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A physiological parallelism, or even a causal effect relationship, can be deducted from

the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental

Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral

performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically

distinct disease entities, exhibits many common features. They affect neurological shared

pathways, and also related neurotransmitter systems. We briefly review here these

parallelisms, with their common and uncommon characteristics, and with an emphasis

in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to

propose that PAE in rats can be considered as a suitable model for the study of ADHD.
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INTRODUCTION

Prenatal Alcohol Exposure (PAE), causes a pleiad of neurological alterations, that consist in
physiological, cognitive, and behavioral abnormalities, which together are identified as “Fetal
Alcohol Spectrum Disorders” (FASD) (Sokol et al., 2003; Bertrand et al., 2005; Hoyme et al., 2005),
that includes a range of categories, referred by the Institute ofMedicine (IOM) (Stratton et al., 1996)
as “Alcohol Related Neurodevelopmental Disorders” (ARND); “Alcohol Related Birth Defects”
(ARBD); the partial “Fetal Alcohol Syndrome” (pFAS); and finally, the “Fetal Alcohol Syndrome”
(FAS), which is the most severe form and includes growth deficiencies and facial abnormalities
caused because of alcohol consumption during pregnancy. The severity of the effects that alcohol
ingestion produce over embryonic (fetal) development, depends on the stage and the amount of
the alcohol, in the form of ethanol (EtOH), that are ingested.

Results from human studies and animal models clearly show that PAE-related
abnormalities in physiological function include alterations in the activity and regulation of
hypothalamic–pituitary–adrenal (HPA) and hypothalamic–pituitary–gonadal (HPG) axis, as well
as modifications in the interactions between these systems (Handa et al., 1985; Lee and Rivier, 1996;
Weinberg et al., 2008; Comeau et al., 2015). Likewise, PAE animals display cognitive and behavioral
deficits, including delays in learning and memory, and altered responsivity to stressors (reviewed
in Hellemans et al., 2010). More specifically, PAE affects different stages of brain development
from neurogenesis to myelination, through a variety of mechanisms, including disrupted cell-cell
interactions, altered gene expression, oxidative stress, and growth factor signaling disruptions
(Reynolds et al., 2011; Riley et al., 2011), that occurs even without severe physical teratogenicity
(Riley et al., 2011; Schneider et al., 2011).

In fact, the profound effects that PAE produce on the developing brain gene expression and
physiology, results in the cognitive and behavioral effects that ensue. Some recent studies on fetal
and neonatal brains have uncovered EtOH-induced alterations in the expression of genes related to
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energy metabolism, cell adhesion, cytoskeletal remodeling, cell
cycle, proliferation, differentiation, apoptosis, as well as neuronal
growth and survival, and also nervous system development,
free radical scavenging and small molecules metabolism
(Hard et al., 2005; Zhou et al., 2011; Kleiber et al., 2012).
Together, these results suggest a complex residual “footprint” of
neurodevelopmental EtOH exposure that would be useful for
identifying mechanisms that underlie the life-long persistence
of FASD-related cognitive and behavioral alterations, including
potential molecular targets for its treatment (Kleiber et al., 2012).

In children, the PAE has been linked with the key symptoms
of the Attention-deficit/hyperactivity disorder (ADHD) (Knopik
et al., 2005; Bhatara et al., 2006; Kodituwakku, 2007), which is
a brain disorder marked by an ongoing pattern of inattention
and/or hyperactivity-impulsivity that interferes with functioning
or development (NIH definition)1 In animal and human
research, there is emerging clinical, neuropsychological, and
neurochemical evidence of a link between FASD and ADHD
(O’Malley and Nanson, 2002; Kodituwakku, 2007). In this regard,
it is important to clarify that although the FASD and ADHD
constitute two clinically distinct disease entities, the fact is not
negligible that ADHD is the most commonly reported mental
health diagnosis in individuals with PAE (i.e., up to 97% of 39
children according to Fryer et al., 2007), and a high percentage
of children diagnosed with ADHD have a history of PAE (i.e.,
up to 41% of 2231 children according to Bhatara et al., 2006).
Therefore, and based on a large body of evidence, FASD, caused
by PAE, appears to be the leading cause of ADHD (Burd, 2016).
Then, there may be common etiological pathways to ADHD
and the behavioral phenotype of FASD, alternatively, acquired
ADHD secondary to PAE may be due to the effect of alcohol on
the developing dopamine (DA) transmitter system (reviewed in
Peadon and Elliott, 2010).

