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Abstract

Motivation: Cancer is a genetic disease in which accumulated mutations of driver genes induce a functional
reorganization of the cell by reprogramming cellular pathways. Current approaches identify cancer pathways as
those most internally perturbed by gene expression changes. However, driver genes characteristically perform hub
roles between pathways. Therefore, we hypothesize that cancer pathways should be identified by changes in their
pathway–pathway relationships.

Results: To learn an embedding space that captures the relationships between pathways in a healthy cell, we
propose pathway-driven non-negative matrix tri-factorization. In this space, we determine condition-specific
(i.e. diseased and healthy) embeddings of pathways and genes. Based on these embeddings, we define our ‘NMTF
centrality’ to measure a pathway’s or gene’s functional importance, and our ‘moving distance’, to measure the
change in its functional relationships. We combine both measures to predict 15 genes and pathways involved in
four major cancers, predicting 60 gene–cancer associations in total, covering 28 unique genes. To further exploit
driver genes’ tendency to perform hub roles, we model our network data using graphlet adjacency, which considers
nodes adjacent if their interaction patterns form specific shapes (e.g. paths or triangles). We find that the predicted
genes rewire pathway–pathway interactions in the immune system and provide literary evidence that many are
druggable (15/28) and implicated in the associated cancers (47/60). We predict six druggable cancer-specific drug
targets.

Availability and implementation: The code and data are available at: https://gitlab.bsc.es/swindels/pathway_driven_nmtf

Contact: natasha@bsc.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a genetic disease in which the accumulation of genetic
mutations leads to the uncontrolled proliferation of tumor cells
(Vogelstein et al., 2013). Specifically, mutations to cancer driver
genes lead to the reprogramming of cellular pathways: functional
subnetworks within the cell that once activated lead to a certain
product, or a change within the cell (DeBerardinis and Chandel,
2016). This causes the cell to gain and lose functions that enable
tumor growth and metastatic dissemination, such as gaining the
ability to sustain proliferative signaling and resisting cell death,
whilst losing the ability to respond to growth suppressors (Hanahan
and Weinberg, 2011). To gain insight into the mechanisms underly-
ing cancer, often pathway-based methods are considered, as they
provide functional context to the observed gene mutations. This, in
turn, helps to generate testable hypotheses, to identify drug targets
and to determine tumor subtypes (Creixell et al., 2015).
Furthermore, pathway-based approaches offer a higher level point

of view to uncover functional changes in cancer than the gene level.
For instance, clinically similar cancer patients could have different
sets of mutated genes, but have similar perturbed pathways
(Vogelstein et al., 2013). As such, pathway-based approaches are
often applied to provide insight into disease mechanisms, in cancer
and other diseases. For instance, they are applied to study the differ-
ences between clonal subtypes in triple-negative breast cancer (Kim
et al., 2018), to study the replication mechanisms of SARS-CoV-2
(Han et al., 2021) and to uncover risk factors in Alzheimer’s disease
(Zhao et al., 2020).

1.1 Current pathway-based approaches to study cancer
Currently, there are two major classes of pathway-based approaches
for studying cancer in biological networks, each of which can be
sub-divided into two sub-classes. Gene set enrichment (GSE)
approaches identify predefined pathways (e.g. from curated data-
bases such as Reactome; Jassal et al., 2019) that are enriched in
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genes that have their expression altered. For a given pair of case and
control gene expression samples, Over-Representation Analysis
(ORA) identifies those pathways that contain more differentially
expressed genes than expected by chance, typically determined using
Fisher’s exact test. Popular implementations include g:Profiler
(Raudvere et al., 2019) and WebGestalt (Liao et al., 2019).
However, as ORA approaches consider genes to be either differen-
tially expressed or not, they ignore the magnitude of gene expression
changes. To counter this issue, