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Abstract 

Aims - Patients with severe respiratory syndrome caused by SARS-CoV-2 undergo cardiac complications due to 

hyper-inflammatory conditions. Although the presence of the virus has been detected in the myocardium of 

infected patients, and infection of induced pluripotent cells-derived cardiomyocytes has been demonstrated, the 

reported expression of ACE2 in cardiac stromal cells suggests that SARS-CoV-2 may determine cardiac injury 

by sustaining productive infection and increasing inflammation. 

Methods and Results - We analyzed expression of ACE2 receptor in primary human cardiac stromal cells 

derived from cardiospheres, using proteomics and transcriptomics before exposing them to SARS-CoV-2 in vitro. 

Using conventional and high sensitivity PCR methods, we measured virus release in the cellular supernatants and 

monitored the intracellular viral bioprocessing. We performed high-resolution imaging to show the sites of 

intracellular viral production and demonstrated the presence of viral particles in the cells with electron 

microscopy. We finally used RT-qPCR assays to detect genes linked to innate immunity and fibrotic pathways 

coherently regulated in cells after exposure to the virus. 

Conclusions - Our findings indicate that cardiac stromal cells are susceptible to SARS-CoV-2 infection and 

produce variable viral yields depending on the extent of cellular ACE2 receptor expression. Interestingly, these 

cells also evolved toward hyper-inflammatory/pro-fibrotic phenotypes independently of ACE2 levels. Thus, 

SARS-CoV-2 infection of myocardial stromal cells could be involved in cardiac injury, and explain the high 

number of complications observed in severe cases of COVID-19. 

Translational Perspective 

In the present investigation, we provide evidence that human cardiac stromal cells, a major component of the 

non-contractile cellular fraction in the heart can be infected by SARS-CoV-2 in vitro, in direct relationship to the 

extent of ACE2 receptor expression. Our work also suggests that these cells, when exposed to the virus, can 

evolve toward inflammatory and fibrotic phenotypes independently of ACE2. In addition to describing a novel 

cellular target of SARS-CoV-2 in the human heart, our study generates new hypothesis on potential mechanisms 

underlying cardiac complications observed in COVID-19 patients.  
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1. Introduction 

Since the beginning of the SARS-CoV-2 pandemic outbreak, a relatively high incidence of cardiac complications 

have been reported1, 2. These range from elevation of cardiac damage markers such as circulating troponin and 

BNP3, 4, to cardiac arrest5, cardiogenic shock6, myocarditis7 and heart failure8. The susceptibility of the myocardial 

tissue to SARS-CoV-2 infection6, 9 has been inferred based on the expression of the Angiotensin-Converting 

Enzyme-2 (ACE2) receptor in various cardiac cell types10, 11, and the evidence that the virus interacts with this 

receptor via the Spike (S) protein, as a main cellular docking/internalization site12.  

In an attempt to explain the cardiac complications observed in patients with COVID-19, experimental studies 

have tried to assess the direct susceptibility of endothelial cells13, 14 and induced pluripotent cells (iPSCs)-derived 

cardiac myocytes15, 16 to SARS-CoV-2 infection, with contrasting results. Furthermore, individual variations in 

the level of ACE2 mRNA expression have been reported by single-cell RNA sequencing in human myocardial 

cells, including cardiac fibroblasts11, thus providing a rationale for the possible involvement of these cells in the 

cardiac damage observed in patients with COVID-19. Cardiac stromal cells (cSt-Cs), often also referred to as 

cardiac fibroblasts17, are non-contractile myocardial cells that fulfill an important accessory function in the heart, 

i.e. the renewal of the extracellular matrix and maintenance of myocardium structural integrity. These cells can 

be derived in culture using different isolation methods and express a variety of mesenchymal and/or fibroblast 

markers, likely related to different origins and maturity stages18. Under pathologic conditions, e.g. in response to 

ischemia, cSt-Cs can acquire pro-inflammatory/pro-fibrotic phenotypes, and participate in cardiac inflammation 

and fibrosis19-22. 

Based on these evidences we hypothesized that cardiac complications observed in COVID-19 could be due, at 

least in part, to the combined effects of direct infection and pro-inflammatory/pro-fibrotic conversion of cardiac 

stromal cells. To address this possibility, we analyzed the effects of the SARS-CoV-2 virus on cSt-Cs derived 

from cardiospheres23 in vitro, in correlation to the extent of ACE2 receptor expression. 

