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Conventionally, information is represented by spike rates in the neural system. Here,
we consider the ability of temporally modulated activities in neuronal networks to carry
information extra to spike rates. These temporal modulations, commonly known as
population spikes, are due to the presence of synaptic depression in a neuronal network
model. We discuss its relevance to an experiment on transparent motions in macaque
monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too
close, the firing rate profile will be very similar to that with one direction. As the difference
in the moving directions of objects is large enough, the neuronal system would respond
in such a way that the network enhances the resolution in the moving directions of the
objects. In this paper, we propose that this behavior can be reproduced by neural networks
with dynamical synapses when there are multiple external inputs. We will demonstrate
how resolution enhancement can be achieved, and discuss the conditions under which
temporally modulated activities are able to enhance information processing performances
in general.

Keywords: continuous attractor neural network, neural field model, short-term synaptic depression, short-term

synaptic plasticity, transparent motion

1. INTRODUCTION
An important issue in computational neuroscience is how infor-
mation is represented in the neural system. It was widely accepted
that spike rates of neurons carry information. This notion was
further illustrated in population codes, in which the a group
of neurons encode information and even represent uncertain-
ties therein through their collective activities (Zemel and Dayan,
1999; Pouget et al., 2000). Consequently, population coding
has been successfully applied to describe the encoding of spa-
tial and directional information, such as orientation (Ben-Yishai
et al., 1995), head direction (Zhang, 1996), and spatial location
(Samsonovich and McNaughton, 1997). They are also used to
explain information processing in the recently discovered grid
cells (Fuhs and Touretzky, 2006).

An interesting question arises, namely, whether information
can be encoded in other aspects of population coding besides
spike rates. For example, can extra information be carried by the
coding if the spikes are modulated in time, so that different spike
trains modulated differently may convey different messages even
though their spike rates appear to be the same. Given this possi-
bility, the information content of population coding can be much
richer than its superficial appearance as spike rates.

In this paper, we will explore the ability of population spikes
to carry information extra to spike rates. Population spikes are
temporal modulations of the population neuronal activity, and
are also known as ensemble synchronizations, representing exten-
sively coordinated rises and falls in the discharge of many neurons
(Loebel and Tsodyks, 2002; Holcman and Tsodyks, 2006). The
population spikes are due to the presence of short-term depres-
sion (STD) of the synapses, referring to the reduction of synaptic
efficacy of a neuron after firing due to the depletion of neuro-
transmitters (Stevens and Wang, 1993; Markram and Tsodyks,
1996; Dayan and Abbott, 2001). This adds to a recently expanding
list of the roles played by STD in neural information processing.
For example, STD was recently suggested to be useful in expand-
ing the dynamic range of the system (Abbott et al., 1997; Tsodyks
and Markram, 1997), estimating the information of the pre-
synaptic membrane potential (Pfister et al., 2010), and stabilizing
the self-organized critical behavior for optimal computational
capabilities (Levine et al., 2007). STD was also found to be useful
in enhancing the mobility of the network state in tracking mov-
ing stimuli (Fung et al., 2012a), and hence was recently proposed
to be a foundation of a potential anticipation mechanism (Fung
et al., 2012b).
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Previously, population spikes were found to be global syn-
chronizations of neuronal activities. However, in order for them
to encode spatial information, the population spikes that will
be considered in this paper are localized ones. We will use the
case of transparent motion as an example. This example illus-
trates the possibility that the modulation by population spikes
enables the neural system to refine the resolution of direction
for multiple stimuli. The prediction by the proposed mechanism
has an excellent agreement with experimental results (Treue et al.,
2000).

Transparent motion is one of the most well-known experi-
ments in the psychophysical community. In the experiment, the
stimulus usually contains moving dots with different directions.
So, there are multiple moving directions transparently superim-
posed on one another. In the nervous system, the middle temporal
(MT) area was found to be responsible for detecting moving
directions of objects (Maunsell and Van Essen, 1983). Here, it
was recently found that the neurons are heterogeneous, with some
neurons responding to the pattern of moving stimuli, while oth-
ers responding to the components of composite moving patterns
(Rust et al., 2006). In 2000, Treue et al. found that if the direc-
tions of two groups of moving dots differ by an angle larger than
the tuning width of the neurons, the observed neuronal response
profile begins to split (Treue et al., 2000). However, subjects can
still distinguish the two directions if their difference is as small
as about 10◦ (Mather and Moulden, 1980), while the average
direction tuning width of neurons is about 96◦.

To resolve this paradox, Treue et al. proposed that when the
resultant neuronal response is too board for a single direction,
the perception can identify the two directions by considering
the resultant neuronal response as a superposition of two indi-
vidual neuronal responses of each direction. However, when the
two directions differ by an angle less than the tuning width,
it becomes difficult to resolve the peaks of the two superposed
responses, if the curvature of the average neural activity pro-
file is not taken into account This difficulty was also observed
in simulations with distributional population codes (Zemel and
Dayan, 1999). The mechanism of enhanced resolution remained
unknown, and coding by firing rates may not reveal the complete
picture.

