑇 = 0.07, and 𝜌 = 1.5. These parame-
terswere chosen to simulate epidemics thatwere not prone
to immediately dying out, were similar in length to the
observed mumps epidemic (∼ 200 days), and were likely
to spread between the counties. The intervention timing
was chosen to represent a CDC dispatch in the observed
mumps epidemic (Porter andOleson, 2013). Using the tim-
ing of the first positive test as day 1, this intervention occurs
at 𝑡∗ = 92.
The latent period was fixed at 17 days, and the infectious

periodwasmodeledwith a truncatedWeibull randomvari-
able as described in Section 2.2, with shape parameter
𝛼𝐼 = 7, scale parameter 𝛽𝐼 = 8, and a maximum number
of infectious days of 10. The Weibull distribution was cho-
sen as it was found to provide the best model fit for the
infectious duration in the previous model of the observed
epidemic (Porter and Oleson, 2013). Susceptible and infec-
tious individuals time of testing and test results were
recorded and used to fit the models, with test time inform-
ing the transition times. Fifty simulated epidemics were
created, each using the same locations and true parame-
ters. Additional details about the simulation set-up can be
found in Web Appendix B.
On each simulated epidemic, five different models were

fit exploring possible ways to use the testing data. The first

model (Reference) assumes we had the true knowledge of
infectiousness for all individuals. In practice, when there
is diagnostic uncertainty these data are not available, but
it provides a useful baseline. The next three heuristic mod-
els use the union of the diagnostics (Serum or Swab +),
all individuals positive on the serum test (Serum +), and
all individuals positive on the swab test (Swab +) to clas-
sify individuals as susceptible or infectious prior to model
fitting. These three models and the reference model were
all fit using the standard ILM framework, which does not
incorporate test uncertainty. Therefore, the only difference
between analyses is the data used in the model fitting pro-
cedure. The final model fitted is the diagnostic ILMmodel
proposed here (Diagnostic ILM), which uses diagnostic
test results (positive or negative) from all tested individu-
als (susceptible or infectious) and models the uncertainty
about the infectiousness status.
All models were fit with the transmission and removal

probabilities parameterized according to theway theywere
simulated, except the sparks term (𝜖 as defined in Equa-
tion 1) was included in the specification of the transmis-
sion probability. The sparks term was used only in model
fitting to assess the impact of excluding false negative tests
in the serum or swab +, serum +, and swab + models, as
well as the misclassification of truly infectious individu-
als in the diagnostic ILM. By simulating data without the
sparks term, the estimates for 𝜖 are characterized only by
the choice ofmodel and not by a random infection process.
The primary parameters of interest estimated in all models
were {𝜓, 𝜔𝑇, 𝜌, 𝜖, 𝛼𝐼, 𝛽𝐼}. The diagnostic ILM also estimates
the sensitivity and specificity of both diagnostics.
In the Bayesian framework priors must be specified

for all parameters. Parameters 𝜓, 𝜔𝑇 , and 𝜌 were given
vague gamma distributions with shape 0.1 and rate 0.1.
The sparks parameter 𝜖 was given a vague half-normal
prior with variance 1,000. Since there is prior knowl-
edge on the infectious duration of mumps, 𝛼𝐼 and 𝛽𝐼
were given loosely informative priors of Gamma(27,3) and
Gamma(45,5), respectively. For the diagnostic ILM, we
chose informative priors to correspond to what would be
done in practice. Priors for the serum test on sensitivity
and specificity were Beta(50, 50) and Beta(99, 1), respec-
tively. Priors for the swab test on sensitivity and specificity
were Beta(60, 40) and Beta(99, 1), respectively.

4.2 Simulation results

Three chainswere run for each of the fivemodels fit to each
of the 50 simulated epidemics. Convergence was assessed
with the Gelman–Rubin diagnostic (Gelman et al., 1992).
All chains ran for a burn-in of at least 50,000 iterations and
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F IGURE 1 MSE and coverage probability of 95% credible intervals for the transmission probability for all models over epidemic time.
MSE is calculated as the average of the squared distances between the posterior mean and the true value over 50 simulated epidemics. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version

were subsequently run until the Gelman–Rubin diagnostic
was less than 1.1 with thinning applied to reduce autocor-
relation.
The five models are compared in terms of mean square

error (MSE) and the coverage probability of 95% credible
intervals constructed for the transmission probability
𝜋
(𝑆𝐸)
𝑖𝑡

