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Widespread increasing vegetation sensitivity to
soil moisture
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Global vegetation and associated ecosystem services critically depend on soil moisture
availability which has decreased in many regions during the last three decades. While spatial
patterns of vegetation sensitivity to global soil water have been recently investigated, long-
term changes in vegetation sensitivity to soil water availability are still unclear. Here we
assess global vegetation sensitivity to soil moisture during 1982-2017 by applying explainable
machine learning with observation-based leaf area index (LAI) and hydro-climate anomaly
data. We show that LAI sensitivity to soil moisture significantly increases in many semi-arid
and arid regions. LAl sensitivity trends are associated with multiple hydro-climate and eco-
logical variables, and strongest increasing trends occur in the most water-sensitive regions
which additionally experience declining precipitation. State-of-the-art land surface models do
not reproduce this increasing sensitivity as they misrepresent water-sensitive regions and
sensitivity strength. Our sensitivity results imply an increasing ecosystem vulnerability to
water availability which can lead to exacerbated reductions in vegetation carbon uptake
under future intensified drought, consequently amplifying climate change.
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errestrial vegetation is a crucial component in modulating

the exchange of water, energy, and carbon between the

land surface and the atmosphere!~3. At the same time,
vegetation provides multiple essential ecosystem services such as
food production and carbon uptake. The latter is critical for
mitigating climate change by absorbing human-emitted CO,*.
Vegetation requires sufficient energy and nutrients, and also soil
moisture availability is essential, particularly in semi-arid
regions>®. As a result of ongoing climate change, soil moisture
is declining in many regions as a consequence of decreased pre-
cipitation and higher evaporative water demand due to increased
temperatures’. Related to this, the extent of regions where vege-
tation is dominantly controlled by the water supply has
increaseds, although increasing CO, likely alleviates water stress
by improving water use efficiency®. Yet, it remains unclear how
climate change has affected the sensitivity of global vegetation to
soil water availability, and if there are potential hotspot regions
with high vegetation sensitivity to soil moisture where vegetation
is particularly vulnerable to changes in soil moisture availability.
Changes in vegetation water sensitivity relate to multiple pro-
cesses: (i) soil drying and more frequent droughts can lead to
increased sensitivity as water becomes more often limiting for
plant activity!%; (ii) plants can regulate water losses through their
stomata (at the cost of decreased photosynthesis), which can
prevent increased sensitivity to soil moisture through reduced
water consumption!!; and (iii) vegetation composition can affect
ecosystem water sensitivity, for example, herbaceous and woody
plants have different strategies to respond to soil dryness!'?13.
Quantifying and understanding the resulting sensitivity patterns
and changes thereof are fundamental for inferring ecosystem
vulnerability?, and have important implications for developing
land surface models which can then contribute to more accurate
predictions of the future terrestrial carbon sink and global
climate® 1415,

The increasing suite of Earth observations, including recent
satellite-based vegetation and surface soil moisture products, now
present the opportunity to assess the interplay between soil
moisture and vegetation globally!. In fact, leaf area index (LAI)
products and other vegetation indices related to vegetation
greenness and productivity can represent long-term global vege-
tation growth dynamics®19-19, They are routinely employed to
study land-atmosphere interactions as they are sensitive to soil
moisture dynamics, and can diagnose temporal sensitivity to
environmental drivers thanks to their relatively higher signal-to-
noise ratio than photosynthesis-related indicators such as sun-
induced fluorescence”. Furthermore, LAI is readily available as a
key prognostic variable from land surface models (LSMs)?0. From
a modeling perspective, a more accurate representation of LAI
response to soil water stress requires the differentiation between
soil layers, as near-surface soil moisture primarily controls soil
evaporation and precipitation infiltration and co-varies more with
atmospheric conditions?!, while sub-surface soil moisture is a
more relevant plant water source>?2. State-of-the-art soil moist-
ure reanalyses cover multiple layers and allow for comprehensive
analyses of the vegetation-water interplay by benefiting from
satellite-observed surface soil moisture and in-situ multi-depth
soil moisture measurements?24,

Here we investigate the global sensitivity of LAI to soil moisture
and sensitivity trends with observation-based data and model
simulations between 1982 and 2017. For this purpose, we use an
approach of explainable machine learning?” to study the relation-
ship between LAI and soil moisture anomalies (de-trended and de-
seasonalized; Methods: Data pre-processing), which can isolate the
effect of soil moisture across layers on LAI from that of the other
hydro-climate variables (i.e., air temperature, precipitation, vapor
pressure deficit, solar radiation anomalies). Specifically, we employ