In a recently proposed model on motion transparency, the
enhanced resolution was achieved (Raudies et al., 2011). Two
mechanisms held the key to this advance. First, as in standard
neural field models, there is a local center-surround competi-
tion in the space of motion directions. Although this is not
sufficient to explain the enhanced resolution, there is the sec-
ond mechanism, namely, the modulatory feedback signals from
higher stages of processing in the area medial superior temporal
(MST) area. Motion attraction (that is, under-estimation of the
directional difference) at small angular difference, and motion
repulsion (that is, over-estimation) at larger angles were suc-
cessfully explained. Perception repulsion can also be found in a
Bayesian inference explanation on identification of audiovisual
stimulus (Sato and Toyoizumi, 2007).

Here, we propose a novel mechanism for resolution enhance-
ment based on the temporal modulation inherent in population
coding. To focus on the generic issue of whether information

carried in the temporal modulation of population coding can
be usefully applied in a processing task, we consider a simplified
model of transparent motion. We assume that inputs from dif-
ferent locations of the receptive field have been integrated, the
directional information has been filtered, and the processing of
input information can proceed without the assistance of feed-
back modulations. Thus our working model reduces to a single
network. The working principle is a continuous attractor neural
network (CANN) with dynamical synapses. Continuous attractor
neural networks, also known as neural field models, are models
used for describing phenomena and features observed in some
brain regions where localized attractor neuronal responses are
used to represent continuous information. Due to short-range
excitatory interactions and long-range/global inhibitory interac-
tions, bump-shaped neuronal response profiles are attractors of
CANNs. Since the response profiles are easy to shift their posi-
tions in the space of continuous information, they are useful in
tracking moving stimuli (Amari, 1977; Ben-Yishai et al., 1995;
Wu et al., 2008; Fung et al., 2010) and their drifting behaviors
have been studied (Itskov et al., 2011). In contrast to these stud-
ies of tracking, we will focus on stationary stimuli and their
time-dependent neuronal responses.

Dynamical synapses are found to enrich the dynamical behav-
iors of CANNs (York and van Rossum, 2009; Fung et al., 2012a).
Short-term synaptic depression (STD) can degrade the synaptic
efficacies between neurons, depending temporally on the activ-
ity history of the presynaptic neuron (Tsodyks et al., 1998). In
the presence of an external stimulus, the bumps can remain
temporally stable if STD were absent. However, with STD, the
population activity may drop after it reaches a maximum, since
neurotransmitters have been consumed. After the drop, neuro-
transmitters are recovered and the neuronal population is ready
to respond to the external stimulus again. This results in peri-
odic bursts of local neuronal responses, referred to as population
spikes. As we shall see, the temporal modulation induced by STD,
together with input fluctuations, enable the system to reduce the
angle of resolution in transparent motion down to one-fourth to
one-third of the tuning width of the neuron.

In the rest of this paper, we will begin with an introduction
of the CANN model and its basic properties. After that, we will
discuss simulation results showing that our model is able to rep-
resent acute difference in transparent stimuli. At the end, there is
a discussion section concluding our proposed mechanism.

2. MODEL AND METHOD
In the continuous attractor neural network model, we specify the
dynamics and the state of the system by the neuronal current. For
neurons with preferred stimulus x in the range −L/2 ≤ x ≤ L/2,
its neuronal current is denoted by u(x, t). The dynamics of u(x, t)
is given by Fung et al. (2012a)

τs
du

dt
(x, t)=−u(x, t) + Iext(x, t) + ρ

∫
dx′J(x − x′)p(x′, t)r(x′, t).

(1)

τs is the timescale of u(x, t). It is usually of the order of the mag-
nitude of 1 ms. ρ is the density of neurons over the space spanned
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by {x}. J(x − x′) is a translational invariant excitatory coupling
given by

J(x − x′) = J0√
2πa

exp

(
−
∣∣x − x′∣∣2

2a2

)
, (2)

where a is the range of excitatory connection and J0 is the average
strength of the coupling. r(x, t) is the neural activity related to
u(x, t) by

r(x, t) = � [u(x, t)]
u(x, t)2

B(t)
. (3)

Here, � is a step function centered at 0. The denominator,
B(t) ≡ 1 + kρ

∫
dx′u(x′, t)2, in this formula is the global inhibi-

tion, controlled by the inhibition parameter k. This type of global
inhibition can be achieved by shunting inhibition (Heeger, 1992;
Hao et al., 2009). Iext(x, t) is the external input to the system,
which will be defined in the latter part of this section.

In the integral of Equation (1), p(x, t) is the avail-
able fraction of neurotransmitters of the presynaptic neurons.
Neurotransmitters are consumed when a neuron sends chemical
signals to its postsynaptic neurons. However, the recovery time of
the neurotransmitters is considerably longer than τs. This process
can be modeled by Tsodyks et al. (1998) and Fung et al. (2012a)

τd
dp

dt
(x, t) = −p(x, t) + 1 − τdβp(x, t)r(x, t). (4)

τd is the timescale of recovery process of neurotransmitters. The
recovery process usually takes 25–100 ms. Here, we choose τd =
50τs. These two differential equations, Equations (1) and (4), are
found to be consistent with the model proposed by Tsodyks et al.
(1998).

The stimulus fed to the system consists of n components,
each with a Gaussian profile and a time-dependent fluctuation
in strength. It is given by

Iext
0 (x, t) =

n∑
i = 1

[A0 + δAi(t)] exp

(
−|x − zi|2

2a2
I

)
. (5)

Here, zi’s are the peak positions of the components, and aI

is the width of the Gaussian profiles. If not specified, it was
assumed to be the same as the synaptic interaction range a used
in Equation (2). A0 is the average relative magnitude of one input
component, while δAi (t) is a random fluctuation with standard
deviation σA in amplitude of input components.

