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Abstract
Hippocampal place cells represent different environments with distinct neural activity patterns.

Following an abrupt switch between two familiar configurations of visual cues defining two envi-

ronments, the hippocampal neural activity pattern switches almost immediately to the

corresponding representation. Surprisingly, during a transient period following the switch to the

new environment, occasional fast transitions between the two activity patterns (flickering) were

observed (Jezek, Henriksen, Treves, Moser, & Moser, 2011). Here we show that an attractor neu-

ral network model of place cells with connections endowed with short-term synaptic plasticity can

account for this phenomenon. A memory trace of the recent history of network activity is main-

tained in the state of the synapses, allowing the network to temporarily reactivate the

representation of the previous environment in the absence of the corresponding sensory cues.

The model predicts that the number of flickering events depends on the amplitude of the ongoing

theta rhythm and the distance between the current position of the animal and its position at the

time of cue switching. We test these predictions with new analysis of experimental data. These

results suggest a potential role of short-term synaptic plasticity in recruiting the activity of differ-

ent cell assemblies and in shaping hippocampal activity of behaving animals.
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1 | INTRODUCTION

The hippocampus plays a critical role in spatial memory (Morris, Garrud,

Rawlins, & O’Keefe, 1982; Nakazawa, McHugh, Wilson, & Tonegawa,

2004; Scoville and Milner, 1957). Neurons in the hippocampus fire at

specific locations in the environment, the place fields (O’Keefe and

Dostrovsky, 1971), and their activity is modulated by the ongoing theta

rhythm (Buzsaki, 2002; Vanderwolf, 1969). The ensemble of active

place cells in an environment defines a “map” of that environment

(O’Keefe and Nadel, 1978). Partially overlapping populations of place

cells are active in different environments (Muller and Kubie, 1987;

Wills, Lever, Cacucci, Burgess, & O’Keefe, 2005). This phenomenon is

referred to as global remapping (Fyhn, Hafting, Treves, Moser, &

Moser, 2007; Leutgeb et al., 2005). The activation of a map is deter-

mined both by external sensory inputs (Muller and Kubie, 1987) and

self-motion cues from the medial entorhinal cortex (Fyhn et al., 2007;

McNaughton et al., 1996; Wang, Romani, Lustig, Leonardo, & Pastal-

kova, 2015).

Jezek et al. (2011) examined the dynamics of global remapping in

the CA3 region of the hippocampus following an abrupt switch of vis-

ual cues (“teleportation”). Two sets of visual cues elicited the activity of

two different maps. During a few seconds following the abrupt switch

in sensory cues, hippocampal activity transiently alternated between

the two maps before settling into the new map (flickering). The*These authors contributed equally to this work
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transient nature of flickering suggests the presence of some form of

short-term memory. Following teleportation, the correlation between

the instantaneous neural activity and the representation of the previ-

ously visited environment almost vanishes (Jezek et al., 2011), suggest-

ing that short-term memory cannot be maintained by reverberatory

activity in CA3. These findings add to the evidence that place cell activ-

ity is not entirely driven by sensory cues but rather influenced by inter-

nally generated and history dependent activity (Cei, Girardeau, Drieu,

Kanbi, & Zugaro, 2014; Diba and Buzs�aki, 2007; Foster and Wilson,

2006, 2007; MacDonald, Lepage, Eden, & Eichenbaum, 2011; Pastal-

kova, Itskov, Amarasingham, & Buzsaki, 2008; Pfeiffer and Foster,

2013).

Internal representations of different environments and the spatial

locations within the environment have been hypothesized to be stored

in the form of attractor states in hippocampal circuits (McNaughton

and Morris, 1987; Treves and Rolls, 1992; Tsodyks, 1999). According

to the continuous attractor neural networks (CANN) modeling frame-

work, each map is composed of labeled populations of neurons, where

each neuron encodes a different position in the environment (Tsodyks

and Sejnowski, 1995; Tsodyks, Skaggs, Sejnowski, & McNaughton,

1996). The synaptic strength between neurons decreases with the dis-

tance between the positions encoded by the neurons. This local excita-

tion, together with long-range inhibition, promotes the formation of a

spatially localized activity profile on the map. CANN models can

encode multiple spatial maps by superimposing synaptic structures

related to place field locations in the corresponding environments.

Global inhibitory feedback induces a competition between the maps

(Battaglia and Treves, 1998; Monasson and Rosay, 2015; Samsonovich

and McNaughton, 1997; Hedrick & Zhang, 2016).