the Shapley Additive Explanations (SHAP) method in random
forest modeling to estimate the sensitivity of LAI to soil moisture
(“overall sensitivity” hereafter; Methods: Overall sensitivity; Sup-
plementary Fig. 1). Next to overall sensitivity, we estimate temporal
variations of LAI sensitivity to soil moisture for 3-year-block data
and analyze trends in temporal variations of sensitivity (Methods:
Trends of sensitivity). We perform cross-validation for the random
forest models for both the overall and the 3-year block sensitivities
and disregard grid cells in the case of out-of-bag (OOB) R? < 0. We
use five long-term satellite-derived LAI datasets and ERA5-Land
soil moisture reanalysis?4, as well as modeled data from offline
simulations from 9 TRENDY LSMs. To better understand LAI
response to soil moisture across layers and fairly compare respec-
tive layers in observations and LSMs, we distinguish between near-
surface (0-~10 cm) and sub-surface (~10-~100 cm) soil moisture
for individual products and models (Supplementary Table 1). To
validate the robustness and uncertainty of observation-based
results, we use additional satellite-based vegetation indices (i.e.,
normalized difference vegetation index, NDVI, and kNDVI?%) and
alternative soil moisture reanalysis products (Methods:
Observation-based data). In this study, we explore the sensitivity of
global leaf area index to soil moisture by applying explainable
machine learning to observation-based datasets. We show that this
sensitivity is increasing in many regions of the globe during the last
3 decades, which is not reproduced by land surface models.

Global patterns of LAI sensitivity to soil moisture
We analyze the overall sensitivity of LAI to soil moisture across
the global land area where we disregard (i) irrigated and (ii) non-
vegetated regions (Methods: Auxiliary data), as well as grid cells
where (iii) the random forest model does not perform well (OOB
R2<0) due to scarce vegetation activities or frequent human
management (Supplementary Fig. 2). Observation-based results
show that the area fraction of regions with positive LAI sensitivity
to near-surface soil moisture is slightly higher than negative
sensitivity (Fig. la). Significantly positive sensitivity (p <0.01)
indicates that increases in near-surface soil moisture enhance LAI
dynamics. This is found in (semi-)arid regions such as southern
North America, southern Eurasia, eastern and southern South
America, Australia, South Africa and eastern Africa. Observed
negative sensitivity in many boreal regions indicates that
increased near-surface soil moisture tends to suppress LAI,
potentially associated with the soil water excess such as
waterlogging?’. However, the negative LAI sensitivity to soil
moisture is also likely caused by the confounding effects, because
energy-related variables such as temperature and radiation have
been identified as main controls on LAI in such regions, whereas
soil moisture inversely covaries with these variables?3. Focusing
on sub-surface soil moisture, we find more widespread positive
sensitivity (Fig. 1b), indicating a higher relevance of this moisture
reservoir for LAI owing to the higher amount of plant roots
exploiting this layer than the shallow near-surface layer>?S.
Meanwhile, the magnitude of LAI sensitivity is higher for the
near-surface soil moisture as in this layer there is a relatively high
fraction of coarse roots, which allow for more efficient use of soil
water for vegetation growth?®. Main regional differences between
LAI sensitivity to near-surface and sub-surface soil moisture are
found in the African pantropics where temperature, and hence
evaporative demand, is comparatively high, and precipitation is
comparatively low30 such that typically water is evaporated by
plants or from surfaces, stimulating vegetation growth before
reaching the deeper soil.

The global patterns of LAI sensitivity to soil moisture in LSMs
partly match the observation-based results (Fig. 1c-d). Differences
exist for near-surface soil moisture where extra-tropical regions in
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Fig. 1 Global sensitivity of LAl to soil moisture in the period 1982-2017. a, b LAl sensitivity to near-surface (55;..;) and to sub-surface soil moisture
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-22) from observations (Obs), given as respective ensemble means (Methods: Overall sensitivity). ¢, d Similar to a, b but for land surface models

dSMsub

(Model). e, g Mean differences between observational and model results across climate regimes. f, h Spatial coherence between observational and model
results inferred by correlation coefficients using sub-regional data across climate regimes. All panels apply the two-sided significance test at the p <0.01
level as assessed with Theil-sen regressions for each grid cell, and grid cells which pass the significance test are colored according to the sensitivity values

in a-d. To note that the results are a descriptive measure, as the field significance is not tested.

the northern hemisphere and South Africa are not sufficiently
reflected in the model results, and for sub-surface soil moisture
where the models generally overestimate the positive sensitivity.
When grouping the sensitivity results by the local long-term
aridity and temperature conditions, we find that the observed LAI
sensitivity changes predominantly along aridity gradients, while
the modeled sensitivity tends to respond more strongly to tem-
perature gradients (Supplementary Fig. 3; see aridity definition
from Methods: Auxiliary data). Further comparing the observa-
tional with model results, we find overestimated (underestimated)
LAI sensitivity in wet and hot (dry and cold) regions in the case of
near-surface soil moisture (Fig. le). For sub-surface soil moisture,
the strongest overestimation occurs in dry areas, while the bias is
lower in wet areas (Fig. 1g). The spatial sensitivity patterns agree
more with observational results in the case of sub-surface soil
moisture (Fig. 1f, h).