2. Methods 

2.1. Ethics 

The use of human cells for in vitro experiments was approved by the local ethical committee (approval date: 19 

May 2012 and subsequent renewal on 16 May 2016) and has been performed in conformity with the principles 
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of the declaration of Helsinki. Patients gave their written consent to donate small fragments of right atrial 

appendage before routine coronary bypass grafting interventions. Collection of material occurred before the 

beginning of the SARS-CoV-2 pandemic outbreak. Experiments performed with SARS-CoV-2 in vitro did not 

require specific ethical authorization according to a specific instruction (“Data processing in clinical trials and 

medical research in the context of the COVID-19 health emergency” - article 3), published by the Italian Data 

Protection Authority to rule the use of patients material in case of experimental studies on COVID-19. See 

https://www.garanteprivacy.it/temi/coronavirus/faq#English for more information. 

2.2. Derivation of cardiac stromal cells. 

Cardiac stromal cells were derived using the ‘cardiosphere’ method23. Briefly, small fragments of the cardiac 

tissue were let to attach onto the bottom of tissue culture dishes, until an outgrowth of cells was achieved. 

Following a mild digestion with Trypsin, cells were recovered and sub-cultured onto Poly-D-Lysine coated dishes 

for cardiosphere formation. Cardiosphere-derived cells were obtained from mature cardiospheres, typically after 

3-5 wks of culture by digestion of the cell aggregates and expansion in fibronectin-coated dishes. Cells were used 

for experiments at passage 2-3 after derivation from cardiospheres, and characterization with RT-qPCR, Western 

analysis and flow cytometry for assessment of ACE2 receptor expression (see Supplementary Information). 

2.3. Design of SARS-CoV-2 infection experiments. 

After thawing, three cSt-Cs lines were plated at a 60% confluence in 6-well culture plates and exposed to variable 

amounts (0.1, 1, 10 multiplicity of infection, MOI) of SARS-CoV-2 isolates in a biosafety level (BSL) 3 facility24 

in technical quadruplicates. After 2, 24, and 72 hours, cells underwent RNA extraction and immunofluorescence 

staining, while culture supernatants were collected, as described in Supplementary Information. 

2.4. Detection of cSt-Cs phenotype after exposure to SARS-CoV- in vitro. 

To assess changes in cSt-Cs phenotype after exposure to SARS-CoV-2 in vitro, RT-qPCR assays were conducted 

on total RNA extracted from cells exposed at each viral concentration and time points. In addition, 

immunofluorescence staining for SARS-CoV-2 in combination with other cellular markers and transmission 

electron microscopy were performed. Details of the RNA analysis and microscopy methods are provided in the 

Supplementary Information.  

3. Results 

https://www.garanteprivacy.it/temi/coronavirus/faq#English
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3.1. Variability in expression of ACE2 receptor in human cSt-Cs 

To assess the expression of ACE2 receptor in cardiac stroma cells, we analyzed the levels of ACE2 protein 

expressed in 10 lines of human cardiospheres-derived cSt-Cs available to our laboratory (see Supplementary 

Information for the methodology of isolation and expansion)23. Figure 1A shows the results of the ACE2 

expression in the cSt-Cs by Western Blotting and RT-qPCR. A relatively high variability in the expression of 

the receptor was observed (Figure 1A), with no apparent relationship with demographic characteristics (i.e. 

age), risk conditions (e.g. dyslipidemia, hypertension) or medication (e.g. anti-hypertensive treatment) (Table 

S1). On the other hand, ACE2 protein expression was highly correlated with the levels of ACE2 gene 

transcription, as verified by a linear regression analysis of the RNA/Protein expression data (Figure 1A). This 

indicates that the control of ACE2 expression in cST-Cs occurs at a transcriptional level. In keeping with results 

obtained with other primary human-derived mesenchymal cell lines, TMPRSS2 the other major receptor 

facilitating SARS-CoV-2 infection25 was not expressed by cSt-Cs (data not shown). 