In the CANN framework, the switch in sensory cues would cause

the hippocampal model network to undergo a fast transition to the cor-

responding map, resulting in instantaneous remapping. The mechanism

for reverse transitions (flickering) is less obvious. Flickering might be

triggered by random fluctuations in population activity (Stella and

Treves, 2011), but this would not account for the transient dynamics

of flickering. To explain the transient nature of the flickering phenom-

enon, we considered CANN with short-term synaptic plasticity (STP,

e.g. Fung, Wong, Wang, & Wu, 2012).

There are several indications of STP presence in area CA3 of the

hippocampus (Miles and Wong, 1986; Salin, Scanziani, Malenka, & Nic-

oll, 1996; Selig, Nicoll, & Malenka, 1999; Guzman et al., 2016). CANN

with STP can account for several circuit dynamics observed in the hip-

pocampus, such as phase precession, activity replays, and activity during

the delay period of a spatial memory task (Romani and Tsodyks, 2015;

Wang et al., 2015). In this contribution we show that CANN whose syn-

apses are endowed with STP can account for the appearance of flicker-

ing events following the switch of environments. More specifically, the

recurrent connections between neurons that were active in the previ-

ous environment remain temporarily facilitated following the switch in

the cues. During a few theta cycles following the switch, the map of the

new environment that receives stronger sensory inputs and the previ-

ously active map with facilitated recurrent connections compete via

global inhibition. As a result, the previous map can be transiently reacti-

vated due to theta modulations of population activity. We further test

model predictions by analyzing data from Jezek et al. (2011).

2 | METHODS

2.1 | The model

We modeled the CA3 neural network as a network that stores the

maps of two 2D environments (Figure 1a). To avoid complications due

to boundary conditions, each environment was modeled as a torus of

units with mutual inhibition between the tori. Each unit can be thought

of as representing a pool of neurons with highly overlapping place

fields. The similarity in the firing of place cells with nearby preferred

locations allows for the definition of a firing rate (m), representing the

average spiking activity of the pooled neurons. The connectivity

between the units depends on the distance between the locations

encoded by the units (Figure 1b) (Ben-Yishai, Bar-Or, & Sompolinsky,

1995; Conklin and Eliasmith, 2005; Pinto and Ermentrout, 2001;

Romani and Tsodyks, 2010; Wilson and Cowan, 1973; Zhang 1996).

Further, there are inhibitory connections between all units. Each unit

receives a theta-modulated input and a place specific input (see below).

The network dynamics is described by the following equations
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where miðtÞ is the firing rate of unit i with two-dimensional place field

center ðuk;1
i
;uk;2

i
Þ in map k. Each unit i in the network (i51. . .N) is

characterized by a binary vector of selectivity for the two environments,

nki , where i51. . .N and k 5 1,2. The selectivity for each environment

(k) is assigned randomly from large pool of units such that nki 51 with

probability f, and zero otherwise (f 5 0.25). In the Supplement Informa-

tion Figure S12 we plot the dependence of the number of flickering

events on f. Following assignment we only simulated the units that had

assignment to one of the maps such each map contains exactly 2,500

units. With this choice of network size the linear spatial resolution in a

map is 2p
50 rad. s is the integration time constant of the units (chosen to

be of the same order of magnitude as the typical membrane time con-

stant, tens of milliseconds), J1 is the synaptic efficacy of the distance

dependent component in the network connectivity; J0 determines the

strength of the uniform feedback inhibition (Figure 1b). We re-analyzed

the experimental data from Jezek et al. (2011) and checked whether

the number of flickering events increases during each day. Increase in

events number may imply learning and therefore not uniform and

increased synaptic connectivity between the map. We did not find any

increase in flickering events, therefore we conclude that there is no

learning that connect the 2 maps (Supplamentary Information Figure

S13). I0 is the background input. g(z) is the transfer function of the neu-

rons; For large negative inputs, the firing rate increases exponentially
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with the input, while for large positive inputs g(z) is linear. a determines

the width of the transition region between the exponential and the lin-

ear regimes. The shape of the transfer function may reflect heterogene-

ity in excitability of single neurons within a rate unit. The transfer

function does not include a saturating non-linearity at high input

because the firing rate of the units are far from physiological saturation

levels. The connections between the units are endowed with activity

dependent short-term synaptic plasticity (Figure 1c). Synaptic efficacy is

modulated by the fraction of available synaptic resources (x) and the

release probability (u). The release probability is increased (facilitated)

every time a spike arrives; therefore it increases with presynaptic

firing rate, while synaptic resources decrease following a spike and

therefore decrease with presynaptic firing rate. In the absence of pre-

synaptic firing, x and u recover to their baseline values, 1 and U, with

time constants sr and sf, respectively (e.g. Tsodyks, Pawelzik, & Mark-

ram, 1998):

dui
dt

5
U2uiðtÞ

sf
1Uð12uiðtÞÞmiðtÞ

dxi
dt

5
12xiðtÞ

sr
2uiðtÞxðtÞimiðtÞ

(2)

All units receive an external input, Ii
ext
ðtÞ, which is composed of a

theta modulated input, IuðtÞ5Ausin ð2pfutÞ, with amplitude Au and fre-

quency fu510Hz, and a moving localized input.