There may be multiple pathways to the coexistence of ADHD
symptoms and FASD, so there may be different subsets of ADHD
and FASD (Oesterheld and Wilson, 1997; O’Malley and Nanson,
2002). Some studies support the idea that ADHD within FASD
is a particular clinical subtype with earlier onset, a different
clinical and neuropsychologic profile, and a different response to
psychostimulant medications. In this review, we will contrast and
discuss the more recent evidence that points out a parallelism
between ADHD and FASD, as a consequence of PAE, and also
highlight the specific differences. Furthermore, we will focus on
cellular and molecular aspects subjacent to both pathologies to
support that specific protocols of PAE would be useful as a model
for the study of some aspects of ADHD.

INVOLVEMENT OF THE
HYPOTHALAMIC-PITUITARY-ADRENAL
AXIS IN PAE AND ADHD

One of themost characterized effects of PAE are the dysregulation
of the offspring hypothalamic-pituitary-adrenal (HPA) axis (Lee
and Rivier, 1994; Ogilvie and Rivier, 1997; reviewed in Weinberg

1NIH definition: http://www.nimh.nih.gov/health/topics/attention-deficit-
hyperactivity-disorder-adhd/index.shtml.

et al., 2008), increasing sensitivity to stressors and vulnerability
to stress-related disorders (Lee et al., 2000). It is noteworthy that
also an involvement of HPA axis has been clinically described in
groups of children with ADHD (Kaneko et al., 1993; Hastings
et al., 2009), as well as in its experimental animal’s models, as
mouse mutant coloboma (Raber et al., 1997); and WKHA rats
(Hendley, 2000). Furthermore, an impaired response to stress
has been suggested as a marker to the more developmentally
persistent form of ADHD (King et al., 1998; Snoek et al., 2004;
Pesonen et al., 2011; reviewed in Johnson, 2015). Finally, genetic
evidence has been recently presented for the association of HPA
axis and ADHD (Fortier et al., 2013). Taken together, all these
evidences point out to a physiological relationship, or at least an
important physiological parallelism, between PAE and ADHD.

KEY NEUROTRANSMITTERS SYSTEMS
ARE AFFECTED IN PAE AND ADHD

Several neurotransmitter systems can be affected by PAE, but
the degree of affectation depends on the doses of alcohol,
the embryo developmental stage at consumption, and the
genetic background, of the parents and the embryo. Also, the
damage would vary in different cerebral region. Suggesting that
alterations of selective neurotransmitters may be the cause of
abnormalities in brain function and behavior found in FASD.

One of the mains affected system by PAE is the cholinergic
system, preferentially in the hippocampus. Rats exposed to
prenatal alcohol exhibit differential response to cholinergic
agonist (pilocarpine and nicotine) or antagonist (scopolamine
and mecamylamine) in a delay-dependent memory task,
suggesting that alterations in the rat cholinergic system may
underlie some of the cognitive deficits observed with PAE
(Nagahara and Handa, 1999). Also, it has been demonstrated
that perinatal choline supplementation may attenuate alcohol-
related behavioral changes by influencing cholinergic systems
(Monk et al., 2012). For ADHD, there are evidences that point to
a role of the cholinergic system in ADHD cognitive dysfunction
(Potter et al., 2006; Sarter and Paolone, 2011) and that emphasize
the relevance of the therapeutic potential of nicotinic cholinergic
agents for their treatment (Potter et al., 2014). Therefore, it
is necessary to develop more enhanced understanding of the
nicotinic cholinergic system and its role in ADHD (Childress and
Sallee, 2014).