Non-linear relationships between LAl and soil moisture
across space

Next, we analyze to which extent the differences between the
results from models and observations are related to different
response functions of LAI sensitivity to soil moisture. For this
purpose, we build upon the relationships between significant LAI

sensitivity to available amounts of growing-season soil moisture
(Fig. 2; see Methods: Data pre-processing for growing-season
definition). Observation-based results show that LAI sensitivity to
soil moisture is typically high for dry conditions and decreases
toward wetter conditions for both soil moisture layers. The results
exhibit non-linear relationships (Fig. 2) in line with previous
research using site measurements®. Model-based results are
similar in the case of sub-surface soil moisture, even though with
a more pronounced sensitivity increase towards dry soil moisture
conditions3!. Instead, for the sensitivity to near-surface soil
moisture, we find considerable differences between observations
and models. However, differences between individual models are
substantial for both soil layers (Supplementary Fig. 4). The mis-
match between models and observations and the divergence
between models can be related to different representations of the
processes occurring in the soil-vegetation continuum, roots pro-
file and water potentials in models, which lead to differences in
simulated soil moisture dynamics and soil-vegetation
coupling32-33, Furthermore, soil moisture constraints on carbon
allocation, leaf senescence, phenology, or photosynthesis3!:34 are
uncertain and differ between models, as well as the number and
depths of soil layers, and their consideration for inferring vege-
tation water stress343%. Vegetation water stress can also be related
to atmospheric dryness (vapor pressure deficit) as well as soil
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Fig. 2 Response functions of global LAl sensitivity to soil moisture. a Response functions of LAl sensitivity (as?\f‘ﬁém) to growing-season mean near-surface

soil moisture (growing-season mean SMnear) from observations (Obs) and land surface models (Model). b Similar to a but for LAl sensitivity to sub-
surface soil moisture (asa/\L/éLb)' In a, b, global grid cells with significant LAl sensitivities to soil moisture are included. Two-sided significance tests are done
for each grid cell at the p < 0.01 level as assessed with Theil-sen regressions. The solid line and shaded areas show the median and interquartile ranges of

LAl sensitivity. Probability distributions of near-surface soil moisture in observations and models are shown at the bottom of each plot. Results here are

based on ensemble-product means, while results from individual products or models are presented in Supplementary Fig. 4.
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computed by 3-year blocks between 1982 and 2017. The y-axis denotes the change since 1982 in respective products or models. Solid lines denote the
median results from ensemble observations (Obs) and land surface models (Model); Shaded areas denote interquartile ranges of LAl sensitivity from

multiple LAI products and models; Text denotes slopes of trends; ** denotes passing the two-sided significance test as assessed with Mann-Kendall at
p <0.01 (Methods: Sensitivity trends). b Trends of LAl sensitivity to sub-surface soil moisture in observations and models using ensemble means. ¢ Similar
to b but for land surface models. Insets indicate the area fraction of decreasing and increasing trends within the global land area, excluding irrigated and
non-vegetated regions. Light blue and red colors denote insignificant changes (p > =0.1); dark blue and red colors denote significant changes (p <0.1). In
b, ¢, two-sided significance tests are done for each grid cell at the p < 0.1 level as assessed with Mann-Kendall's test. See Methods: Auxiliary data about the

determination of irrigated/non-vegetated and non-soil-moisture controlled regions.

dryness, while their relative roles are not fully understood and
hence difficult to capture in models!>. Nevertheless, the difference
between the soil moisture amounts of reanalysis and LSMs should
be interpreted with caution due to different soil and vegetation
types employed in the reanalysis scheme versus that of LSMs2436,

Increasing LAl sensitivity to soil moisture

Moving beyond overall LAI sensitivity to soil moisture, we now
analyze changes in the 3-year-block sensitivity to study their
temporal variability from 1982 to 2017 (Fig. 3). For this purpose,
we only consider soil moisture-controlled regions with sig-
nificantly positive overall LAI sensitivity to soil moisture in
observations and models to mitigate the influence of confounding

effects (Fig. 1). We find significantly increasing trends (p <0.01)
for observed LAI sensitivity to sub-surface soil moisture after
averaging global results (Fig. 3a). LAI sensitivity increases in
~30% of the study area and mainly occurs in central and southern
North America, central Eurasia, India, Australia, eastern Africa,
central and eastern South America (Fig. 3b). By contrast, LAI
sensitivity decreases in ~15% of the study area, occurring in
central South Africa, the African and Amazon extratropics,
Central Europe, eastern and central Asia (Fig. 3b). Note that Fig.3
focuses on sub-surface soil moisture for simplicity while the
observed LAI sensitivity to near-surface soil moisture is provided
in Supplementary Fig. 5 also with significantly increasing trends
globally. In addition, we validate the robustness of our metho-
dology by (i) testing different thresholds for the random forest
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model performance as indicated by the OOB R? (Supplementary
Fig. 6) and (ii) repeating the analysis with 5-year blocks (Sup-
plementary Fig. 7); we find similar results in both cases.