IiextðtÞ5IuðtÞ1ðAi
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i
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The amplitude of the localized input Ai
local is composed of two terms;

one denotes the contribution from external cues that do not change

upon switching (A1) while the other originates from the cues (A2) that

change upon teleportation, (Figure 1). Therefore the external cues are

segregated into two types, depending on whether they are changed or

maintained upon teleportation

ð/1ðtÞ;/2ðtÞÞ denotes the animal location, []1 is the linear thresh-

old function. For units that belong to the map that encodes the current

environment Alocal 5 A11A2 while for the other units Alocal 5 A2.

In most network simulations we chose ð/1ðtÞ5/2ðtÞÞ as the virtual

animal trajectory. For the results presented in Supporting Information

Figure S3, we used real animal trajectory that were taken from Jezek et al.

2011.

In some of the simulations (see results) we added colored

noise (a time correlated noise) input hiðtÞ to the units (with time

constant sN chosen to be the same as the time constant of inte-

gration of the rate units), that behaves according to the following

equation:

sN
dhi

dt
52hi1AnniðtÞ (4)

niðtÞ is a spatially uncorrelated Gaussian white noise.

FIGURE 1 Schematic diagram of the model. (a) Two overlapping populations of firing rate units encoding maps of two environments.
Upon switch of the external cues, part of the sensory inputs switches to the other map, while other localized cues are resistant to the
switch. Both networks receive a spatially uniform theta-modulated input. (b) Connectivity within a single population. Connectivity within a
torus is dependent on the distance between the locations encoded by the units. Connectivity between tori is unstructured and inhibitory.
The color code represents the synaptic strength between the unit denoted by the asterisk and all the other units that belong to the map
(Blue, weak connections. Red, strong connections). (c) An example of the dynamics of a synapse endowed with short-term plasticity. The
amount of synaptic resources (x) decreases with increasing pre-synaptic firing rate; the release probability (u) increases with firing rate. The
product (u � x) determines the overall modulation of the synaptic efficacy [Color figure can be viewed at wileyonlinelibrary.com]
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To identify flickering events in the noisy simulations, we band-pass

filtered the average network activity in the theta range (8–12 Hz) and

segmented theta cycles based on the minima of the filtered network

activity.

To examine the activity and synaptic efficacy of the units

that encode the current location in each map, we averaged the

firing rate and synaptic efficacy of units that have their place

field center in the region defined by ðcos ðu1
i
2/1ðtÞÞ>0:5Þ and

ðcos ðu2
i
2/2ðtÞÞ>0:5Þ.

Results in Figures 4–6 are obtained by averaging several realiza-

tions of the model.

All deterministic simulations have been calculated using MATLAB

ode45 solver, that is, adaptive Runge-Kutta. The simulations with noise

have been calculated using Euler method with dt 5 0.1ms. The parame-

ters used in the simulations are written in table 1 and 2 (deviations from

these parameters are mentioned in the legend of the relevant figure).

2.2 | Analysis of the electrophysiological data from

Jezek et al. (2011)

2.2.1 | Rate maps and flickering events definition

Data analysis was performed similarly to Jezek et al. (2011). Briefly,

all the data was speed-filtered such that only theta cycles in which

the rat ran faster than 5 cm s21 were included and tracking artifact

were excluded (>100 cm s21). Epochs longer than 0.05 s that did

not include tracking data were excluded from the analysis. Rate

maps with 30 3 30 spatial bins of 2 cm 3 2 cm were created for

each environment by calculating the firing rate of each recorded

neuron within every bin, during the reference sessions, in which the

animal walked in each environment without switching, and

smoothing the map with a Gaussian filter (see end of Methods). Dur-

ing teleportation trials (trials that include the sudden switch of sen-

sory cues) a vector of cell firing rates was calculated for each theta

cycle (see Jezek et al., 2011 for details). A flickering event was

defined as a theta cycle in which the activity vector during the cycle

had significant low correlation with the rate map of the current envi-

ronment and significant high correlation with the map of the other

environment. The significance levels were determined by calculating

a vector of cell firing rates for each theta cycle during the reference

sessions and creating distributions of correlation coefficient values

between these activity vectors and the rate maps of each environ-

ment. For each rate map, there are two different distributions; the

first distribution corresponds to correlations with activity vectors of

the same environment and the second distribution corresponds to

correlations with activity vectors of the other environment. The

threshold for low correlation was defined as the 5 percentile of the

distribution corresponding to the current environment and the high

threshold as the 95 percentile of the distribution corresponding to

the other environment (see also Jezek et al., 2011).