Note that when the Gaussian profiles have strong overlaps, the
components cannot be resolved, as illustrated in Figures 1A–C.
We consider the amplitude fluctuations of each component to
be independent of each other, i.e., 〈δAiδAj〉 = 0, where the aver-
age is over time. These fluctuations provide a cue for the system
to distinguish different components (Figure 1D). This is con-
sistent with the psychophysical experiment which showed that
spatial and temporal randomness is important for perception of
motion transparency (Qian et al., 1994). Since the fluctuations

FIGURE 1 | (A–C) The profile of two superposed Gaussian functions with the
same height. f (x) ≡ {exp[(x − �z/2)2/(2a2)] + exp[(x + �z/2)2/(2a2)]}/2.
Red solid line: y = f (x) with different �z. Dashed line: y = f (x) with �z = 0
as a reference. (A) �z = 0. (B) �z = tuning width = 2a. (C) �z = 110% tuning
width = 2.2a. (D) The profile of two superposed Gaussian functions with

different heights to illustrate how the amplitude fluctuations provide a cue to
distinguish the components. g(x) ≡ {A0 exp[(x − �z/2)2/(2a2)] + A1

exp[(x + �z/2)2/(2a2)]}. Dashed line: y = f (x) with �z = 0 as a reference.
Red solid line: y = g(x) with �z = tuning width, A0 = 0.4 and A1 = 0.6. Blue
solid line: y = g(x) with �z = tuning width, A0 = 0.6 and A1 = 0.4.
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vanish when averaged over time, a system responding only to
time-averaged inputs is unable be able to detect the components.
Here, the role of STD is to modulate the network state, so that it
responds to one input component once a time.

To model the situation that the maximum strength of the input
profile is invariant, we consider the input in Equation (1) to be

Iext(x, t) = A

maxx
[
Iext
0 (x, t)

] Iext
0 (x, t), (6)

where A is the fixed maximum magnitude of the external input.
As the external input profile is set to have a constant maximum,
only the ratio σA/A0, rather than the magnitudes of A0 and σA, is
relevant in our studies.

It is convenient to rescale the dynamical variables as fol-
lows. We first consider the case without STD when β = 0, and
the synaptic interaction range a 	 L. In this case, p(x, t) = 1
in Equation (1). For k ≤ kc ≡ ρJ2

0/
(
8
√

2πa
)
, the network holds

a continuous family of Gaussian-shaped stationary states when
Iext(x, t) = 0. These stationary states are

ũ(x) = ũ0 exp

(
−|x − z|2

4a2

)
, (7)

and

r̃(x) = r̃0 exp

(
−|x − z|2

2a2

)
. (8)

where ũ(x) is the rescaled variable ρJ0u(x), and ũ0 is the rescaled
bump height. The parameter z, i.e., the center of the bump, is
a free parameter, implying that the stationary state of the net-
work can be located anywhere in the space x. In this paper, we
assume that the variable is represented solely by the peak position
of the neural activity profile. This assumption is one of the most
direct ways to interpret the population code. However, there are
other ways to interpret population codes. For example, Treue et al.
(2000) proposed that the curvature of the average of the neural
activity carries information represented by the neural population
code, although the mechanism achieving this objective is not clear
(Treue et al., 2000). On the phenomenological level, distributional
population coding and double distributional population coding
were proposed to represent information in population coding
with more sophistication (Zemel and Dayan, 2000; Sahani and
Dayan, 2003).

The tuning width of a neuron, defined as the standard devia-
tion of the firing rate profile multiplied by 2, is therefore 2a. In
the present work, we rescale the neuronal current as ũ(x, t) ≡
ρJ0u(x, t), together with the corresponding rescaling of other
variables given by Ã ≡ ρJ0A, k̃ ≡ k/kc, β̃ ≡ τdβ/

(
ρ2J2

0

)
. By using

these rescaling rules, the dynamics of the system should only
depend on k̃, β̃, τd/τs, σA/A0, zi’s and Ã. Below, only these
parameters will be specified.

In each simulation, the variables u(x, t) are modeled to be
located at N discrete positions uniformly distributed in the space
of preferred stimuli {x}. To do massive simulations, all simula-
tion results are generated by using N = 80. We have verified that
the dynamics of the system is independent to N, and the num-
ber of neurons should not affect the conclusion. The boundary

condition of the space is periodic. The range of the network is
360◦ and the tuning width of the neurons is 96◦, following the
experimental estimates in Treue et al. (2000). To solve differen-
tial equations in Equations (1) and (4), we used the Runge-Kutta
Prince-Dormand (8,9) method provided by the GNU Scientific
Library. Initial conditions of u(x, t)’s is zero, while p(x, t)’s are
initially 1. The local error of each evolution step is less than 10−6.
The random number generator used to generate the Gaussian
random number is the generator proposed by Lüscher (1994).
The Gaussian fluctuation is updated every 50τs.