Other highly disturbed is the glutamatergic system, mainly
the regionally specific glutamate receptor expression (Bird
et al., 2015). Particularly, NMDA receptor subunits are affected.
A reduction of approximately 30–50% of NR1, NR2A, and
NR2B subunits persists at postnatal day 90 in the barrel
field cortex of animals under PAE (Rema and Ebner, 1999).
Also, a functional NMDA-NR1 receptors are necessary for the
neurotoxic and teratogenic effects of PAE (Deng and Elberger,
2003). Additionally, synaptic NR2B-containing NMDA receptor
concentrations are reduced in PAE animals (Samudio-Ruiz et al.,
2010), specifically in the agranular insular cortex (Bird et al.,
2015). Taken together, these evidences could help to explain
EtOH-related alterations in learning and behaviors that depend
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on cerebral cortex. Regarding AHDH, increases in glutamatergic
metabolites were found in the Anterior Cingulate cortex (ACC)
and other regions in children with ADHD (Spencer et al., 2004);
in addition, dysregulation of the NMDA type of glutamate
receptors has been recently reported as being involved in ADHD
(Chang et al., 2014). However, a relatively small number of
studies have examined the role of glutamatergic dysregulation in
pediatric psychiatric disorders, emphasizing the need to increase
research in these areas.

Additionally, the DopAminergic (DAergic) system is also
affected both in PAE (Druse et al., 1990; Diaz et al., 2014; Naseer
et al., 2014) and in ADHD (Curatolo et al., 2010). Reduction
of DAergic transmission is considered one of the causal
mechanisms of ADHD (Ernst et al., 1998). Furthermore, DAT
dysregulation has been directly involved in the pathophysiology
of ADHD (Madras et al., 2005; Paloyelis et al., 2010).
Correspondingly, one of the main therapies employed for
ADHD treatment uses dexamphetamine or methylphenidate,
both stimulators of the DAergic system (Spencer et al., 2004). In
addition, animal models for the study of ADHD exhibit DAergic
system alterations associated with hyperactivity, inattention,
and impulsivity (Van der Kooij and Glennon, 2007; Genro
et al., 2010). On the other hand, DAergic systems, which have
neurocircuitries that overlap the HPA axis, are altered by PAE
(Uban et al., 2013). PAE negatively affects DA biosynthesis and
transport in midbrain neurons (Szot et al., 1999) and direct
regulates DAT function by altering endosomal recycling of
the transporter (Methner and Mayfield, 2010); also, PAE alters
postnatal development of the spontaneous electrical activity
of dopamine neurons in the ventral tegmental area (Choong
and Shen, 2004). Taken together, all of these evidences lead
us to suggest a physiological parallelism, at least in these
three neurotransmitter systems (cholinergic, glutamatergic, and
DAergic) between PAE and ADHD.

Finally, other systems are also affected by PAE. PAE reduces
the concentrations of some catecholamines, indolamine, and
amino acid neurotransmitters in E13 fetal brains (Sari et al.,
2010). In also affects the GABAergic system (Volgin, 2008; Zhou
et al., 2010; Wang et al., 2013), serotonin (Sliwowska et al., 2014),
and opioid receptors (Nizhnikov et al., 2014) in a number of brain
regions (Bird et al., 2015 and references therein). Thus, it would
be of interest to study these systems under the ADHD condition.