3.2. ACE2 dependency of human cSt-Cs infection in vitro 

To classify the cells for ACE2 expression, we grouped the cSt-Cs into three discrete classes (high, medium and 

low expression) based on the distribution of both the ACE2 protein normalized expression level (by Western 

Blot) and of the 2-ΔCt gene expression data (by RT-qPCR) data, using K-means clustering (Figure S1). For the 

remaining experiments, we chose three cSt-Cs lines obtained from donors with the most similar demographic 

characteristics (age, sex) and risk profile (diabetes, hypertension), one for each ACE2 expression classes. They 

are indicated as ACE2 ‘Hi’, ‘Mid’ and ‘Lo’ in the rest of the experiments. The main characteristics of the cell 

donors are present in Table S1. The three cell lines were tested for expression of cardiac 

fibroblast/mesenchymal markers26. As shown in Figure 1B, the expression of CD29 and CD44 was very similar, 

while a relatively higher variability was observed for the expression of CD90 and CD105, typical markers of 

cardiac-resident mesenchymal cells27. This variability, however, remained within the limits of the general 

variation in expression of mesenchymal markers in cells amplified from all donors (Figure 1B). All these cells, 

finally, did not express endothelial markers CD31 and CD144 (Figure 1B), excluding contamination by 

endothelial cells. To assess the susceptibility to SARS-CoV-2 infection, we exposed them to increasing amounts 

(multiplicity of infection, MOI: 0.1, 1, and 10; see Supplementary information for details) of SARS-CoV-2 

isolates24, and monitored the appearance of cytopathic effects, from two to 72 hours post-infection. Visual 
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inspection of the cells revealed potential differences according to the infection rate, with clear signs of cytopathic 

effects in ACE2 Hi cells already at two hours after the viral absorption, and consisting of cell rounding and 

wrinkling, cytoplasmic volume reduction, and detachment (Figure 1C). These effects were noticeable at a lower 

extent, in ‘Mid’ cells, and undetectable in ACE2 ‘Lo’ cSt-Cs, even at 72 hours post-infection (data not shown). 

In order to monitor the viral yield in the culture supernatants of the three cell lines, we performed RT-qPCR to 

detect SARS-CoV-2 Spike and ORF coding RNAs in the collected culture medium at 2, 24 and 72 hours post-

infection. Analysis of the Ct values showed a clear trend of the three cell lines to release increasing levels of the 

virus in the supernatant at 24 and 72 hours compared to those released 2 hours post infection at all the MOI 

(Figure 1D). These trends were, however, not significant, likely due to the differences in the response of the cells 

in relationship with the variable expression of ACE2. In fact, plotting the Ct values trends of each of the cell lines 

individually (Figure 1E), revealed that ACE2 ‘Lo’ cells did not release the virus in the supernatant, as shown 

by the almost flat Ct curve as a function of time at all the considered virus concentrations. By contrast, ‘Mid’ 

and ‘Hi’ cells exhibited an increase in the curve of viral RNAs amplification, evident for ‘Mid’ cells at 72 hours 

at 10 MOI, and for ‘Hi’ cells at 24 and 72 hours at all the MOIs, suggesting viral production. To confirm these 

data more quantitatively, we assessed the copy number of the virus in the supernatant using a digital-PCR (dPCR) 

amplification protocol, using primers specific for the SARS-CoV-2 N2 gene region. Digital PCR methods, in our 

and others’ hands, are more sensitive than conventional PCR to detect SARS-CoV-2 copies in biological fluids 

with low viral titers 28, 29. As shown in Figures S2 and 1F, determination of the viral copy number was more 

precise with this technique. In particular, it was possible to appreciate that also the cell line expressing the lowest 

ACE2 levels produced viral particles in the supernatant (e.g. 72 hours, 10 MOI), even though their amount was 

almost three Log10 lower than those produced by the ‘Hi’ cells under the same conditions. To confirm that these 

viral particles are infective, we finally exposed the kidney-derived Vero E6 cell line 30 to the supernatants of the 

infected cSt-Cs, followed by the determination of the fifty-percent tissue culture infective dose (TCID50, see 