3. RESULTS
3.1. POPULATION SPIKES
We first consider the response of the network when the input
consists of one component. We explore the network behavior by
varying the parameters k̃, β̃, and Ã. We found a rich spectrum of
behaviors including population spikes, static bumps, and mov-
ing bumps. The full picture will be reported elsewhere. For the
purpose of the present paper, we fix k̃ and β̃ at a typical value
and consider the behavior when Ã increases. As shown in the top
panel of Figure 2, the network cannot be triggered to have sig-
nificant activities when the input is weak. In the bottom panel,
the input is so strong that the network response is stabilized to
a static bump with time-independent amplitude. An interesting
case arises in the middle panel for moderately strong input, where
population spikes can be observed. Population spikes are the con-
sequence of the presence of STD. They are caused by a rapid rise
of neuronal activity due to the external stimulus. Then in a time
of the order of τd, the neurotransmitters are consumed, leading
to a rapid drop in neuronal activity. When the neurotransmitters
recover, the neurons become ready for the next population spike,
resulting in the interesting periodic behavior. Population spikes
have been found before as synchronization of neuronal activities,
and their potential role in processing information was appreci-
ated, but no specific context of such applications was identified
(Loebel and Tsodyks, 2002), Here, we will present an example that
spatially localized population spikes endow the neural system a
capacity of reading-out input components.

3.2. NETWORK ACTIVITIES FOR TWO STIMULI
Next, we consider inputs with two components separated by
�z > 0 and study the network behavior when �z gradually
increases. Without loss of generality, we choose z1 = �z/2 and
z2 = −�z/2. The relative fluctuation is σA/A0 = 0.3.

When the separation is small, the positions of the population
spikes fluctuate around the mid-position of the two stimuli, as
illustrated in Figure 3A. The two components cannot be resolved.

When the separation increases to the extent that the two com-
ponents remain barely resolved, an interesting change in the
spiking pattern occurs as shown in Figure 3B. The positions of the
population spike peaks begin to center around the two input com-
ponents, although the shoulders of the population spikes remain
overlapping considerably. Note that in this regime, the profile of
the neuronal activities remain unresolved when they are averaged
over time. However, due to the presence of STD, it is likely that
a population spike is produced at the position of the component
which happens to be higher due to height fluctuations. Hence in
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FIGURE 2 | Firing rates r̃(x, t) (A, D, and G), available fraction of neurotransmitters p(x, t) (B, E, and H) and corresponding input (C, F, and I) for various

magnitudesofsingle-peaked external inputs. (A–C) Ã = 0.4, (D–F) Ã = 0.8,and (G–I) Ã = 2.0.Otherparameters: k̃ = 0.5, β̃ = 0.24,a = 48π/180,andτd = 50τs .

FIGURE 3 | Raster plot of firing rates r̃ for (A) �z = 0.5, (B) �z = 1.0,

and (C) �z = 2.0. White dashed lines: positions of stimuli. Parameters:
other parameters: k̃ = 0.5, β̃ = 0.24, a = 48π/180, Ã = 0.8, σδAi /A0 = 0.3,
and τd = 50τs .

this regime, the population spike peaks are no longer aligned at
the center. Rather, they are arranged in two rows, each around
the two components. Furthermore, the two rows of population
spikes tend to fire alternately. This implies that although it is hard
to resolve the two components by considering the time-averaged
signals, the temporal modulation by the alternating population
spikes may be utilized for resolution enhancement.

When the separation increases further, the population spikes
form two groups clearly, as shown in Figure 3C. The two compo-
nents are clearly resolved.

To compare our model with experimental results, we measure
the time average of neuronal activities as a function of preferred
stimuli of neurons and the separation of the two stimuli, shown in
Figure 4A. We found that this result is very similar to the exper-
imental results reported by Treue et al. [Figure 2C in Treue et al.
(2000)]. The peak of the average profile of neuronal activities
splits near �z ∼ 1.0× tuning width. However, the time-averaged
data cannot explain why subjects can resolve separations much
less than the tuning width.

3.3. EXTRACTION OF MODULATED INFORMATION
To demonstrate that the neuronal activities carry the informa-
tion about two stimuli, we collect statistics on the peak positions
of the population spikes. Here the peak position is calculated
by max xr̃(x). In Figure 4C, we present the contour plot of the
distribution of peak positions in the space of the preferred stim-
uli of neurons and separation between the two stimuli in units
of the tuning width. To focus on peaks with significant infor-
mation only, we counted only population spikes with maximum
amplitudes above an appropriately chosen threshold. Each col-
umn in Figure 4C is a normalized histogram with 80 bins. In
order to obtain a relatively smooth distribution, the sampling
process lasted for 100,000 τs. The mean of the separation between
peak positions is plotted in Figure 5 as a function of �z. We
found that in this setting, the system can detect the input sepa-
ration down to one-fourth of the tuning width. We note that in
Figure 4C, when the difference between the components is too
small, �z � 1/4 tuning width, population spikes occur at the
middle of the net external input profile with a relatively small
variance. However, when the network starts to resolve the two
components, there are notable variances on positions of the pop-
ulation spikes in each component. The standard deviation of the
positions of the population spikes in each component is roughly
of the order of 0.1 times the tuning width, which is roughly 20◦,
as shown in Figure 5.