PAE AFFECTS EPIGENETICAL
MODULATION OF GENE EXPRESSION
INDUCING ADHD PHENOTYPES

The preconception of paternal exposure to EtOH produced
ADHD-like behavioral phenotypes in the progeny, such
as hyperactivity, inattention, and impulsivity, mediated by
increased methylation in the DAT promoter region (Kim et al.,
2014). Additionally, it reduced NGH and BDNF in some brain
regions and increased EtOH-elicited preference in male offspring
(Ceccanti et al., 2016). On the other hand, maternal consumption
of EtOH during pregnancy has been classically associated with
ADHD (Mick et al., 2002; Knopik et al., 2006) and also affects

the epigenotype and phenotype of offspring in mouse (Kaminen-
Ahola et al., 2010). The range of clinical phenotypes varies in
severity and outcome depending on the level, pattern, and timing
of maternal alcohol consumption (British Medical Association,
2007). This affectation is mainly metabolic, by the consumption
of the alcohol, but might also involve epigenetical alterations
(reviewed in Shukla et al., 2008; Haycock, 2009). There are
several factors that must be considered, such as maternal age,
amount and frequency of ingested alcohol, stage of use (before,
during, or after pregnancy, and even during lactation). Thus,
there remains the need for much research these respects.

Thus, it is reasonable to propose that, in the case of
alterations caused in the progeny by PAE, a synergic effect
can be generated when both parents consume alcohol, prior
to conception in the case of the father, and before or during
pregnancy and/or lactation in the case of the mother, and that at
least part of these effects are epigenetically mediated. Recently,
some clues have begun to arise regarding this epigenetical
modulation, which results in long-term regulatory change and
which induce developmental and behavioral defects that may
persist throughout the lifetime of an individual (Table 1). It is
still unknown how these changes occur and are maintained, what
specifically the consequences of those changes are, and which of
these consequences are related with FASD from PAE and ADHD;
therefore, epigenetic alterations constitute a new whole avenue of
research.

BEHAVIORAL SIMILARITIES AND
DIFFERENCES BETWEEN ARND OF FASD,
DERIVED FROM PAE AND ADHD

The prognosis and treatment responses for children with ADHD
and FASD differ to those of children with ADHD alone.
Individuals with FASD may respond differently to stimulant
medication than other children with ADHD. For example, there
is evidence suggesting that children with FASD and ADHD have
a better response to dexamphetamine than to methylphenidate
(O’Malley et al., 2000).

Executive function is a core deficit in FASD and ADHD,
common symptoms of behavioral disinhibition and attention
deficit may be related to problems with it. So, children with FASD
and ADHD may have structural and functional abnormalities
in the frontal-subcortical circuits, which are areas associated
with executive function. Both populations have deficits in global
adaptive abilities and adaptive behavior is affected in both FASD
andADHD (Crocker et al., 2009), however, the children with PAE
performed worse than the ADHD group on letter and category
fluency (Vaurio et al., 2008).

Children with PAE had similar global intellectual deficits
to children with ADHD. Nevertheless, the PAE group
struggled on arithmetic, while ADHD group were poorer
on reading/decoding. Additionally, by using a four-factor
model that specifically analyzes attention through a group of
four processes and links them to a putative system of cerebral
structures (Mirsky et al., 1991; Kremen et al., 1992), the PAE
group encountered problems with encoding and shift, while the
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TABLE 1 | Main features shared that suggest a parallelism between ADHD (Attention deficit/hyperactivity disorder) and FASD (Fetal alcohol spectrum

disorders).

FASD (PAE) ADHD

NEUROLOGICAL ALTERATIONS

Cognitive and behavioral deficits Delay in learning and memory (Hellemans et al., 2010) Deficits in learning, cognition (attention), and behavior

(hyperactivity/Fmpulsivity) (Casey et al., 2007; Albrecht et al., 2015)

Ongoing pattern of inattention

and/or hyperactivity impulsivity

Children with FASD often present with attentional problems similar to those observed with ADHD (Coles et al., 1997; Mick et al.,

2002; Jacobson et al., 2011)

Prospective memory PAE was related to ADHD, but ADHD was not related to prospective memory performance (Lewis et al., 2016)