Supplementary information). Results of titration confirmed dPCR quantifications, showing a dose- and time- 

related increased infectivity above baseline recorded for ACE2 ‘Hi’ cellular supernatant and a gradual decrease of 

viral load in the supernatant of ACE2 ‘Lo’ cells (Figure S3). Taken together, these results suggest that cSt-Cs are 

susceptible to infection by SARS-CoV-2 in an ACE2-dependent manner and capable to support viral replication 

depending on the expression level of the receptor. 
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3.3. Intracellular molecular bioprocessing of SARS-CoV-2 in cSt-Cs 

In order to investigate SARS-CoV-2 intracellular bioprocessing, we first assessed the temporal dynamics of E, 

N2 and RdRP viral transcripts in RNAs of cSt-Cs extracted cellular. In line with the previous results, clear 

differences were detected in the copy number of these genes in RNAs extracted from the different cell lines, with 

very limited number of copies/µL in ‘Lo’ cells at all the employed MOIs and MOI-dependent increases in ‘Mid’ 

and ‘Hi’ cells (Figure 2A). To find microscopic evidences of viral intracellular replication, we then performed 

immunofluorescence on ACE2 ‘Lo’ and ‘Hi’ infected cells using a human anti-SARS-CoV-2 serum, together with 

activated fibroblasts/myofibroblasts markers alpha-smooth muscle actin (αSMA) and/or Collagen-1 (Col1). 

Confocal microscopy imaging showed a very little proportion of ‘Lo’ cells exhibiting a SARS-CoV-2 labeling 

clearly above background fluorescence level observed in control cells (Figure 2B). By contrast, the number of 

‘Hi’ cells labeled with the serum was markedly higher (Figure 2C). Infected cells exhibited an intense staining 

with an anti-SARS-CoV-2 human serum (Figure 2D, E) and possible swelling of the endoplasmic reticulum (ER) 

associated with intense viral production (Figure 2D)31, or the formation of a reticulo-vesicular ER network 

supporting SARS-CoV-2 replication32. It was also interesting to observe that when cells exhibiting SARS-CoV-2 

staining were found in contact with non-infected cells (Figure 2F), viral particles appeared to transit from the 

positive cell to the surrounding negative cells (see inset in Figure 2F). This suggests that SARS-CoV-2 may 

transfer from infected to uninfected cSt-Cs by direct cell- to-cell transfer, the so-called ‘virological synapse’, one 

of the modalities of viral intercellular propagation inside tissues33. 

3.4 Ultrastructural evidences of SARS-CoV-2 packaging and cytotoxicity in cSt-Cs 

To substantiate further the presence of the virus in cSt-Cs and reveal signs of cytotoxicity, we performed 

ultrastructural analysis using transmission electron microscopy (TEM). The ultrastructural features of the 

infected cells exhibited clear differences from those of non-infected cells (Compare panel b in Figure 3A 

with panel c in Figure 3B). Namely, infected cells exhibited swelling of the rough endoplasmic reticulum 

(rER) with ribosomes frequently dissociated from the ER structure. This observation has been previously 

associated with high level of viral production31, and again suggests the formation of reticulo-vesicular ER 

networks supporting SARS-coronavirus replication32, as also shown in Figure 2D. Cells exposed to the 

virus also showed bigger multilamellar bodies (LB) visible in the cell cytoplasm compared to control cells 

(compare panel c in Figure 3A with panel b in Figure 3B). SARS-CoV-2 virions were detected, alone or 
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in clusters, predominantly in intracellular compartments (i.e. vacuoles) (Figure 3B panels c, d and 3C 

panel c), as previously shown in different cultured cell lines and lung cells of infected patients34. Finally, 

cells exhibiting a high number of viral particles outside intracellular structures were found (Figure 3C 

panels a, b) and clear signs of s of degeneration, such as cytoplasm condensation were also observed 

(Figure 3C panels a, b, d). 