By contrast, there is no trend in LAI sensitivity to sub-surface
soil moisture in TRENDY model simulations after averaging
global results (Fig. 3a). The spread between the results of indi-
vidual models is substantial, as indicated by the orange shading.
We find similar extents of areas with regionally increasing and
decreasing trends, respectively (Fig. 3c). Furthermore, we confirm
similar results when focusing on respective soil moisture-
controlled study areas inferred from either observations or
models as defined from positive overall LAI sensitivity to soil
moisture (Supplementary Fig. 8).

Attribution of trends of LAI sensitivity to soil moisture

We perform an attribution analysis to understand changes in LAI
sensitivity to sub-surface soil moisture. We exclusively focus on
sub-surface soil moisture in this context as LAI is often more
strongly controlled by soil moisture in this layer, and the observed
coupling between LAI and sub-surface soil moisture is captured
relatively well by land surface models (Fig. 2). We explain sen-
sitivity trends inferred from observations by relevant hydro-
climate and ecological variables®10:1213 (Methods: Attribution
analysis). We find that the observed spatial trend patterns are
strongly related to (i) overall LAI sensitivity to sub-surface soil
moisture and (ii) inter-annual precipitation trends (Supplemen-
tary Fig. 9). We group the results from Fig. 3b with respect to the
identified main controls (Fig. 4a) and find that positive trends in
LAI sensitivity to sub-surface soil moisture are strongest for
regions with the largest overall sensitivity and the most sub-
stantial decrease in precipitation. Areas with high overall sensi-
tivity include large ratios of grasses and shrubs which have strong
roots’ hydraulic controls but weak stomatal regulation!!>12. Small
decreases in water supply tend to trigger drastic changes in LAI,
reflecting a non-linear vegetation water response’’. In a few
regions, we find increasing LAI sensitivity despite weakly
increasing precipitation trends, which relates to increased eva-
porative demand due to increasing temperatures. Moreover, our
results suggest that deeper soil moisture or groundwater can
generally not sustain a constant vegetation water sensitivity by
compensating for precipitation decreases. Soil moisture trends
also play a role, even though they are less prominent than
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precipitation trends. This might be related to the higher obser-
vational uncertainty in soil moisture (trends) than precipitation
(trends) owing to more indirect measurements and hetero-
geneous soils. Trends in energy-related variables (temperature,
radiation, vapor pressure deficit), vegetation composition and
changing composition (see Methods: Auxiliary data for non-tree
cover) are of secondary importance.

We also evaluate the model-based spatial patterns of LAI sensi-
tivity trends against the identified main controls (Fig. 4b). We find
that precipitation decreases (increases) lead to increased (decreased)
LAI sensitivity to soil moisture, consistent with the observation-
based results. The role of overall LAI sensitivity in determining
sensitivity trends in models is less clear than in the observations,
suggesting that this key deficiency is behind the reason for the poor
modeled trends in LAI sensitivity (Figs. 1 and 2).

Our observed results might be affected by three sources of
uncertainty: (i) the satellite-based LAI products used in the analysis
regarding their retrieval uncertainties and representativeness of the
greenness and vegetation productivity, (ii) uncertainties in the soil
moisture reanalysis products which rely on modeling assumptions,
can be more pronounced for sub-surface soil moisture, as this layer
does not have direct satellite data to assimilate, and (iii) artifacts in
the long-term LAI time series derived from the Advanced very high-
resolution radiometer (AVHRR) instrument. We address these
uncertainties to assess the robustness of our main findings. First, our
results show great consistency in the overall sensitivity (Supple-
mentary Fig. 4) and sensitivity trends (indicated by the gray shading
in Fig. 3a and Supplementary Fig. 5a) derived from ensemble long-
term LAI products. The same analysis conducted on NDVI and
kNDVI, alternative vegetation indices related to greenness and
vegetation productivity, are consistent with LAI results (Supple-
mentary Fig. 10). We also find consistency between our results and
the ones obtained from Moderate Resolution Imaging Spectro-
radiometer (MODIS), which is characterized by higher quality but
covering a shorter period than AVHRR (Supplementary Fig. 10).
Second, our main results hold when employing different state-of-
the-art soil moisture reanalysis products, which illustrate that our
analysis is robust against different designs of model schemes
(decreasing sensitivity patterns towards increasing soil moisture in
Supplementary Fig. 4; increasing sensitivity trends in Supplementary
Figs. 11 and 12). Moreover, we perform our analysis with soil
moisture datasets that are independent of reanalysis products
applying process-based models; One derived with machine learning-
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Fig. 4 Trends of LAl sensitivity to sub-surface soil moisture (Trends of -2tAL

SAAL) grouped by precipitation trends and overall sensitivity (Overall ;24!
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a Colors indicate median values of trends in LAl sensitivity to sub-surface soil moisture in observational ensemble means (Obs) grouped by precipitation
trends and overall sensitivity; numbers of grid cells in each group are shown in white. b Similar as in a but for ensemble means of land surface models