We filtered the LFP in the theta band in order to estimate the

activity vectors within individual theta cycles (as in Jezek et al., 2011).

Briefly, the filter was constructed using a hamming window. Frequen-

cies of 5 and 6 Hz were chosen for the low passband and stopband

cutoff frequencies and frequencies of 10 and 11 Hz for the high pass-

band and stopband cutoff frequencies. Theta phase of minimum activ-

ity was found by assigning a phase from 08 to 3608 to each spike. The

phase assigned to each spike was interpolated linearly according to the

times of successive peak and trough and the spike time (every interpo-

lation was in the range [0,180] degrees). The phase with the minimal

firing rate was chosen for segregating the signal into theta cycles.

FIGURE 2 Flickering in networks with short-term synaptic plasticity. Network activity dynamics. Each panel shows the activity of each unit in a
map (single pixel), averaged across a theta cycle (colorcode: firing rate (Hz), first and third rows: map A, second and fourth rows: map B). Flicker-
ing events can be observed following the switch of external cues (red circle, t517.5s, 17.6 s). The red dot denotes the location of the virtual ani-
mal (peak external input). Note that the simulations do not include a noisy input [Color figure can be viewed at wileyonlinelibrary.com]
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2.2.2 | Correlation coefficient between the number of

flickering events and theta power or average distance

To assess theta power (5–10 Hz) during periods of increased flickering

probability (see Results), average theta power was calculated for each

period between 250 ms before the first network transition to the cor-

rect representation and 5 s after the transition (the results shown in

Figure 5 are robust to changes in the definition of this period, see Sup-

porting Information Figure S4). Theta power of the un-filtered EEG sig-

nal was normalized by the wide band power (1–125 Hz, results were

unaffected by the chosen normalization band). According to our model,

the probability of observing a flickering event depends on the distance

between animal position at network transition time (referred to as

“switching position”) and its current position. Therefore, we examined

the correlation between the number of flickering events and this

average distance (see Results). Average distance from the switching

position was calculated over the 5 s that follow network transition. As

mentioned above we only considered epochs with rat speed higher

than 5 cm s21. During the recordings there are short epochs with

tracking artifact and low animal velocity. Hence, during the epochs

around the switch there are short time bins in which flickering cannot

be estimated. To overcome the resulting bias for low number of flicker-

ing events (during trials with larger number of such bins) we normalized

the number of flickers to the relevant time interval:

n flicker
s½ �5

Nflickers

ð12plowVÞT

Nflickers is the number of flickering events; plowV is the fraction of time

bins with tracking artifact or of low velocity during the tested epoch

FIGURE 3 Synaptic rebound dynamics. (a) Synaptic efficacy (ux) changes following a transient input. Note the transient increase of synaptic
efficacy following a sharp increase or decrease in presynaptic firing rate (synaptic rebound). The magnitude of the rebound increases with the ratio
between facilitation and depression time constants (top vs. middle panels). (b) Rebound (maximal efficacy (ux) -U) response to a firing rate pulse
(2 s). Each panel shows the rebound amplitude (color coded) for different facilitation/depression time constant ratios and baseline release
probability U. Different panels: different firing rate pulse amplitudes (E). Higher ratio between facilitation and depression time constants results in
larger rebound response. Note that the dependency on the baseline release probability U is nonmonotonic. An increase in the firing rate pulse
produces a larger activation of the synapses resulting in a higher rebound [Color figure can be viewed at wileyonlinelibrary.com]
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(T). We ignore switch trials with high percentage (>50%) of theta

cycles with low velocity or tracking artifact.

Theta power and the average distance from switch positions are

correlated, therefore, in order to estimate the correlation between the

number of flickering events and those variables we calculated the partial

correlation coefficient (Howell, 2009). The flicker number, theta power

and average distance are not normally distributed; hence, the p values

for the partial correlation coefficient were calculated by constructing

shuffled distributions of correlation coefficients. For each shuffle, we

permuted the vector of flickering events number, while keeping the

pairs of distance and theta power, such that the correlation between

these two variables remains. While calculating the partial correlations

we included the average firing rate in the interval around the stimulus

switch (defined above) as a control variable.

Gaussian filters’ weights:

GF5 [0.0025 0.0125 0.0200 0.0125 0.0025;. . .

0.0125 0.0625 0.1000 0.0625 0.0125;. . .

0.0200 0.1000 0.1600 0.1000 0.0200;. . .

0.0125 0.0625 0.1000 0.0625 0.0125;. . .