3.5. Pro-inflammatory and pro-fibrotic responses of cSt-Cs exposed to SARS-CoV-2 

CSt-Cs have a central role in cardiac healing following acute injury, as they trigger the production of 

inflammatory cytokines and extracellular matrix remodeling enzymes necessary for the recruitment of 

leukocytes and activation of the innate immunity process priming myocardium repair20. Since SARS-CoV-2 

infection causes sharp upregulation of inflammatory cytokines in target organs through infection-dependent and 

innate immunity signaling mediated by Toll-like receptors35, cardiac inflammation observed in COVID-19 

patients may result from a combination of the systemic ‘cytokine storm’ and a direct inflammatory response by 

cardiac-resident cells36. To assess this hypothesis, we tested the effects of the virus on the activation of 

inflammatory factors and genes potentially involved in cardiac fibrosis16. We therefore analyzed the expression 

of genes involved in innate immune response and cardiotoxicity using RNAs extracted from the three cell lines 

infected with 10 MOI SARS-CoV-2 for 2, 24 and 72 hours. To do this, we used low-density PCR arrays 

containing primers specific for tissue inflammation and fibrosis, as well as single RT-qPCR tests (see 

Supplementary Information for further details). As shown in Table S4, 17 genes out of the 168 contained in the low-

density arrays were significantly over/down modulated in infected cells vs. the uninfected cells at the same time point. This 

regulation was clearly time dependent and did not reflect differences in ACE2 expression. Unsupervised clusterization of the 

average fold changes (Figure 4A) revealed a coordinated regulation of genes that were significantly more expressed at early  

(HSP1, PD4, FOSL, BCL2A1, HMOX), intermediate (ITPR2, RND1, ZNF148), and late (NEXN, SERPINE1, ZNF23, 

CCL7, FHL1, ICAM1, EGR1, STAT-1) time points, respectively. In particular, the genes that were significantly 

upregulated as early as at 2 hours post-infection indicate an early response of cSt-Cs to stress conditions 

determined by exposure to the virus. For example, HSPH1 (hsp110) is a heat shock protein strongly upregulated 

in response to coronaviruses exposure and in particular to their Envelope (E) proteins37, while FOSL1 is a 

transcription/cellular factor engaged in Interferon signaling in responses to viral infection38. It was remarkable 

to note that some of the transcripts significantly upregulated at 72 hours post-infection in response to virus 
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encode for, i) a membrane adhesion protein involved in cell-to-cell intercellular viral transmission (e.g. ICAM1) 

39; ii) a chemokine with potent pro-inflammatory effects (CCL7/MCP3) in COVID-19 40, 41; and iii) 

transcriptional regulators EGR1 and STAT1 involved, respectively, in SARS-CoV-related TGF-β1 signaling 42 

and immune response in COVID-19 patients 43. We finally investigated the regulation of mRNAs encoding for 

key factors involved in COVID-19 ‘cytokine storm’ and cardiac inflammatory/fibrotic responses1, 44, 45. Results 

of single RT-qPCR tests clearly indicated that cells from the three cell lines responded to viral exposure with a 

time-dependent upregulation of pro-fibrotic genes CTGF, ACTA2, Col1A and Col3A and of inflammatory 

cytokines IL-1β and CCL2 (MCP1) and, to a lower extent, IL-6 mRNAs irrespective of ACE2 expression levels 

(Figure 2B, C). Together, these results highlight an additional cardiac pathogenesis mechanism by SARS-CoV-

2 independent of ACE2 expression, consisting of substantial upregulation of genes involved in response to viral 

infection, intercellular virus transmission and related to innate immunity signaling and fibrotic activation. 

4. Discussion 

Experimental evidences have shown the susceptibility of cells expressing ACE2 receptor to direct infection by 

SARS-CoV-2 with implications for the multi-organ disease characterizing the COVID-19 pandemic outbreak. 

This includes endothelial13, kidney and urogenital tract cells46, enterocytes47, and a variety of human iPSCs-

derived cell types48, including cardiac myocytes16. As of today, despite the numerous reports showing extensive 

cardiac damages consequent to infection49 and the presence of the virus in myocardial biopsies6, 50, there is still 

uncertainty about the underlying mechanisms36. As outlined in various cardiology-oriented reviews on COVID-

19 pathophysiology1, 2, the heart could be affected by cumulative effects of the cytokine storm elicited by innate 

immunity activation35, as well as of in situ cytopathic effect determined by direct infection and replication of the 

virus in the myocardium6, 50, 51. 