(Model).
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based extrapolation of in-situ measurements (SoMo.ml)3 shows
similar global patterns of overall LAI sensitivity and global patterns
of sensitivity trends obtained with ERA-Land for the same time
period; And another one derived from satellite observations (ESA
CCI soil moisture)*? confirms our main findings of significantly
increasing global trends of LAI sensitivity to soil moisture (Supple-
mentary Fig. 13). We further note that other water sources such as
deep soil moisture, groundwater and bedrock water can also influ-
ence vegetation productivity?2. We account for this by using satellite-
observed total terrestrial water storage data from GRACE*, and find
that sub-surface soil moisture reanalysis can largely capture the
vegetation response to deep soil water in many regions, and LAI is
even more related to the soil moisture reanalysis as it probably
reflects more strongly the root-zone water availability (Supplemen-
tary Fig. 14). Third, issues such as sensor drifts in the AVHRR
instrument can potentially introduce artifacts in LAI
retrievals!81942-44 We largely account for potential biases and dis-
crepancies between LAI products by using de-trended and de-
seasonalized LAI data (Methods: Data pre-processing). Next to this,
we also find that potentially spurious trends in the inter-annual
variability of LAI cannot efficiently explain the observed patterns of
LAI sensitivity trends (Supplementary Fig. 9). The consensus of most
LAI products in terms of global patterns of increasing trends of LAI
sensitivity to soil moisture further supports the robustness of our
findings (Supplementary Fig. 15).

In conclusion, we show that the sensitivity of LAI to soil
moisture has significantly increased in soil water-controlled regions
during 1982-2017. This is driven primarily by decreasing water
supply (i.e., precipitation) and modulated by LAI sensitivity to
water availability. Our study illustrates that understanding changes
in the soil moisture-vegetation interplay requires jointly consider-
ing changing climate®10 and vegetation characteristics!>13 in the
form of overall sensitivity. Our results are derived through
explainable machine learning, which can essentially isolate the
influence of soil moisture on LAI from that of other relevant dri-
vers, and thereby goes beyond purely correlation-based analyses.
Land surface models fail to capture the increasing LAT sensitivity to
soil moisture, related to an inaccurate representation of overall LAI
sensitivity in terms of spatial patterns and magnitude. Overall, the
detected increasing vegetation sensitivity to soil moisture reflects
enhanced ecosystem vulnerability to soil dryness. By identifying
regions of strong and increasing sensitivity, our study highlights
hotspot areas where decreasing soil moisture trends can induce
severe impacts on vegetation and related carbon-climate feedbacks.

Methods
Observation-based data. We use five satellite-based LAI products that cover the
period 1982-2017. This allows us to assess the robustness of our results with respect
to the underlying differences in post-launch sensor calibration, corrections of
orbital shifts and sensor degradation, as well as cloud and atmospheric
corrections#4. In particular, we employ the third generation Global Inventory
Modeling and Mapping Studies LAI (GIMMS3g V1), the Land Long Term Data
Record LAI (LTDR V5)%, the Global Land Surface Satellite LAI (GLASS V40)47,
the Long-term Global Mapping LAT (GLOBMAP V3)#3, and the GEOV2-AVHRR
LAI products (https://www.theia-land.fr/wp-content/uploads/2020/11/THEIA-
MU-44-0369-CNES-GEOV2-AVHRR-Product-User-Manual-V2.pdf)4°. We note
that the individual long-term LAI products used within our LAI ensemble account
to different extents for biases such as sensor drifts, resulting in discrepancies in
their estimated inter-annual trends and variability. We account for these dis-
crepancies by removing long-term trends and mean seasonal cycles, as well as by
confirming that potentially spurious trends in the inter-annual variability of LAI do
not strongly influence our inferred LAI sensitivity trends. Furthermore, we find
that LAI sensitivity trends from 4 out of 5 individual LAI products are significantly
increasing which supports our main results. The exception is GLASS LAI which is
known for its considerable differences compared with the other products in terms
of trends and variability for pre-MODIS time period*?, likely contributing to its
divergent long-term changes in LAI sensitivity (Supplementary Fig. 15).

To further validate our results, we additionally use GIMMS3g vl NDVI from
1982 to 2015 as an alternative vegetation index that does not rely on radiative
transfer modeling, and similar products based on a different instrument, MODIS:

MOD15A2H LAI and MOD13C2 NDVI from 2000 to 2017. Moreover, Kernel
NDVI, which uses nonlinear generalization to better monitor vegetation
productivity, is retrieved from MOD13C2 NDVI by following Camps-Valls et al.,
202129, using the recommended length-scale parameter of 0.5. MODIS products
are selected with good quality flags, thereby ignoring low-quality data. We are not
considering alternative vegetation indices or products derived from satellite
observations such as sun-induced fluorescence and vegetation optical depth as they
usually provide shorter records which are less suitable for long-term trend analysis.
More specifically, (i) sun-induced fluorescence has a lower signal-to-noise ratio
compared with the employed greenness-related indices® and (ii) vegetation optical
depth is more related to vegetation water content while we aim to focus on
productivity and greenness>’.