Physiological abnormalities Affects different stages of brain development from

neurogenesis to myelination (Riley et al., 2011;

Reynolds et al., 2011), which leads into behavioral and

cognitive deficits during youth and adulthood

Children show a core deficit in behavioral inhibition, leading to

impairments in working memory, self-regulation, internalization of speech

and reconstitution (Barkley, 1997)

HYPOTHALAMIC-PITUITARY-ADRENAL AXIS (HPA)

Disfunction of HPA axis Alterations in the activity and regulation of HPA and

HPG axis (Handa et al., 1985; Lee and Rivier, 1996;

Weinberg et al., 2008; Comeau et al., 2015)

Involvement of HPA axis has been clinically described in children with

ADHD (Kaneko et al., 1993; Hastings et al., 2009)

Altered responsivity to stressors Increasing sensitivity to stressors and vulnerability to

stress-related disorders (Lee et al., 2000; reviewed in

Hellemans et al., 2010)

An impaired response to stress has been suggested as a marker to the

more developmentally persistent form of ADHD (King et al., 1998; Snoek

et al., 2004; Pesonen et al., 2011; reviewed in Johnson, 2015)

KEY NEUROTRANSMITTER SYSTEMS AFFECTED

Dopaminergic system Prefrontal cortex is particularly affected by PAE, mainly

dopamine system (Juh et al., 2005; Smith et al., 2012;

Kim et al., 2013; Uban et al., 2015)

Daergic system is affected (Curatolo et al., 2010). Prefrontal cortex is the

region most affected (in regulating behavior and attention) via dopamine

transmission (Arnsten, 2007)

DA transporter system (DAT) PAE direct regulates DAT function by altering

endosomal recycling of the transporter (Methner and

Mayfield, 2010); PAE decreases DAT binding sites in

brain (Druse et al., 1990; Szot et al., 1999): in contrast,

in adult rats, ethanol increases the number of DAT

binding sites in brain (Jiao et al., 2006)

DAT is involved in ADHD and/or its treatment (reviewed in Mazei-Robinson

and Blakely, 2006); High striatal DAT availability in most adults with ADHD

(reviewed in Krause et al., 2006)

DA receptors PAE differentially affects regional expression of DA

receptor subtypes (Flores et al., 2011). PAE males

exhibited increased dopamine receptor expression in

medial prefrontal cortex (Uban et al., 2015)

Polymorphisms of D4 and D5 receptors show a predisposition to develop

ADHD (Kustanovich et al., 2004)

Cholinergic system PAE may disrupt learning and memory in adolescence

via a cholinergic mechanism (Perkins et al., 2015);

Perinatal choline supplementation may attenuate

alcohol-related behavioral changes (Monk et al., 2012)

Involved in ADHD cognitive dysfunction (Potter et al., 2006; Sarter and

Paolone, 2011)

Glutamatergic system PAE reduces NMDA receptor subunits expression

(Rema and Ebner, 1999; Samudio-Ruiz et al., 2010;

Bird et al., 2015)

Dysregulation of the NMDA receptors has been involved in ADHD (Chang

et al., 2014)

Gabaergic system PAE attenuates Gabaergic inhibition in amigdala,

leading to hyperexcitability and anxiety (Zhou et al.,

2010; Baculis et al., 2015); reduces Gabaergic

neurons in vermis (Nirgudkar et al., 2016) and in cortex

(Smiley et al., 2015); and affects cortical Gabaergic

neuron migration (Skorput and Yeh, 2016)

Disturbed Gabaergic transmission in hippocampus (Sterley et al., 2016)

and in prefrontal cortex (Tzanoulinou et al., 2016) have been involved in

ADHD neuropathophysiology. GABAergic inhibitory neurons play a role in

the neurobiology of ADHD (Nagamitsu et al., 2015). GAD1 polymorphysm

is associated with ADHD (Bruxel et al., 2016)

CELLULAR FUNCTION

Altered gene expression Down-regulation of 25 genes involved in cell

proliferation, differentiation, and apoptosis, none were

up-regulated (Hard et al., 2005); down-regulation of

104 genes involved in protein synthesis, mRNA

splicing, and chromatin organization, none were

up-regulated (Rogic et al., 2016)

Genome wide analysis in human ADHD individuals confirms the

complexity and heterogeneity of ADHD etiology (Zayats et al., 2015).

Down-regulation of 54 genes and up-regulation of 52 genes related with

transcription, synaptic transmission, neurological system process and

immune response in animal model of ADHD (De la Peña et al., 2015)

(Continued)
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TABLE 1 | Continued

FASD (PAE) ADHD

Oxidative stress (OS) Altered gene expression in OS pathways in the adult

hippocampus suggests a novel involvement of OS

mechanisms in FASD (Chater-Diehl et al., 2016); PAE

dysregulates OS in rats (Brocardo et al., 2012), and in

Drosophila (Logan-Garbisch et al., 2014)

OS is increased in children with ADHD (Sezen et al., 2016); ADHD

patients present an insufficient response to OS leading to damage

(Joseph et al., 2015); Interventions with antioxidant represent potential

options for the treatment of ADHD (Lopresti, 2015)

Growth factor signaling

disruption

PAE in mice alters NGF and BDNF in brain (Ceccanti

et al., 2016)

Higher levels of serum NGF in drug-naive ADHD patients (Guney et al.,

2014); disrupting of BDNF signals found in children with ADHD (Liu et al.,

2015)

EPIGENETICAL MODULATION OF GENE EXPRESSION

DNA methylation Alterated DNA methylation program during neurulation

(Zhou et al., 2011; and the genomic methylation

profiles (Liu et al., 2009). Induced a decreased

expression of methyl-binding protein MeCP2 in

prefrontal cortex and striatum (Kim et al., 2013)

DNA methylation variation in genes related to neurodevelopmental and

peroxisomal processes (Walton et al., 2016); Cytosine methylation (Mill

and Petronis, 2008); Several genes methylated: DAT1 (Ding et al., 2016);

IGF2 (Rijlaarsdam et al., 2016); 5-HT3A R (Perroud et al., 2016); SLC6A4

(Park et al., 2015)

chromatin configuration Down-regulation of 104 genes involved in protein

synthesis, mRNA splicing, and chromatin organization

(Rogic et al., 2016)

Histone modification in ADHD (Mill and Petronis, 2008); histone

acetylation increased significantly in the hippocampus by chronic lead

exposure, causing ADHD-like symptoms (Luo et al., 2014)

microRNA PAE is associated with dysregulation of several miRNA

levels (Balaraman et al., 2013; Gardiner et al., 2016)

Small interfering RNA (siRNA) is involved in ADHD (Mill and Petronis;

(Kandemir et al., 2014)); abnormal miRNA function contributes to ADHD

(Wu et al., 2015; Garcia-Martínez et al., 2016; Ye et al., 2016)

ADHD group had difficulties with focus and sustain (Coles et al.,
1997); thus, their neurocognitive deficits may not be completely
the same.

Factor analyses of ADHD symptoms divide its behavioral
symptoms into two separate domains, one reflecting inattention
and the other, a combination of hyperactivity and impulsivity
(Toplak et al., 2012). To date, the best-validated animal models
for ADHD are the Spontaneously Hypertensive Rat (SHR/NCrl)
(Rat Genome Database, 2016)2 and the Wistar KYoto rat
(WKY/NCrl) (Charles River, Germany) for the inattentive
phenotype (Sagvolden and Johansen, 2012; Zhang-James et al.,
2013). According to Sagvolden (2000) and Sagvolden et al.
(2009), because the diagnosis of ADHD is based on behavior,
validation of animal models must also be based on behavior.
Therefore, if valid animal models were to be found, one
would expect many of the same fundamental genetic and
neurobiological alterations to be common in the case of humans
and animals.