In the present study, we provide the proof-of-concept that human myocardial stromal cells are susceptible to 

infection and permissive for intracellular replication of SARS-CoV-2. We also show that viral infectivity and 

productivity are strictly related to the expression level of the ACE2 receptor, thus confirming the influence of 

variations in the expression of this receptor, observed in different individuals, on the different responses to SARS-

CoV-2 infection, as reported elsewhere11. Interestingly, the expression of ACE2 in stromal cells seemed not to 

be associated with anti-hypertensive therapy taken by donors of the cells (Table S1), thus excluding a correlation 
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between the susceptibility of the cells to infection and the known modulation of the receptor determined by 

regulators of the Renin-Angiotensin System, as discussed recently52.  

In our experiments, we constantly observed the presence of cells that did not exhibit SARS-CoV-2 staining nor 

cytopathic effects, even among those with ‘Hi’ ACE2, even at 72 hours post-infection (Figure 2).  (Figure 2F). 

While this may reflect an inefficient viral replication in stromal cells (such as demonstrated recently for 

endothelial cells14) , it may also reflect a heterogeneous expression levels of ACE2 co-receptors53. Finally, our 

high-resolution confocal images (Figure 2F) also suggest the possibility of direct transmission of the virus via 

cell-to-cell contacts, a modality of intracellular transmission similar to that observed for other viruses, the viral 

synapses33. 

Our study suggests a second potential pathogenic mechanism that may be independent of direct penetration and 

replication of SARS-CoV-2 in cSt-Cs. Indeed, exposure to the virus was able per se to elicit inflammatory and 

pro-fibrotic responses in cSt-Cs independently of the expression of ACE2. This evidence is supported by the 

transcriptomic data presented in Figure 4, where we show a similar time-dependent trend in up/down-regulation 

of genes related to inflammation and fibrosis. In this regard, we hypothesize that cells exposed to the virus could 

mount an innate immune response by activating the nuclear factor-κB (NF-κB) pathway via the interaction of the 

viral Spike protein with Toll-like receptors (TLRs) 54, 55, leading to upregulation of IL6 and other pro-

inflammatory cytokines such as IL1, IL2, TNF-α and Interferon (IFN)-γ, as well as pro-fibrotic genes. 

Taken together, these data suggest that the variability of SARS-CoV-2 infection and spreading modality observed 

in the cardiac stroma may contribute to the puzzling scenario of COVID-19 cardiac complications. In particular, 

based on the data of the present report, we hypothesize that SARS-CoV-2 might contribute to myocardial damage 

with potentially cumulative effects of i) an intra-myocardial cytopathic effects due to viral replication in the 

stromal component directly connected to ACE2 expression levels and, ii) an ACE2-independent innate immunity 

response boosting myocardial inflammation and fibrosis45. Given the prevalently hypothesis-generating nature of 

our investigation, it is impossible at the moment to determine whether one of these two modalities, or both of 

them are prevalent in cardiac injury observed in COVID-19 patients. 

Study limitations 

The present work was conducted using cells derived with the cardiosphere method23, one of the procedures used 

historically to obtain cells with mesenchymal-like characteristics from the human heart27. Since in our 
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experiments, cells were expanded from cellular outgrowths of right atrial appendage fragments, and through 

several culture passages, a potential limitation may be the selection of specific cellular phenotypes, thus 

determining an overall under-representation of the various stromal cells/fibroblasts subtypes present in the heart, 

as recently demonstrated56.  

A second limitation of our study is the reduced sample size and the lack of specific functional studies (e.g. loss 

of function) allowing to correlate directly the function of ACE2 receptor with viral entry and intracellular virus 

packaging inside cSt-Cs. 

Caution should be finally adopted in extending our findings to the situation encountered in COVID-19 patients, 

where still today there is a heated debate about the direct vs. the indirect effects of SARS-CoV-2 on cardiac 

inflammation and fibrosis, including the occurrence of actual myocarditis57. In this regard, future studies using 

cells derived from various districts of the human heart, e.g. atrial vs. ventricular fibroblasts, or combining multiple 

cell types, e.g. cardiac fibroblasts and iPSC-derived cardiomyocytes (which also susceptible to infection16) in 

tissue constructs/organoids exposed to the virus, should be performed to address this important point. 
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Figure Legends  