To keep consistency with LSMs-related analyses, we employ CRU-JRA v3.26
meteorological datasets, including temperature, surface downward solar radiation,
vapor pressure deficit (VPD), total precipitation®->? (https://www.dropbox.com/
sh/nlwz4n4r2k020ovb/AAC7BqTjS8fe4CR2IWW AfnRMa?dl=0). To analyze the
water constraint of observational LAI we use soil moisture from the ERA5-Land
reanalysis?>* where we use layer 1 (0-7 cm depth) as near-surface soil moisture and
the weighted mean of layers 2 (7-28 cm) and 3 (28-100 cm) as sub-surface soil
moisture. This state-of-the-art reanalysis data has been successfully applied to
understand vegetation responses to water availability®3->4, Soil moisture estimates
from deeper layers in ERA5-Land are less constrained by observations, which is
also true for its predecessor ERA-Interim/Land. In fact, the latter soil moisture
products have been successfully evaluated many times against in-situ observations
from global hydrology networks and has also been widely compared with other soil
moisture reanalyses>>~60.

We consider four additional global soil moisture products to validate our
results: (i) the Modern-Era Retrospective analysis for Research and Applications-
Version 2 (MERRA-2, 1982-2017)°1, (ii) the Global Land Evaporation Amsterdam
Model (GLEAM v3a, 1982-2017)°2; (iii) a machine-learning-based product trained
with multi-layer in-situ measurements (SoMo.ml, 2000-2017)3%; and (iv) the
satellite-derived ESA CCI surface soil moisture (1982-2017)%. Since the validation
of the newly published ERA5-Land soil moisture reanalysis has only recently been
done using in-situ measurements during 2010-2018%%; the usefulness of this
product for longer-term analyses as in our study can be deduced from successful
long-term validations of related products from the European Centre for Medium-
Range Weather Forecasts (ECMWF)>>%6 which are based on the same land surface
model and similar parameterisations. Additionally, the GLEAM soil moisture
reanalysis which we also use is validated against over one thousand in-situ
measurements during 1980-2015%2. The global soil moisture product SoMo.ml
takes advantage of large numbers of long-term in-situ measurements with machine
learning algorithms, such that it can learn the relationship between meteorological
input data and resulting soil moisture dynamics. Applying these machine learning
algorithms in data sparse regions to obtain a global gridded soil moisture product is
a way to transfer knowledge between data-rich and data-poor regions. SoMo.ml is
limited by its time coverage from 2000 to 2017 but supports our main results by
confirming the global patterns of overall LAI sensitivity and the global patterns of
sensitivity trends obtained with ERA5-Land for the same time period
(Supplementary Fig. 13). Similar to the results obtained with the ERA5-Land
reanalysis soil moisture, ESA CCI yields an increasing trends of LAI sensitivity to
soil moisture (Supplementary Fig. 13). The trend based on ESA CCI data seems
more pronounced, even though the absolute values of the LAI sensitivity can not be
compared due to different soil moisture units. Given that similar LAI sensitivities
to soil moisture are derived with multiple independent soil moisture products, we
note that our findings are robust despite the variability between existing soil
moisture products.

To account for the potential vegetation responses to deep water sources, we
additionally study LAI sensitivity to total water storage data from GRACE*!.
GRACE measures the anomalies of the Earth’s gravity field that can inform relative
changes in the land water storage. Due to its limited observed time period 2003-
2017, we only compare the overall LAI sensitivity to total water storage and to sub-
surface soil moisture for this time period.

Soil layers considered for near-surface and sub-surface soil moisture are listed
in Supplementary Table 1. The unit of all considered soil moisture data is
converted from m3/m3 to mm using the respective layer depths to be consistent
with the soil moisture unit used in land surface models; however, this conversion
could not be applied for ESA CCI soil moisture since the observation depth differs
in time and space depending on the penetration depth of the microwave frequency
and the soil wetness, so that the absolute values of LAI sensitivity to soil moisture
are not comparable with that of the other products*!.

Model data. To illustrate the performance of LSMs with the aspect of vegetation-
soil moisture interplay, we simulate monthly LAI and multi-layer soil moisture
during 1982-2017 using 9 models from the TRENDY v7. These models are ISAM,
LPX-Bern, CLM5.0, JSBACH, JULES, ORCHIDEE-CNP, LPJ-GUESS, VISIT, and
CABLE-POP. Factorial simulations are derived from Scenario 3, which include
variable CO2, climate, and land-use changes. To thoroughly study interactions
within LSMs and to fairly compare model results with observations, we use the
same climate forcing CRU-JRA v2.0 datasets®>? (https://catalogue.ceda.ac.uk/
uuid/7f785c0e80aa4df2b39d068ce7351bbb) including temperature, surface
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downward solar radiation (solar radiation), vapor pressure deficit (VPD; derived
from temperature and relative humidity), total precipitation in all observational
and LSMs-related analyses. All the data are derived by following the TRENDY-v7
protocol®3%4 We manually aggregate the multi-layer soil moisture into near- and
sub-surface soil moisture. The near-surface soil moisture in the article refers to the
layer approaching 10 cm, while sub-surface soil moisture refers to the layer
approaching 100 cm (Supplementary Table 1). For LSMs including only 2 layers we
leave it as it is. We note that also the observation-based results are subject to
uncertainty, in particular related to the soil moisture reanalysis data which can
potentially be degraded by imperfect soil and vegetation type representations in the
land surface model underlying the reanalysis. But the sub-surface soil moisture
reanalysis can benefit from the assimilation of other data streams such as pre-
cipitation and radiation, as well as the satellite-based near-surface soil moisture
assimilation helps to simulate sub-surface soil moisture through the infiltration
process and mitigate model errors.