In rodents, PAE can produce an increase of locomotor
activity and attentional demand, as well as an attentional
deficit, analogous to those observed in FAS and ADHD
(Brys et al., 2014). Additionally, PAE induced hyperactive,
inattentive, and impulsive behavioral phenotypes in mouse and
rat offspring, with increased expression of DAT in prefrontal
cortex and striatum (Kim et al., 2013), which constitute
an additional possible link between FASD and ADHD-like
behavioral phenotypes.

There is limited information on the genetic influences of
inattention. Transcriptional profiling analysis in animal models
of disorders may provide an important tool to identify genetic

2Rat Genome Database (2016). http://rgd.mcw.edu.

involvement in behavioral phenotypes (De la Peña et al., 2015).
Consequently, there is a need for large, high quality studies
examining the etiology, diagnosis, and interventions for ADHD
within FASD. By improving the understanding of the etiology of
ADHD within FASD, will develop more effective interventions
and the ability to diagnose FASD more accurately (Peadon and
Elliott, 2010).

CONCLUDING REMARKS AND
PERSPECTIVES

Prenatal Alcohol Exposure (PAE) is a major, preventable
cause, of induced CNS defects during development named as
“Alcohol Related Neurodevelopmental Disorders” (ARND), that
undoubtedly gives rise to behavioral and cognitive deficits in
children. It also affects child’s growth and even more, it is able
to induce morphological alterations (facial features), generating
a broader “Fetal Alcohol Spectrum Disorders” (FASD). On
the other hand, ADHD is a chronic condition that affects a
relevant percentage of children (between 5 and 7%) and that
often continues into adulthood. Spite some specific and punctual
characteristic differences between them, the prevalence of ADHD
(diagnosed according to DSM-IV criteria) in children with heavy
PAE is extremely high (Bhatara et al., 2006; Fryer et al., 2007).
Therefore, a possible causal effect relationship, or at least a
physiological parallelism can be deducted between ARND and
ADHD (summarized in Table 1).

Attention-deficit/hyperactivity disorder (ADHD) includes a
combination of persistent problems, such as difficulty sustaining
attention, hyperactivity and impulsive behavior. Being also
these aspects alterated in ARND after PAE. Consequently, it
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is reasonable the idea that animal models that exhibits these
characteristics and additionally affects similar CNS circuits and
neuronal systems, as PAE, can be suitable models for the analysis
of the molecular and behavioral basis of those alterations. Finally,
it is fundamental to clearly establish several aspects of the specific
protocols applied, both for PAE and for the behavioral analysis of
their consequences, as well as for ADHD characterization.

Then, although there is abundant literature regarding the
study of PAE and ADHD cognitive and behavioral effects,
nonetheless, the exact etiological factors as well as the underlying
molecular mechanism of pathophysiogy affected by them has
not been fully understood yet. Given the complexity of the
effects elicited by PAE, it is mandatory to perform a more
integral experimental approach, as well as, a wider open
gene expression analysis, including epigenetic alterations, in
order to identify the molecular mechanisms, parenthetically the
molecules, involved in each step of the affection, and to provide
a clear cellular and molecular substrate that further explains the
cognitive and behavioral alterations. In this regard, increasing
the knowledge of the molecular basis involved, would lead us
to a clearer identification of the subjacent cellular and molecular
mechanisms, and therefore serve as a guide to improve not only
the behavioral characterization, but also to a higher progress in
the diagnoses and treatment for those pathological conditions.

Then, experimental paradigms in animal models focusing on the
study of the PAE effects at cellular and molecular levels during
embryonic (fetal) development, in correlation with postnatal
behavioral and cognitive test, in young and adults, are warranted,
and would elicit relevant information about ADHD condition.
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