Figure 1. Expression of ACE2 and response of cST-Cs to infection with SARS-CoV-2. (A) Western blot  

analysis of ACE2 protein expression in cST-Cs lines from 10 donors (Table S1). ACE2 band is colored in  

green with a molecular weight (MW) ~86 kDa. In red the GAPDH bands (MW 37 kDa) used for data  

normalization. On the right side, it is indicated the result of a linear regression analysis of protein/RNA data  

in the same cells, showing a highly significant data correlation. In color it is indicated the 90% confidence  

interval. In both panels, numbers and symbols in color indicate, respectively, the data from the ‘Lo’ (blue),  

‘Mid’ (red) and ‘Hi’ (green) cSt-Cs. (B) Flow cytometry analysis of the cST-Cs with mesenchymal and  

endothelial markers. The FACS plots show overlapped of the antigen expression profile of the three cell lines  

chose for the experiments (each represented by their color code, see Table S1). The box-plot contains the min- 

max antigen expression data of the 10 cSt-Cs lines, with an indication of the three donors chosen for the  

experimental study represented by circles colored with the code adopted in panel A and  Table S1. (C)  

Representative image of non-infected (CTRL, left panel) and SARS-CoV-2 infected ‘Hi’ cSt-Cs cells (1 MOI  

– 72 hours, center and right panels) showing swelling of the cytoplasm and release of microparticles (red  

arrows, center panel), and cytopathic effect characterized by cell rounding and wrinkling (yellow arrows, right  

panel). (D) Graphic representation of the mean Ct values of Spike and ORF-1 viral RNAs detected in the  

supernatant of the cell lines exposed to different amounts of SARS-CoV-2 at the indicated time points.  

Although not statistically significant (ns) when compared with ANOVA followed by pairwise post-hoc tests  

(n=3), a trend to increase in the expression of the two genes at 24 and 72 hours vs. 2 hours post-infection al all  

the MOIs was evident. (E) Representation of the viral release by the three cell lines in the supernatant by  

plotting of Spike and ORF Ct values measured by RT-qPCR amplification revealed a time-dependent increase  

in viral release by ACE2 ‘Hi’ and, at a lower extent, by ‘Mid’ cells. The ‘Lo’ cells exhibited no variations  

compared to the level of the baseline at 2 hours. The three graphs sets indicate the Ct values of the two viral  

genes detected in the culture supernatants of each cell line at each time point and MOI. (F) dPCR detection of  

N2 SARS-CoV-2 gene in cSt-Cs culture supernatant, indicative of absolute virus copy number expressed in  

copy number/µL. This analysis allowed to quantify with better resolution the release of viral particles by the  

three lines, and in particular, that even cells with the lowest level of ACE2 expression were able to produce viral  

particles in little amounts (see, e.g. the 72 hours - 10 MOI time point). The three graphs sets indicate the  

temporal increase in the amount of SARS-CoV-2 copies detected in the culture supernatants of each cell line  

at each MOI.  

Figure 2. Intracellular bioprocessing of SARS-CoV-2 in cSt-Cs. (A) The intracellular bioprocessing of the  

virus was monitored by dPCR performed on cSt-Cs cellular RNAs extracted from cells at various times post- 

infection. In this case, the number of copies was normalized to RpLP0 mRNA, used as a cellular internal  

control. Plots indicate variations in N2, E and RdRp normalized copies/mL, demonstrating expression of viral  

RNAs inside cells, and providing an accurate estimate of the SARS-Cov-2 replication in cSt-Cs with different  

ACE2 expression (note the difference in the scale of the three plots in the panel). The three graphs sets indicate  
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the temporal increase (hours) in the viral genes detected in the RNA extracted from each cell line exposed to 

each SARS-CoV-2 MOI. (B) Four-color immunofluorescence staining of uninfected ACE2 ‘Lo’ and ‘Hi’ cells 

with nuclear staining (DAPI), αSMA, Collagen1 and SARS-CoV-2. In these cells, the expression of the 

markers was similar and the background color of SARS-CoV-2 staining was minimal. (C) Low-power 

magnification of triple-color stained cSt-Cs fixed 72 hours after exposure to SARS-CoV-2. ACE2 ‘Lo’ cells 

with clear viral staining were very rare (left panel). The abundance of SARS-CoV-2-stained cells was higher 

in ACE2’Hi’ cells; these cells exhibited a typical arrangement in small clusters among uninfected cells (mid 