0.0025 0.0125 0.0200 0.0125 0.0025]

FIGURE 4 Effect of short-term synaptic plasticity on the occurrence of flickering events. (a) Average firing rate of the units that
encode the current location (upper panel, see methods) and corresponding average synaptic efficacies (lower panel), red—units in the
previously active population, black—units in the population encoding the new environment. The occurrence of flickering events
depends on the difference between the synaptic efficacies (lower panel) in the two populations. Au512 Hz other parameters as in
Figure 2. (b) Influence of the ratio between facilitation and depression time constants on the number of flickering events. Black line,
average number of flickering events over different sr(0:6 � sr � 0:8). Colored dots: single simulation results; each color corresponds to
different sr. Au512Hz, other parameters as in Figure 2. (c) Effect of baseline release probability U on the number of flickering events
for different amplitudes of theta modulation (see also Supporting Information Figure S11) [Color figure can be viewed at
wileyonlinelibrary.com]
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3 | RESULTS

Following previous studies (Battaglia and Treves, 1998; Romani and

Tsodyks, 2015; Samsonovich and McNaughton, 1997; Tsodyks, 1999;

Tsodyks et al., 1996), we modeled a hippocampal place map as a mani-

fold of units, with each unit representing the average firing rate of neu-

rons with highly overlapping place fields. The recurrent connections

between the units decay with the distance between the locations

encoded by the units (Figure 1b). The connections between the units

are symmetric such that a continuous attractor is formed (Ben-Yishai

et al., 1995; Tsodyks, 1999; Tsodyks et al., 1996). Each position is

encoded by a “bump” of activity on the manifold. Two maps of differ-

ent environments are modeled as two overlapping populations of units

that compete through global inhibition (Tsodyks, 1999). The synaptic

connections are endowed with activity dependent short-term plasticity

(STP, Figure 1c). The units receive theta-modulated input and spatially

localized inputs. The localized input to the units is of two types: visual

cues that are changed immediately as the environment is changed, and

other external cues such as olfactory cues and motion integration (Fig-

ure 1a) that are stable upon switching.

3.1 | Flickering occurs after switching

In the model, similar to the experiment, switching the visual input results

in an almost immediate transition of activity from one map to the other.

During most theta cycles the activity of the population that encodes the

new environment is larger than the activity of the other population. Dur-

ing a brief period following network transition to the current representa-

tion we observed several theta cycles in which the activity of the

population that represents the previous environment becomes larger

(flickering event, Figure 2, Figure 4a; for other distance dependent

connectivity matrix see Supporting Information Figure S1, for a real ani-

mal trajectory see Supporting Information Figure S3, 4 and S5).

3.2 | Flickering results from short-term synaptic

plasticity

During each cycle of the external oscillatory theta input there is a com-

petition between the two populations due to global inhibition and the

connectivity within each map. The input to the populations and the

network’s gain, which depends on the strength of the synaptic connec-

tions, determine which map wins the competition. Without short-term

synaptic plasticity both populations have the same gain, therefore the

input strength alone determines which population would win and flick-

ering is not expected (unless strong enough noise is present, see

below). In the presence of STP, the recurrent connections between

neurons encoding the previous environment remain temporarily facili-

tated following the switch in the cues (Figure 4a, Supporting Informa-

tion Figure S2). As a result, the previous map can win the competition

and be transiently reactivated.

To characterize the contribution of STP to flickering, we first

examined the dynamics of a single synapse in response to a pulse in

pre-synaptic firing rate. A sharp increase in firing rate produces a tran-

sient increase of the synaptic efficacy (ux). Following stimulus termina-

tion, the synaptic resources (x) recover faster than the relaxation of the

release probability (u). Hence, a synaptic rebound appears, the synaptic

efficacy grows before decaying to the steady state value (Figure 3a,

middle panel). The synaptic rebound arises from short-term synaptic

facilitation, as decreasing the ratio between facilitation and depression

reduces rebound amplitude (Figure 3b). The dependency on the base-

line release probability (U) is non-monotonic; the difference between

the maximal synaptic efficacy and the baseline reaches maximal values

for intermediate baseline utilization values (Figure 3b). The synaptic

FIGURE 5 Flickering depends on theta power and animal position after the switch in environment. (a) The number of flickering events

(nFlicker) increases with theta amplitude and decreases with distance from switch position - model. Each square shows the number of
flickering events during 5s after the switch (color coded), from a simulation with different theta amplitude (Au

jI0 j) and virtual animal speed
(constant during the simulation), which results in a different average distance from the switch position during 5 s following the switch. (b)
Data: Each dot represents the number of flickering event per seconds in a time window of 5s after the switch of sensory cues (color
coded,) from a single trial, characterized by (i) The average distance of the animal position in the time window (ii) Normalized theta power
around the switch. Partial correlation coefficient between theta power and nFlicker was 0.44 with p value<0.001. Partial correlation
coefficient between V and n Flickers was 20.15 with p value<0.05 (see methods) [Color figure can be viewed at wileyonlinelibrary.com]

MARK ET AL. | 965

http://wileyonlinelibrary.com


rebound depends on the presynaptic firing rate: A higher firing rate

results in larger synaptic modification that will be followed by a higher

rebound (Figure 3b).