To investigate whether the statistics with long sampling period
is applicable to sampling periods in actual experiments, we have
also collected statistics for 500τs. (In the experiment done by
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FIGURE 4 | (A) Time average of firing rates r̃ as a function of the preferred
stimuli of neurons, x, and the separation between the two stimuli, �z.
Contour lines:

〈
r̃
〉
t = 1 (dotted-dashed line),

〈
r̃
〉
t = 2 (dashed line),

〈
r̃
〉
t = 3

(solid line),
〈
r̃
〉
t = 4 (dotted line). Parameters: same as Figure 3. (B) The

average neural activity recorded by Treue et al. (2000) (with license number

3125800919243 for the reuse purpose). (C) Contours of the distribution of
peak positions higher than 6.2 as a function of preferred stimuli, x, and the
separation between the two stimuli, �z. White dashed line: positions of the
two stimuli. L1, one-third of the tuning width. L2, tuning width. Parameters,
same as Figure 3.

Treue et al., subjects took 500 ms to perform the discriminational
task.) The result is shown in Figure A2A in Appendix. Although
the distribution is rougher because of the relatively small sam-
pling size, enhanced resolution down to 0.3 tuning width is still
visible.

Furthermore, when the separation between the two stimuli
lies between one-third and three-halves of the tuning width, the
system slightly overestimated the separation of the two profiles.
If we take the tuning width to be 96◦ (Treue et al., 2000), this
range will be approximately from 30◦ to 140◦. This is consistent
with the experimental results of Braddick et al. (2002), in which
subjects overestimated some moving direction difference in trans-
parent motion experiments. However, it was reported in Figure 4
in Treue et al. (2000) that the perceived separation of movement
direction starts to underestimate the truth when the stimulus sep-
aration increases above 40◦. Since the range corresponding to
“motion repulsion” reported by Braddick et al. (2002). is differ-
ent from that reported by Treue et al., it seems that the range of
differences between stimuli corresponding to “motion repulsion”
is different for different experimental settings.

We have also tested the effects of choosing the widths of exter-
nal input components to be different from the tuning width of the
neuronal response. We found that the results for different stimu-
lus strengths in Figure A1 in Appendix are qualitatively the same
as that in Figure 4C.

The result shown in Figure 4C is not particular for the cho-
sen set of parameters. In Figure 6, there is a phase diagram along
with some selected parameters. In Figure 6A, the colored region
is the region for population spikes with one stimulus. If Ã and β̃

are chosen from this region, as far as we have observed, similar

FIGURE 5 | The mean separation of peak positions of r(x, t) shown in

Figure 4C. Symbols, simulation. Dashed line, diagonal line representing
perfect distinguishability.

results can be obtained by choosing appropriate thresholds. If Ã
and β̃ are outside the colored region, no matter what the threshold
was, the result shown in Figure 4C cannot be reproduced. This
result suggests that population spikes are important to resolution
enhancement.

3.4. NETWORK RESPONSE WITH MULTIPLE STIMULI
We further test the response of our model to more than two stim-
uli. Figure 7 shows the case for three stimuli of equal amplitude,
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FIGURE 6 | (A) The phase diagram of population spikes over the
parameter space spanned by (Ã, β̃) with the parameter k̃ = 0.5 and
τd /τs = 50. (B–H) are distributions of the occurence of peak positions
as function of �z. The numbers at the top of (B–H) are thresholds

used to sample peak positions. Parameters: (B) Ã = 0.4 and β̃ = 0.35.
(C) Ã = 0.65 and β̃ = 0.35. (D) Ã = 0.9 and β̃ = 0.35. (E) Ã = 0.4 and
β̃ = 0.2. (F) Ã = 0.6 and β̃ = 0.2. (G) Ã = 0.7 and β̃ = 0.1. (H) Ã = 0.9
and β̃ = 0.2.

whose peak positions are labeled by the white dashed lines.
However, the contours of the distribution of population spikes are
double-peaked, similar to those in Figure 5. This result suggests
that, if there are three stimuli overlapped together, the network
response should give only two groups of neuronal responses.
Also, it predicts that peaks of population spikes should occur
at positions that underestimate the separation between the out-
ermost stimuli. A similar result for shorter sampling periods
comparable to actual experiments can be found in Figure A2B
in Appendix.

We found that the experimental result of multiple stimuli
reported by Treue et al. is consistent with this prediction. In their
paper, it was reported that, when there were three groups of mov-
ing dots moving at directions ±50◦ and 0◦, the subjects would

report that there were only two moving directions at ±40◦. This
consistency is shown in Figure 7, where the vertical dotted line L
labels the position that the outermost stimuli are directed at ±50◦
when the tuning width is 96◦, and the pair of horizontal dashed
lines labels ±40◦ correspondingly.

4. CONDITIONS FOR RESOLUTION ENHANCEMENT
We have demonstrated the phenomenon of resolution enhance-
ment due to modulations of population spikes. To see whether
this picture can be generalized to other cases and what alternative
models are to be excluded, we summarize the general conditions
of its occurrence. To appreciate the significance of each condi-
tion, we will consider the alternative scenarios in the presence and
absence of the various conditions.
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4.1. SHORT-TERM SYNAPTIC DEPRESSION

Without the STD, the steady state of the neuronal activity pro-
file becomes centered at either one of the two input stimuli. In
Figure 8A, when the difference between the input profiles is large,
�z/a = 3.7 for instance, the neuronal activity is trapped by the
input profile near x = 1.55. This case is not consistent with exper-
iments, because when the separation between the input profiles
is large enough, the neuronal activity should be able to identify
both stimuli. This shows that STD plays the following roles in this
phenomenon.