and right panels). (D) Low- and high-power magnification of ACE2 ‘Hi’ cells infected with SARS-CoV-2. In 

the right panel, a high-power view of the zone encircled in the white square on the left. The oval structures 

surrounded by intense SARS-CoV-2 staining might be enlargements of the endoplasmic reticulum, one of the 

typical intracellular sites of virus assembly31. (E) High-power view of a cell showing αSMA+ stress fibers (left) 

and a cytoplasm densely packed with SARS-CoV-2 particles (insets). (F) In the panel on the left it is 

represented the low-power view of a cluster of cSt-Cs positive and negative for SARS-CoV-2 staining. Note 

in the right panel the 3D projection of a z-stacked acquisition of the region encircled in the white box in the 

left panel, where the boundary between the SARS-CoV-2+ and the SARS-CoV-2- cells seems to be crossed by 

viral particles, indicative of possible direct cell-to-cell virus transmission. 

Figure 3. Transmission electron microscopy images of ACE2-Hi cSt-Cs exposed to SARS-CoV-2. (A) 

Low and high magnification of control cSt-Cs. (a) Low magnification of two adjacent cells where the nuclei 

(N), the mitochondria, the rough endoplasmic reticulum (rER) are visible. (b, c) High magnification of control 

cells showing in better detail the rER as well as small vacuoles containing some single membrane small 

vesicles   (V, arrows), and multilamellar bodies (LB). (B) Low and high power views of ultrastructural features 

of cSt-Cs exposed to SARS-CoV-2. (a, c) Low/mid magnification of cellular structures showing the presence 

of numerous free ribosomes (arrow in c) and enlargement of the rER (arrowheads in c). (b, d) magnification 

of the regions encircled by insets in panels a and c. It is evident the enlargement of the multilamellar bodies 

(LB) in panel b and the presence of virions in a vesicular structure connected to the rER in d (arrows). (C) 

Ultrastructure of a cSt-Cs (a) exhibiting numerous virions in the cytoplasm (b, d) or inside vacuoles (c). Note 

the cytoplasm condensation of the cell in panel a, and the typical appearance of the viral particles displaying 

characteristic black dots, due to the cross-sectioning of the viral nucleocapsid in b and d (arrows). 

Figure 4. Innate immunity and pro-fibrotic responses in cSt-Cs exposed to SARS-CoV-2. (A) Two RT-

qPCR gene arrays containing primers for amplification of 164 transcripts potentially involved in 

cardiotoxicity and innate immune signaling were employed to assess changes in gene expression consequent 

to exposure of the three cSt-Cs lines exposed to 10 MOI SARS-CoV-2. After identification of the genes 

significantly changed in their expression levels at 2, 24 and 72 hours post-infection with a P-value < 0.05 by 

ANOVA (Table S4), an unsupervised data clusterization was conducted. Results showed a coordinated time-

dependent clusterization of the transcripts of the three cell lines, with groups of up and downmodulated genes 

at the different time points. Raw data of this experiment are represented in Table S4. (B, C) The expression 
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of genes typically involved in cSt-Cs pro-fibrotic activation (CTGF, ACTA2, Col1A and Col3A) and the SARS-

CoV-2 cytokine storm (Il-β, CCL2/MCP1, IL-6) was finally investigated by single RT-qPCR tests on cellular 

RNAs at the three time points and at all the tested viral concentrations (MOI 0.1, 1, 10). As shown, expression 

of pro-fibrotic genes (B) exhibited variability in relationship to the viral dose used in infection experiments, 

especially for Col1A and CTGF. In contrast, expression of genes encoding for the pro-inflammatory cytokines 

(C) was more consistently upregulated in the three lines above the level of uninfected cells already at 24 hours 

of expression. Upregulation of transcription of these genes appeared independent of the level of ACE2 

expression, as evidenced by overlapping the values of the gene expression fold changes in each cell line (color 

coded as in Fig 1A and Table S1) to the bar graphs indicating the average and the standard error of the data. In 

both panels * indicates P < 0.05 statistical significance by one-way ANOVA analysis (repeated measures) 

calculated on the ΔCt values for each gene at each viral concentration used for the infected vs. uninfected cells 

(n=3) at 24 and 72 hours post-infection. 
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