In a network, a stronger and longer-lasting synaptic rebound fol-

lowing stimulus offset, compared to the initial response to stimulus

onset, would increase the gain of the previously active population com-

pared to the gain of the new one (Supporting Information Figure S2),

therefore we expect a tendency of the network to produce a flickering

event. To confirm this we examined the average activity and the synap-

tic efficacy of the units that encode the current location in each map

(Figure 4a, see Methods); upon network transitioning to the map that

represents the current environment, the difference between the

rebound response of the synapses in the previously active map and the

initial response of synapses in the currently active map increases until a

flicker event is generated and subsequent events can take place until

the network reaches a steady state (Figure 4a). Note that each

flickering event could produce an additional synaptic rebound and thus

allows the network to produce additional flickering events. This mecha-

nism allows the network to transiently sustain flickering for time scales

exceeding any time scale of the system. It should be noted that there is

a parameter regime in which baseline flickering exists (Supporting

Information Figure S7).

The occurrence of flickering events is a robust phenomenon of the

model that does not require fine-tuning of the parameters (Figure 4).

The magnitude of the rebound response depends on synaptic parame-

ters (Figure 3b), in particular, on the ratio between facilitation and

depression time constants (Tf/Tr, Figure 3a), and the level of synaptic

activation (i.e., firing rate, Figure 3b). Hence, the number of flickering

events depends both on synaptic parameters (Figure 4b,c, Supporting

Information Figure S11) and network activity.

A closer look at the dynamics during flickering reveals that at the

beginning of each theta cycle (Figure 4a) the activities of both

FIGURE 6 Noise increases flickering probability. (a) Average number of flickering events (over five different realizations) for different
amplitudes of theta modulation and noise strength. Network with STP in the synaptic connections (parameters as in Figure 2, see Table 1).
(b) As in (a), but the synapses in the network have no STP. (c) Time course of the number of flickering events (averaged over two different
noise values, An50.01, 0.025, and 5 network realizations) for a network with STP in the synaptic connections. The probability of flickering
exhibits a transient increase as a result of STP. Au512 Hz, all other parameters are the same as in Figure 2. (d) Time course of the number
of flickering events in a network without STP in the synaptic connections. The probability of flickering events is approximately constant
throughout the simulation. Parameters: An50.3, 0.4. (e) Network with STP: time course of the number of flickering events for different
noise and theta amplitudes (averaged over five realizations). Higher theta and noise amplitude results in higher probability for flickering
events and longer transient increase in flickering probability. (3) Au512 Hz, An50.01 (4) Au512 Hz, An50.025 (1) Au511 Hz, An50.01
(2) Au511 Hz, An50.025. (f) As in (e) for a network without STP. Flickering probability is constant in time for all noise and theta

amplitudes. Au562 Hz, An50.3, Au562 Hz, An50.4, Au560 Hz, An50.3, Au560 Hz, An50.4 [Color figure can be viewed at
wileyonlinelibrary.com]
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populations grow until the activity of one population dominates over

the other. Hence, states in which both populations are simultaneously

active (mixed states) can appear at the beginning of theta cycle but not

at the end, as observed in the experimental data (Hasselmo, Clara, &

Bradley, 2002; Jezek et al., 2011; Redish, 1999; Redish and Touretzky,

1998). Note that the competition between the attractors is governed

by the difference in the localized external inputs to the maps. Decrease

in this difference results in increase number of flickering events (Sup-

porting Information Figure S8).

3.3 | Flickering probability is affected by theta power

and animal position

According to our model, the increase in flickering probability for a few

seconds following the switch in the environment results from STP. In

the map corresponding to the old environment, synapses between the

units encoding the recently active place fields are facilitated. Hence,

we expect an increased flickering probability the closer the virtual ani-

mal is to the place field of the units that were recently active in the old

environment, such that there is an overlap between the place cells that

receive localized external input and the place cells with increased syn-

aptic efficacies (model, Figure 5a). The animal should be close to its

previously visited position during short time interval following the

switch; otherwise the synaptic memory will decay.