First, STD gives rise to the temporal modulation charac-
terized by the population spikes, in which rapid rises in pop-
ulation activities alternate periodically with drops due to the
consumption of neurotransmitters. Spiking activities enable the
activity profile to jump from one stimulus position to another
easily.

Second, the presence of STD enhances the mobility of the
activity profiles. Due to the consumption of neurotransmitters in
the active region, the profile tends to relocate itself to less active
regions. This is the cause of the increased mobility when the activ-
ity profile tracks the movement of external stimuli, as well as their
anticipatory tracking as a possible mechanism for delay com-
pensation (Fung et al., 2012a,b). In the parameter regime where
the stationary profile becomes unstable in its position, and pop-
ulation spikes become the attractor state, the network tends to
establish a population spike in new locations, preventing itself
from being trapped by one stimulus. This results in population
spikes centered at alternating stimuli and hence the temporal
modulation.

For example, if the two stimuli are strongly overlapped, the
average neuronal response concentrates at the in-between region
of the two stimuli, as shown in Figure 3B. In this case, the time-
average profile of the dynamical variable p(x, t) has a dip centered
at the midpoint between two stimuli, as shown in Figure 9.
Since, in our model, there are fluctuations of the magnitude of
each component of the external input, population spikes occur
near the positions of the stimuli, labeled by the blue lines in
Figure 9. Since the synaptic efficacies of the presynaptic neurons
are stronger in the side region further away from the other stim-
ulus, population spikes are more likely to happen in the outer
region rather than the inner region. So, the separation between
the two groups of population spikes can be larger than the separa-
tion between the two stimuli. This is also the reason why only two
groups of population spikes can be observed in the case with three
stimuli (Figure 7). STD also explains the slight over-estimation
of the perceived positions when the separation of the stimuli is
around the tuning width.

Third, when STD is not sufficiently strong, we observe that
sloshers rather than population spikes are formed (Folias, 2011).
These sloshers are bumps that oscillate back and forth around the
external stimuli, as shown in Figure 10. The height of the bumps
is highest when they slosh to the extreme positions, but due to
the weaker STD, the height variation in a cycle is not as extreme
as those in the population spikes. The positional extent of their
oscillations is mainly determined by the restoring attraction from
the external input, and is effectively insensitive to the stimulus
profile. Hence in the task of resolving the stimulus directions, the

FIGURE 7 | Contours of the distribution of peak positions higher than

6.2 as a function of preferred stimuli, x, and the separation between

the two outermost stimuli, �z, in the case of three equally strong

stimuli. White dashed line: positions of three stimuli. Horizontal dotted
line: the case comparable to the three-stimulus experiment reported by
Treue et al., 2000. Vertical dashed lines: perception (±40◦ ) reported by
subjects in the experiment in units of the tuning width (96◦). Parameters:
same as Figure 5.

performance is degraded by the very flat part of the curve of the
perceived separation when the stimuli have strong overlaps, as
shown in Figure 6G.

There are also other variants of the model that demonstrate the
significance of STD in similar ways. For example, in recurrent net-
works with local inhibition, we may replace B(t) in Equation (3)
by B′(x, t) given by

B′(x, t) = 1 + ρk

∫
dx′ exp

(
−
∣∣x − x′∣∣2

2b2

)
u
(
x′, t

)2
. (9)

To stabilize the neural activity, the range of the local inhibition,
b, has to be larger than the range of excitatory connection, a.
However, if a is as large as 48◦, this local inhibition can be fairly
replaced by B(t) with appropriate k̃. In the presence of STD, the
discrimination performance is comparable to that in Figure 5,
but the resolution is poor otherwise.

4.2. SUITABLY STRONG INPUT PROFILES
Suitably strong input magnitude is needed to produce the tem-
porally modulated patterns, as illustrated in Figure 6. First, when
the magnitude of the external input is too small, no significant
system-driven neuronal activity can be observed. Fluctuations
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FIGURE 8 | (A) Raster plot of firing rate r̃ of the network with two
stimuli and without STD. Parameters: k̃ = 0.5, β̃ = 0, Ã = 0.8,
a = 48π/180, σA/A0 = 0.3, and �z = 3.1. (B) Rastor plot of firing rate
r̃ of the network with two stimuli with weak net input profile.
Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.4, a = 48π/180, σA/A0 = 0.3, and
�z = 2.5. (C) Rastor plot of firing rate r̃ of the network with two

stimuli without height fluctuations in the external input profile.
Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.8, a = 48π/180, σA/A0 = 0, and
�z = 1.67. (D) Contours of the distribution of peak positions for all
peak heights. White dashed line: positions of the two stimulus
components. Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.8, a = 48π/180,
σA/A0 = 0.3, and �z = 1.0.

FIGURE 9 | The time-averaged dynamical variable p(x, t). Symbols and
red line: measurement from the simulation. Blue lines: positions of two
stimuli. Parameters: k̃ = 0.5, β̃ = 0.24, a = 48π/180, τd /τs = 50, Ã = 0.8,
and �z = tuning width of attractor states.

of external input components cannot stimulate the population
spike, as the activation by input profiles was not strong enough.
Second, even when the magnitude of the external input is larger,
population spikes can be produced but the stimulus is too weak
to pin them at the position of the stimuli. Since the mobility
of the population spikes is enhanced by STD, moving popu-
lation spikes are formed, as illustrated in Figure 8B. Since the

population spikes move away from the stimulus positions after
their formation, they cannot be used to encode the stimulus posi-
tions and also become part of the noisy background affecting the
recognition of the stimulus positions. When the stimulus is too
strong, population spikes cannot be generated and the resolution
degrades.