Auxiliary data. The VCF5KYR fraction of vegetation cover data includes three
types of land cover and land use fraction: tree cover, non-tree cover, and bare
ground®. The global study area is defined by the total vegetation cover (sum of tree
and non-tree cover) > 5% using 1982 -2016 averages and by the fraction of irri-
gation cover < 10% (Data are collected around 2005; http://www.fao.org/aquastat/
en/geospatial-information/global-maps-irrigated-areas/latest-version/)®. Irrigated
or non-vegetated regions are the remaining land areas except the global study area.
Non-soil-moisture controlled regions are defined as areas where LAI is not posi-
tively sensitive to soil moisture in observations and models. The area fraction in
global maps is the number of grid cells weighted by the actual areas according to
the geographic coordinates. The VCF5KYR fraction of vegetation cover data is also
used to distinguish non-tree cover fraction by the ratio between non-tree cover
(e.g., grasses and shrubs) and total vegetation cover as one of the ecological vari-
ables reflecting vegetation composition in the attribution analysis.

Climate regimes are applied to analyze global patterns of overall LAI sensitivity,
and defined by the aridity index and long-term mean temperature data using
ERA5-Land data. The aridity index is calculated as the ratio of the long-term mean
net radiation and unit-converted precipitation®’. Aridity values higher than 1
denote semi-arid regions or dry conditions.

Data pre-processing. We provide a flowchart of data-processing and the sensi-
tivity analysis in Supplementary Fig. 1. All observational and LSMs data are
aggregated to monthly temporal resolution, and 0.5°x0.5° spatial resolution,
including that a few models are upscaled regarding spatial resolutions. In all
experiments and all vegetation and hydro-climate variables, we select growing-
season data by temperature>5°C and ensemble LAI means from the original sig-
nals>0.5 to keep a temporal consistency, whereas additionally negative values of
vegetation indices are filtered out. Seasonality and long-term trends are removed to
obtain the anomaly of every single vegetation and hydro-climate variable by sub-
tracting long-term mean monthly signals and by subtracting a locally weighted
smoothing filter®® with a smoothing span of 0.4, respectively. In this way, we
exclude long-term common trends derived by changes in the equilibrium state,
such as long-term successional cycles or human overgrazing. We also largely
exclude biases from multi-sensor shifts and focus specifically on short-term
vegetation responses to soil moisture anomalies.

Overall sensitivity. Note that overall sensitivity, temporal variations of sensitivity
and sensitivity trends are first computed for each observational product (or land
surface model) and then averaged across products to obtain more robust multi-
product estimates.

We use explainable machine learning (SHapley Additive exPlanations) to study
LALI sensitivity to soil moisture availability by disentangling the contribution of (i)
near-surface soil moisture to LAI anomalies from the influence of other variables
including sub-surface soil moisture and (ii) similarly of sub-surface soil moisture
from the influence of other variables including near-surface soil moisture. For this
purpose, we first train Random forests models and then apply SHapley Additive
exPlanations (SHAP) to isolate the marginal contributions of each predictor on the
target variable. Random forests are one of the data-driven machine learning
algorithms based on a bootstrap aggregating strategy for improving results stability,
and it requires no statistical assumptions on predictors and target variables using
sufficient numbers of data®.

For each LAI product from observational data or LSMs, we treat the LAI
anomaly as the target variable and corresponding hydro-climate anomalies as
predictors by a common hyperparameter setting optimized by grid-cell level tests
(numbers of estimators: 100; maximum features: 30%; random state: 42). We
collect all predictors and target data during 1982-2017 from one grid cell and the
surrounding grid cells (3x3 shape) to train a model for the core grid cell if more
than 50 data points are included. We remove grid cells that have model
performance worse than the mean of training data itself using cross-validation out-
of-bag score (OOB R? > 0). We note that the rather low threshold (OOB R2 > 0) is
selected because of a typically significantly decreased model performance in
predicting global vegetation productivity for anomalies compared to time series

that include the mean seasonal cycles>”?, while it can still be efficiently used to

study relationships between predictor variables and targets. Regions with R% < 0 are
mostly associated with very low LAI variability or frequent human management
(Supplementary Fig. 2), and the increasing thresholds of OOB R? do not affect our
main conclusions (Supplementary Fig. 6).