In simulations with high amplitude oscillatory theta input, as in the

results described above (Figure 2), the activity of all units decreases once

every cycle. This decrease in activity reduces global inhibition and there-

fore resets the competition from one cycle to the next, allowing the reac-

tivation of the old environment. With lower theta amplitude, network

activity may not decrease enough to reset the competition. Further, as

mentioned above, the higher the activity the higher the tendency to pro-

duce a flickering event. The peak activity in the network increases with

theta power. Hence, stronger theta would result in higher tendency to

produce flickering events following a switch of the environment.

In summary, our model predicts that the number of flickering

events should (i) decrease with the distance that the animal travels

after the switch in environments and (ii) increase with the theta power

during the time window near the switch (Figure 5a). We analyzed the

experimental data (Jezek et al., 2011) and estimated the number of

flickering events as a function of the average distance from the switch-

ing position (a small distance would imply that the animal stayed close

to the previously active place fields in the old environment). We also

estimated the normalized theta power during epoch of several seconds

around the switch (see Methods). We observed that the number of

flickering events increases with theta power and decreases with the

average distance (data, Figure 5b, Supporting Information Figures S6

and S9), in agreement with the prediction of the model (partial correla-

tion coefficient between the theta power and the number of flickering

events is 0.44, p<0.001 (p52 � 10216) and partial correlation coeffi-

cient between the average distance and the number of flickering

events is 20.157, p<0.05 (p50:027). It is important to note that aver-

age velocity and distance are strongly correlated, c50.64, p510217,

therefore it is not possible to disambiguate their contribution to flicker-

ing (Supporting Information Figure S9, Figure S10).

3.4 | The role of noise in flickering

As discussed above, a lower theta amplitude results in a reduction of

the number of flickering events and even their disappearance (Figures

5 and 6a). The presence of noise in networks that would otherwise

exhibit no flickering events may increase the range of parameters in

which flickering can occur (Figure 6a). The noise may originate from

several sources (Faisal, Selen, & Wolpert, 2008).

Noise may also induce flickering in a network without STP. In this

network, as in a network with synaptic connections that are endowed

with STP, the overall number of flickering events increases with the

amplitude of the fluctuating input and theta amplitude (Figure 6b).

Note, however that flickering probability is approximately constant and

exhibits no dependence on teleportation (Figure 6d), in contradiction to

experimental observations. The presence of STP results in a transient

increase of the flickering probability following teleportation (Figure 6c).

The transient period of increased flickering probability depends both on

theta and the noise amplitude (Figure 6e), the noise enables the

TABLE 1 Parameters for the model with STP (Figure 2)

s (s) 0.01

U 0.25

sr (s) 0.6

sf (s) 1.9

A1 (Hz) 4

A2 (Hz) 0.5

Au (Hz) 13

V (rad s21) 2p/10

J1 14�2p
N

J0 218�2p
N

I0 (Hz) 21

a 1

TABLE 2 Parameters for the model without STP

s (s) 0.01

A1 (Hz) 3.25

A2 (Hz) 0.75

Au (Hz) 60

V (rad s21) 2p/10

J1 35�2p
N

J0 242�2p
N

I0 (Hz) 21

a 1
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occurrence of flickering events when the gain of the previous map is

not large enough to enable flickering by itself. Further, noise and theta

increase the baseline flickering probability in both models (Figure 6e,f).

4 | DISCUSSION

We developed a model that suggests a mechanism for the flickering in

CA3 activity patterns between two maps following a fast switch of

sensory cues. We further test predictions of the model. Jezek et al.

(2011) showed that during most theta cycles there is a period in which

only one map is active; therefore, the existence of flickering events

suggests the presence of short-term memory not mediated by neuronal

activity in CA3. In our model short-term memory is being held by

short-term plastic synapses (see also Mongillo, Barak, & Tsodyks,

2008). We chose to model hidden short-term memory using a synaptic

mechanism, though we cannot exclude other forms of short-term

memory such as intrinsic adaptation/facilitation.

The model is a continuous attractor neural network composed of

two overlapping populations that compete with each other as a result

of global inhibition. A stimulus to one of the populations, the one rep-

resenting the map of the current environment, results in the activation

of that map. Following a switch in the external inputs to the other map,

the activity can fluctuate back and forth between the maps (flickering)

until it converges to the map that represents the current environment.

The flickering occurs as a result of a temporarily increased gain of the

previously active map due to short-term synaptic plasticity, which indu-

ces the competition between the maps.

Each flickering event results in the activation of the previously

active map and therefore affects the short-term dynamics of synapses

in that map. Following the subsequent reactivation of the map that

represents the current environment, the effective synaptic efficacy of

the other map increases again as a result of STP rebound. This alternat-

ing process enables the occurrence of several flickering events, during

a time period which can be longer compared to the time constants of

the neurons and synapses. We further examined the effect of theta

power and animal distance from its position at the time of the switch

both in the experimental data and in the model. We showed that a

smaller average distance from the switch position and higher theta

power results in an increased number of flickering events.