and the removal probabilities 𝜋(𝐼𝑅)𝑤 . MSE measures
the average squared deviations between posterior mean
estimates and the true probability. Coverage probability
was calculated as the proportion of the 50 simulations
where the 95% credible interval contained the true value.
The transmission probability was estimated assuming
a 0.5 km distance between a susceptible individual and
one infectious individual, from day 0 until the maximum
epidemic length of any of the simulations, which was
172 days.
Figure 1 displays the MSE and coverage probability

of the transmission probability for each model over epi-
demic time. Performance can be compared to the refer-
ence model, which has a small amount of bias due to
prior shrinkage. These results highlight several interesting
implications. The diagnostic ILMhas the lowestMSE prior
to the intervention, with the serum or swab + model hav-
ing slightly more bias until after the intervention occurs.
Additionally, the diagnostic ILM vastly outperforms the
serum or swab + model in terms of coverage probability,
although the serum or swab +model’s coverage improves
after the intervention. The serum + and swab + models
perform the worst in terms of both MSE and coverage
probability. The swab diagnostic has slightly higher sensi-

tivity, which improves estimation compared to the serum
+model.
Table 2 gives the MSE and coverage probabilities for

each of the primary parameters of interest. This shows the
relatively poor estimation of the intervention parameter
by the diagnostic ILM, but improved estimation and
coverage of other transmission parameters. More discus-
sion of the estimation of these parameters is provided
in Web Appendix B. Model performance is comparable
in estimating the Weibull parameters associated with
the removal probability. All models show some bias in
these parameters, although with high coverage due to
large variance in the estimates. Figure 2 shows the esti-
mates of the transition probabilities over the course of an
individual’s infectious period using the posterior means
from a representative simulation compared to the truth,
which illustrates the effects of the bias in the estimation.
Credible intervals are provided in Web Table 1. All models
tended to favor longer infectious durations, shown by the
underestimation of the transition probabilities, especially
for transitions after a shorter duration.
This simulation study yields several important find-

ings. When the sensitivities of both diagnostics are low,
choosing only one diagnostic to define the infectious
class results in substantial bias and low coverage of the
transmission probability. Comparatively, using the union
of positive tests to define the infectious class results in bias
only slightly worse than the diagnostic ILM, but coverage
remains very low. In this setting, where diagnostics are
likely to produce false negatives, incorporating diagnostic
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TABLE 2 MSE (Coverage Probability) for transmission and removal probability parameters. MSE is calculated as the average of the
squared distances between the posterior mean and the true value over 50 simulated epidemics. Transmission is a function of 𝜓 (baseline
infectivity), 𝜔𝑇 (intervention), and 𝜌 (distance power) and 𝛼𝐼 and 𝛽𝐼 are the Weibull shape and scale parameters defining the
removal probability

𝝍 𝝎𝑻 𝝆 𝜶𝑰 𝜷𝑰

Reference 0.0003 (0.94) 0.0002 (0.88) 0.0063 (0.94) 4.6116 (0.98) 0.1191 (1.00)
Serum or Swab + 0.0020 (0.22) 0.0004 (0.90) 0.0464 (0.30) 4.1731 (0.98) 0.1315 (0.96)
Serum + 0.0050 (0.02) 0.0007 (0.90) 0.1708 (0.14) 4.0081 (1.00) 0.2154 (0.94)
Swab + 0.0041 (0.04) 0.0007 (0.90) 0.1190 (0.14) 4.0561 (1.00) 0.2075 (0.96)
Diagnostic ILM 0.0018 (0.90) 0.1115 (0.82) 0.0356 (0.88) 4.7101 (1.00) 0.2679 (0.96)

F IGURE 2 Posterior mean estimates of removal transition probabilities over the duration of the infectious period. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version

uncertainty more accurately captures the variation in
the transmission probability, compared to the alternative
models. This results in coverage probability close to the ref-
erence model, and does not come at the cost of additional
bias. From this we can conclude that when estimating
transmission probabilities in the presence of diagnostic
uncertainty, the diagnostic ILM should be preferred.

5 APPLICATION - IOWAMUMPS
EPIDEMIC

Symptom onset date was used to inform the timing of the
transition to the infectious compartment as described in
Section 2.2, and individuals with imputed symptom onset
dates treated identically to those with the date recorded.
To incorporate untested individuals in the analysis, city

populations were retrieved from U.S. Census data (U.S.
Census Bureau, 2021). An important characteristic of this
particular epidemic is that it occurred primarily in col-
lege students (Dayan et al., 2008), with close quarters
in dorms/classrooms and spring break travel playing an
important role in transmission (Polgreen et al., 2010).
Although the testing data included the age of each tested
individual, the Census data was not categorized by age at
the city level.
To account for differences in data availability between

tested and untested individuals, different infection kernels
were used depending on the test status of susceptible indi-
vidual 𝑖. If individual 𝑖 was tested (𝑦𝑇