4.3. FLUCTUATIONS IN INPUT PROFILES
Fluctuations on external input components is important to the
behavior in Figure 3. If there were no fluctuations in the input
profiles, the net input profile will have only one peak for �z < 2a.
As a result, there is effectively one bell-shaped input profile if
the difference between two stimuli is too small, and the net-
work response will also be single-peaked, as shown in Figure 8C.
Hence fluctuations in the external input play the role of ren-
dering the components distinguishable. As shown in Figure 11,
recognition of input location always follows a strong input on
the same side at the current step, and a strong input on the
other side in the previous step, suggesting that a sudden shift in
input bias provides condition for reliable recognition. In fact, the
noise fluctuations act as the signals themselves, without which the
single-peaked input provides little information about the com-
ponents. Results in Figure 11 also illustrate that, statistically, the
system is able to give valid responses to stimulus changes in a
single step. This explains why the network yields discrimination
performance equally well for short and long sampling periods, as
demonstrated in a comparison between Figures 4C, A2A.

The fluctuations may come from randomness in the inputs.
Psychophysical experiments show that spatial and temporal
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FIGURE 10 | Raster plot of firing rates r̃ at �z = 0.1, showing a slosher. White dashed lines: positions of the stimuli. Other parameters: k̃ = 0.5, β̃ = 0.1,
a = 48π/180, Ã = 0.8, σA/A0 = 0.2, and τd = 50τs.

FIGURE 11 | Population spikes’ positions conditional on input

fluctuations. One step refers to 50τs, which is the temporal interval
between every update in the Gaussian fluctuation δAi (t). Input bias
is defined as (δA1(t) − δA2(t))/ max(A0 + δA1(t), A0 + δA2(t)). The color
code indicates the average position of population spikes above

threshold within one step in unit of the tuning width (TW). Gray
color means the average position is within the true position of either
input ±0.01 TW. True positions of inputs: z1 = �z/2, z2 = −�z/2.
(A) �z = 0.33 TW. (B) �z = 0.40 TW. Parameters: same as
Figure 3.

randomness is important for perceptions of motion transparency.
For example, regularly spaced lines moving in opposite directions
do not give the perception of transparent motion, whereas ran-
domly spaced lines are able to do so (Qian et al., 1994). The input
signals come from different locations of the visual field, and fluc-
tuations arise when the perceived objects move from one location
to another. Fluctuations may also arise when feedback signals
from advanced stages of processing guide the system to shift its
attention from one specific component to another.

Functionally, fluctuations facilitate the resolution of the direc-
tional inputs in the following two aspects. Spatially, it breaks the
symmetry of the input profile. Temporally, it provides the time-
dependent signals that induce the population spikes centered at
the component that happens to be strengthened by fluctuations.
This enables the system to recognize the temporally modulated
inputs. On the other hand, for systems processing only time-
averaged inputs, the height fluctuations vanish when averaged
over time, so that the components cannot be detected.

4.4. THRESHOLDING
Even after temporal modulation, resolution based on the net-
work response can still carry large errors. As shown in Figure 3C,

there are obviously two groups centering around the positions
of the two components, but in between the two components,
there is a region with moderate neuronal activities. If the net-
work includes neuronal activities of all magnitudes, the errors in
estimating the component positions will be large, especially when
�z is small. Indeed, Figure 8D shows that without imposing any
thresholds on the neuronal activities, the network cannot resolve
the two components until the separation exceeds the tuning
width.

In order to solve this problem, we introduce a threshold on the
maximum firing rates. We collect statistics of the peak positions of
the firing rate profile when their height exceeds the threshold. The
result is shown in Figure 5, indicating a significant improvement
of resolution compared with Figure 8D. The effects of the thresh-
old value on the resolution performance are shown in Figure 12.
When the threshold is low, the components are not resolved even
at a separation of 0.5 times the tuning width. On the other hand,
when the threshold is too high, the statistics of peak positions
becomes too sparse to be reliable. In an intermediate range of
thresholds that is not too narrow, the resolution of the compo-
nents can be achieved down to separations of 0.3–0.4 times the
tuning width.
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FIGURE 12 | Effect of thresholding on the statistics of peak

positions. Distributions of peak positions higher than different
thresholds (shown on the left) when two stimuli are separated by �z
(shown at the bottom) are plotted in patches. The scales of all the

patches are the same, shown on the lower-left patch. Distributions are
normalized to the maximum value. Red bars mark the positions of two
stimuli. Other parameters: k̃ = 0.5, β̃ = 0.1, a = 48π/180, Ã = 0.8,
σA/A0 = 0.2, and τd = 50τs .