We examined the dependence of flickering on synaptic release

probability and synaptic time constant. We predict that manipulating

calcium dynamics in the synapses will affect flickering dynamics. Fur-

ther, in our model, as a feature of competitive attractor neural network,

the similarity of the external inputs between the two environments will

affect the number of flickering. We therefore predict that influencing

the similarity of the two environments for example, by choosing envi-

ronments from a morphed sequence (Wills et al., 2005) will shape the

number of flickering events.

A possible alternative explanation for the flickering phenomenon is

that flickering events are inherited from external inputs as a result of

sensory cues that are common to both environments together with

noise (Figure 6b). However, fluctuation in sensory input would not

account for the transient increase in flickering probability after telepor-

tation (Figure 6c,d).

Flickering was also observed in a neural network with one population

of neurons that encodes multiple environments (Monasson and Rosay,

2015). The purpose of that study was to examine themechanism of spon-

taneous transitions (flickering) between the two representations, but the

temporal dynamics of the flickering probability was not discussed.

Place cells integrate external sensory inputs with path integration

cues from entorhinal cortex (McNaughton et al., 1996; Touretzky and

Redish, 1996). During the switch between environments the animal

remains at the same arena, hence, the path integration is not disrupted

by the switch. An alternative model may involve the dynamics of the

path-integration inputs. A scenario in which the grid network does not

remap following the switch but remaps after integration of hippocam-

pal inputs, could result in a transient increase of flickering probability

following the switch due to decreased difference between the external

inputs to the two maps as long as there is no remapping in EC. This

model would not explain the dependency of flickering on the animal

location in the arena and it is unclear how it could account for the

time-scale of increased flickering (several seconds) following the switch

(an analysis of this modeling scenario is outside the scope of this work).

Previous theoretical studies reinforce the role of short-term synap-

tic plasticity in the hippocampus of behaving animals. Continuous

attractor models with dynamical synapses can account for several

observations of place cell dynamics such as phase precession, sharp

waves and activity replays (Romani and Tsodyks, 2015), and the dynam-

ics of episode (or time) cells in the hippocampus (Gill, Mizumori, & Smith,

2011; MacDonald, Carrow, Place, & Eichenbaum, 2013; Pastalkova

et al., 2008; Wang et al., 2015). Short-term synaptic plasticity may also

assume a role in stabilizing circuit dynamics. Inhomogeneities in the syn-

aptic connections or synaptic depression mechanisms may result in a

fast drifting of the localized activity bump (Tsodyks et al., 1996; York

and Van Rossum, 2009). It is natural to assume that the connectivity in

the hippocampus is not perfectly tuned; therefore, a mechanism for

slowing down the drift of the activity bump is important. Synaptic facili-

tation may be a good candidate mechanism for slowing down the drift

(Itskov, Hansel, & Tsodyks, 2011). The agreement of our model with the

experimental results and the previous modeling efforts point to short-

term synaptic plasticity mechanism as a strong determinant in the

recruitment of different cell assemblies in hippocampal circuits.

The functional relevance of flickering to hippocampus encoding is

an open question. Hippocampus is involved in the process of choosing

the right context to reach a decision (Dupret, O’neill, & Csicsvari, 2013;

Jackson and Reddish, 2007; Kelemen and Fenton, 2010;) and planning

an action, which may be mediated by “mental time travel” (Botzung,

Denkova, & Manning, 2008; Hopfield, 2010; Pfeiffer and Foster, 2013;

Suddendorf and Corballis, 2007; Wikenheiser and Redish, 2015). It is

now being established that the hippocampus represents different envi-

ronments or context with orthogonal cells assemblies (Fyhn et al.,

2007; Malvache, Reichinnek, Villette, Haimerl, & Cossart, 2016; Wills

et al., 2005). When the external cues for the correct context are ambig-

uous, hippocampus may alternate between possible representations
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(cell assemblies) in order to facilitate the selection of the right context

for the task (see also Savin, Dayan, & Lengyel, 2014). It is possible that

the occurrence of flickering reflects a state that favors mental explora-

tion. In this state, network parameters are adjusted such that the prob-

ability to switch between the different representations increases. The

increased flickering probability enables “reexamination” of the alterna-

tive contexts by downstream areas (Botzung et al., 2008) and reflects

higher flexibility of CA3 network during the process of context selec-

tion. The activity in those areas may shift hippocampal activity to the

other, alternative context. Further, our model suggests that controlling

network parameters such as the synaptic properties (by different neu-

romodulators), or modulating theta input may shift the tendency of the

hippocampus to wander between different representations.
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