𝑖
= 1), the infection

kernel is specified as 𝜅(𝑖, 𝑗) = 𝜆𝑎𝑖𝑗 + 𝛿𝑖𝑗 . Here 𝑎𝑖𝑗 is an
indicator that both the susceptible and infectious individ-
uals are college-age (aged 17–24) and 𝛿𝑖𝑗 = 𝑑

−𝜌

𝑖𝑗
captures

distance-based transmission, where 𝑑𝑖𝑗 is the Euclidean



8 WARD et al.

distance between the centroids of the cities where indi-
viduals 𝑖 and 𝑗 reside. Because distance is based on city
location, we used 𝑑0 = 0.01 for individuals in the same
city (𝑑𝑖𝑗 = 0) as it is smaller than the Euclidean distance
between the two closest cities in Iowa, 0.012. For cities
with distance above 0.7 units apart (roughly 55 miles),
we assume no distance-based transmission (𝛿𝑖𝑗 = 0). If
individual 𝑖 was not tested (𝑦𝑇

𝑖
= 0), we use the infection

kernel, 𝜅(𝑖, 𝑗) = 𝐼(𝑑𝑖𝑗 = 0), which specifies homogeneous
mixing between untested susceptibles and tested infec-
tious individuals in the same city.
As in the simulation, infectivity was assumed constant

until an exponential decay intervention starting on the
date of the CDC dispatch (March 30, 2006). We allow the
baseline infectivity to differ based on the testing status, to
test the hypothesis that the testing process self-selects a
network of individuals more likely to become infectious.
We used the sparks term, 𝜖, to capture unexplained infec-
tious pressure. The transmission probability can be writ-
ten as 𝜋(𝑆𝐸)

𝑖𝑡
= 1 − exp[{−𝜓𝛾(1−𝑦

𝑇
𝑖
)𝑒−𝜔𝑇(𝑡−𝑡

∗)+ ×
∑
𝑗
𝐼(𝑍𝐼

𝑗𝑡
=

1)𝜅(𝑖, 𝑗)} − 𝜖]. The transition from𝐄 to 𝐈was assumed con-
stant at 17 days, and the transition from 𝐈 to𝐑wasmodeled
using the path-specific formulation of Section 2.2.
The model was fit using the RJ-MCMC method

described in Section 3.1. Priors were identical to those used
in the simulation, with the additional parameters 𝜆 and
𝛾 being given Gamma(0.1, 0.1) priors. The sensitivity and
specificity priors for the urine test were assigned based on
Krause et al. (2006) and were Beta(30, 70) and Beta(99,
1), respectively. Details of the MCMC scheme, tuning, and
convergence assessment are presented inWebAppendixC.
The primary quantities of interest from this model are

the transmission and removal probabilities, as these are
more interpretable than the individual parameters. We
describe these probabilities using the posterior mean and
95% credible intervals, which are displayed in Figure 3.
Web Table 2 summarizes the posterior distribution for all
parameters. The transmission probability is impacted by
the distance between, testing status, and ages of the sus-
ceptible individual and those infectious. To illustrate these
effects, we estimate the probability assuming one infec-
tious individual either in the same city or > 55miles away
and for assuming tested individuals are both college-age or
not. The removal probability is estimated over the length of
an individual’s infectious period.
First, we notice that there is not a strong response to the

intervention onMarch 30th, shown by the minimal reduc-
tion in 𝝅(𝑆𝐸) over time, and corresponding with previous
modeling of this epidemic (Porter and Oleson, 2013). We
also observe a strong age effect, with higher probability
of transmission between two college-age individuals living
very far apart than two non-college age individuals living
in the same city. This provides evidence that a successful

intervention targeted at college students would be effec-
tive in controlling spread. When distance-based transmis-
sion is not included, the credible intervals are narrower
reflecting the uncertainty in the estimation of 𝜌. Themodel
estimates a very low probability of transmission that is
unexplained by distance or age. The probability of transi-
tion from infectious to removed favors a longer infectious
period of between 6 and 10 days. Porter and Oleson (2013)
also found that longer infectious periods better described
these data. This implies that transmission was occurring
more than a week after the onset of symptoms.