4.5. RECURRENT CONNECTIONS
Finally, we would like to stress the importance of recurrent
connections in achieving resolution enhancement. With no recur-
rence, population spikes cannot be generated and the amplifica-
tion of the difference between nearly overlapping inputs cannot
be achieved. Let us consider a purely feedforward network, with
weaker but spatially broader inhibition than excitation,

τs
du

dt
(x, t) = −u(x, t) + ρ

∫
dx′

[
JE exp

(
−
∣∣x − x′∣∣2

2a2

)

− JI exp

(
−
∣∣x − x′∣∣2

2b2

)]
p
(
x′, t

)
Iext(x′, t

)
(10)

τd
dp

dt
(x, t) = −p(x, t) + 1 − τdβp(x, t)Iext(x, t) (11)

r(x, t) = � [u(x, t)] u(x, t), (12)

where JE > JI and Iext(x, t) is the same as that in recurrent net-
work in Equation (6). Although in this feedforward network STD
can still modulate the synaptic efficacy so that neuronal activities
prefer the side region to the midpoint between two stimuli, tem-
poral modulation, which is essential to population spikes, cannot
be realized without feedback. As mentioned above, population
spikes make it easier for the activity profile to switch off on one

side and grow up on the other. As shown in Figure 13, the resolu-
tion enhancement in the purely feedforward network is poor. In
fact, the behavior is very similar to those in the non-spiking region
even when the architecture is recurrent, as shown in Figures 6A,E.

5. DISCUSSION
In this paper, we have demonstrated how STD plays the role of
generating population spikes that can carry information extra to
spike rates. We have used the example of resolving transparent
motion with two components in a continuous attractor neu-
ral network, and have shown that the temporal modulation of
the firing rates enables the network to enhance the resolution of
motion transparency, thereby providing a possible explanation to
the longstanding mystery of resolving separations narrower than
the tuning width of the neurons, and resulting in input-output
relations that can have excellent agreement with experimental
results (Treue et al., 2000). The role played by STD was further
clarified by comparison with alternate scenarios under 4 general
conditions.

First, the strength of STD should be sufficiently strong. Weaker
STD may result in the network response being pinned by one of
the two components, or slosher modes that span a range of posi-
tions effectively independent of the component separations. On
the other hand, sufficiently strong STD can give rise to popula-
tion spikes, endowing them the freedom to alternate between the
two components. Equally important is the provision of temporal
modulation by the population spikes, so that the firing patterns

Frontiers in Computational Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 73 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Fung et al. Resolution enhancement with dynamical synapses

FIGURE 13 | (A) Raster plot of firing rate r for purely feedforward network.
�z = 0.5 TW. White dashed line: positions of the two stimuli. (B) Contours
of the distribution of peak positions higher than 0.45 as a function of

preferred stimuli,x, and the separation between the two stimuli, �z.
White dashed line: positions of the two stimuli. Parameters: JI = 0.3JE ,
b = 3a,τd β/ρJE = 0.2, ρJE A = 0.8, σδAi /A0 = 0.3, and τd = 50τs.

indeed contain information of the stimuli, even though the time-
averaged firing rate can only resolve separations larger than the
tuning width of neurons, as shown in Figure 4 and found exper-
imentally by Treue et al. (2000). The role played by temporally
modulated signals in transparent motions can be tested in future
experiments.

Second, the strength of the input should be sufficiently strong.
Otherwise, no population spikes can be produced. Even for mod-
erately strong input, the population spikes become moving ones,
and fail to represent the stimulus positions.

Third, fluctuations in the input profiles are also important.
They provide the temporally sensitive signals when the two com-
ponents cannot be resolved in the time-averaged input. They
correspond to the “unbalanced motion signals” in the detection of
transparent motion with opposite moving directions (Qian et al.,
1994).

Fourth, thresholds are needed to extract the information of
the stimuli contained in the firing patterns, since they are able to
truncate background activities that interfere the signals from the
two components.

Our proposed model is not the first model or mechanism to
explain the behavior of the discriminational task in transpar-
ent motion experiments. It was suggested that the curvature of
the average neural activity may provide information of multi-
ple stimuli, but the neural activity is wider than expected (Treue
et al., 2000). Other proposals require more complex structures to

achieve the task. For example, a population to encode uncertainty
is needed to differentiate between multiplicity and uncertainty
(Sahani and Dayan, 2003), and additional internal structures are
needed to provide feedback information (Raudies et al., 2011).
While admittedly involving additional structures and layers can
augment the functionality of the brain, our work shows that it
is possible to achieve with little additional structure the perfor-
mance consistent with experiments in Treue et al. (2000) and
Braddick et al. (2002). An interesting future direction is to con-
sider whether firing rates multiplexed with temporal modulations
can be an instrument to achieve the differentiation between
multiplicity and uncertainty posed in Sahani and Dayan (2003).

The ability of STD to generate temporally modulated response
is also applicable to other brain tasks, such as switching between
percepts in competitive neural networks (Kilpatrick, 2012).
Compared with other conventional neural network models pro-
cessing time-averaged or static neuronal response profiles, the
temporal component provides an extra dimension to encode
acute stimuli, so that information processing performance can be
significantly enhanced.
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APPENDIX

FIGURE A1 | Contours of the distribution of peak positions higher than (A) 6.2 and (B) 5.5 as a function of preferred stimuli, x, and the separation

between the two stimuli, �z. White dashed line: positions of two stimuli. Parameters: same as Figure 3, except aI = 0.95a for (A) and aI = 1.05a for (B).

FIGURE A2 | The population spike occurrence counted within 500τs, which is comparable to the timescale in typical experiments. (A) Situations that
there are two stimuli. (B) Situations with three stimuli. Other parameters: (A) same as Figure 4, (B) same as Figure 7.
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