For one trained model, we apply SHAP dependence method to isolate marginal
contributions of near-surface (or sub-surface) soil moisture on the LAI anomaly”?.
We define overall LAI sensitivity as the slope estimated from Theil-sen regression
between SHAP dependence for LAI and near-surface (or sub-surface) soil moisture
anomalies by assuming that grid cell-level interaction between LAI and soil
moisture is nearly linear>. Overall sensitivity is first computed for each
observational LAI product or land surface model before averaging the results to
yield more robust multi-product estimates.

Because the sensitivity is inferred by a linear regression, it should not be
expected to represent the full interactions between vegetation and soil moisture per
grid cell. This method combines the advantages of bootstrap aggregating and non-
distribution-assumption by random forest modeling, as well as advantages of global
interpretations being consistent with the local explanations in the SHAP
algorithm>7172, hence strengthening the robustness of the results than using
traditional statistical methods.

Trends of sensitivity. Grid cells with negative overall sensitivity or non-significant
(p>=0.1) results are defined as non-soil-moisture controlled regions, meaning
that energy-related variables such as radiation could dominantly control vegetation
growth, and the detected dependence on water is likely due to confounding effects.
Therefore, we remove these grid cells in the first place of studying changes in
vegetation-water relationships. To address temporal variations of LAI sensitivity to
near- and sub-surface soil moisture, respectively, we split the data from the entire
1982-2017 analysis period into twelve 3-year blocks (1982-1984, 1985-1987, ...,
2015-2017). We train models independently again by 3 x 3 data points for each
core grid cell if more than 15 data points are included, and infer temporal sensi-
tivity by SHAP and Theil-sen regression by further assuming that grid cell-level
interaction between LAI and soil moisture within 3-year blocks is nearly linear. We
remove grid cells that have model performance worse than the mean of training
data itself using cross-validation out-of-bag score and show non-significant

(p >=0.1) results from Theil-sen regression.

We use the Mann-Kendall’s test to detect the trends of changes in LAI
sensitivity which does not require data with normal distribution’3. To confirm the
3-year split would not bias results, we also detect trends of 5-year-block sensitivity
and find no significant differences (Supplementary Fig. 7).

Attribution analysis. To better understand trends of LAI sensitivity to sub-surface
soil moisture, we again apply random forests and the SHAP attribution method to
predict trends of LAI sensitivity to sub-surface soil moisture®’!. We focus on sub-
surface soil moisture in this context as LAI is often more strongly controlled by this
layer. Note that at the same time, near-surface soil moisture is still included as a
predictor in the random forest model to infer LAI sensitivity to sub-surface soil
moisture, but the respective sensitivity to near-surface soil moisture is not eval-
uated. We treat sensitivity trends as the target variable, and multiple hydro-climate
and ecological factors from growing seasons as predictors to train a model using
global grid cells, and then we employ SHAP values to quantify marginal con-
tributions of each single factor on sensitivity trends and then rank global-relevant
variable importance by SHAP importance algorithm (absolute weighted averaged
marginal contributions from each predictor variable). After identifying the domi-
nant factors for sensitivity trends (Supplementary Fig. 9), we present combined
impacts from the top two important variables which are precipitation trends and
overall sensitivity and elucidate potential mechanisms across grouped ecosystems
(Fig. 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Five long-term LAI products GIMMS3g V1, LTDR V5, GLASS V40, GLOBMAP V3 and
GEOV2-AVHRR are available at http://sites.bu.edu/cliveg/datacodes/, https://ladsweb.
modaps.eosdis.nasa.gov/, http://www.glass.umd.edu/, https://zenodo.org/record/4700264#.
YRPUpNMzZIc, and https://www.theia-land.fr/en/geov2-avhrr-monitoring-changes-in-
vegetation-on-a-global-scale-over-the-last-38-years/, respectively. GEOV2-AVHRR was
produced and distributed by CNES based on the algorithm developed by CREAF and
INRAE in the framework of the Theia Land Data Centre. GIMMS3g vl NDVI, MOD15A2H
LAI and MOD13C2 NDVT are available at https://lpdaac.usgs.gov/products. ERA5-Land
climate and soil moisture reanalysis datasets are available at https://www.ecmwf.int/en/era5-
land. GLEAM soil moisture reanalysis is from https://www.gleam.eu/. MERRA-2 soil
moisture reanalysis is from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/.
Fractional vegetation cover is from the AVHRR vegetation continuous fields products
(VCF5KYR, https://lpdaac.usgs.gov/products/vcf5kyrv001/). Simulations from TRENDY
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land surface models are available on request to S.S. (s.a.sitch@exeter.ac.uk) and P.F.
(p-friedlingstein@exeter.ac.uk).

Code availability

The codes required for reproducing the results and figures in the main text have been
deposited at https://doi.org/10.5281/zenodo.6554966, as well as the data to run the codes
are available at https://doi.org/10.5281/zenodo.6445997.
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