6 DISCUSSION

The diagnostic ILM allows researchers to make inference
on important epidemic characteristics in the presence
of uncertainty from one or more diagnostic tests. This is
an important extension to the stochastic compartmental
infectious disease modeling framework, particularly for
modeling diseases in which a gold standard test does not
exist or when diagnostic accuracy is affected by vaccina-
tion status or co-infections. Using a data model on the
test results and the Bayesian framework to leverage infor-
mation about test characteristics and the transmission
process, we were able to estimate each individual’s latent
disease status within the model and accurately capture
variability resulting from the testing process. Depending
on data availability, the proposed method can be extended
to include many different factors, including vaccination
status or full network data (e.g., Malik et al., 2014),
however, the motivating data did not include individual
vaccination records.
This model also illustrates a use for data on negative

test results, which are often thrown out and not consid-
ered useful for analyses. In the data application, 4,451 of
the 6,082 individuals were negative on all tests that they
received, and in the diagnostic ILM, incorporation of neg-
ative tests are essential for accurate estimation of transmis-
sion probabilities. This has important public health impli-
cations, stressing the need for recording negative tests as
well as positive tests. Moreover, in periods of active surveil-
lance, sampling probabilities could be further incorporated
into the diagnostic ILM scheme to provide improved esti-
mates of prevalence in difference communities.
There are a few important limitations to the diagnos-

tic ILM approach. First, computation in the ILM frame-
work is already challenging and time-consuming and the
addition of estimation of latent infectiousness status adds
to the complexity. The primary cost arises in the repeated
calculation of the transmission probabilities at each itera-
tion of the MCMC algorithm, due to the need to recalcu-
late the infection kernel for a large number of susceptible
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F IGURE 3 Posterior mean and 95% credible intervals for the transmission (top) and removal (bottom) probabilities. This figure appears
in color in the electronic version of this article, and any mention of color refers to that version

individuals. Introducing sparsity in the infection kernel, as
was done in the data analysis, can reduce computational
complexity when proposing an individual’s infectious sta-
tus, as the kernel only needs to be calculated for individ-
uals associated with that one individual. Additionally, sev-
eral approaches have been taken to ease the computational
expense in ILMs, including linearization through Taylor
series expansion (Deardon et al., 2010), Gaussian process
emulators (Pokharel and Deardon, 2016), and supervised
classification techniques (Augusta et al., 2018), and future

work can use these techniques to ease the computational
challenges of the diagnostic ILM.
The modeling of untested individuals is an important

consideration in the diagnostic ILM. In our analyses,
we allow a constant sparks term in the transmission
probability to capture this infectious pressure. Recent
studies of mumps transmission in college students found
no evidence of viral shedding in asymptomatic students
(Bonwitt et al., 2017), so we believe this assumption is
reasonable. However, if the diagnostic ILM was used to
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model a disease with a large amount of asymptomatic
transmission (e.g., COVID-19), careful consideration of the
modeling approach to the sparks term should be taken and
contact-tracing data would be imperative for informing
this process. In more complex settings, the sparks term
can be extended to incorporate individual characteris-
tics or depend on prevalence over time, as in Deardon
et al. (2010).
Another limitation is that the current model assumes

that the sensitivity and specificity of the tests are constant
over the period of the infection and are identical for each
individual. For mumps, Polgreenet et al. (2008) found that
the probability of a positive test decreases monotonically
after symptom onset. There is also evidence that the
sensitivities of the diagnostics change after the onset
of symptoms (Sanz et al., 2006; Rota et al., 2013). Addi-
tionally, the model assumes conditional independence
between the diagnostics. We believe this is a reasonable
assumption for our data as exploratory analyses did not
indicate strong conditional dependence and this assump-
tion has been used in previous analyses of these three
diagnostics (Hatchette et al., 2009). It would be possible
to incorporate conditional dependence using methods
such as Dendukuri and Joseph (2001) or Georgiadis et al.
(2003), however, these would need to be extended to allow
for incomplete testing results.
In the simulation study, we observed the diagnostic ILM

to have the highest amount of bias in estimating the inter-
vention parameter. Further investigation (Web Appendix
B) revealed the diagnostic ILM to overestimate the inter-
vention effect, particularly for simulated epidemics with
low prevalence and infectious individuals with false neg-
ative tests post-intervention. If the primary interest of the
analysis lies in estimating the intervention parameter and
the epidemic is small, it may be preferable to use standard
approaches using any positive test to define the infectious
class. However, our simulations showed this approach
results in an underestimation of the transmission rate over
the course of the epidemic.
Despite these limitations, we have demonstrated that

the diagnostic ILM is advantageous in estimating trans-
mission probabilities compared to alternative approaches
researchers might attempt. We have also presented a novel
approach to estimation of the infectious period within
the ILM framework by extending the path-specific model-
ing approach to data on the individual level. Both devel-
opments are demonstrated on a real mumps epidemic,
illustrating the types of inference that can be made from
the diagnostic ILM. The addition of uncertainty with
regards to test results and the length of the infectious
period is a more realistic reflection of the disease pro-
cess and can aid in answering important public health
questions.
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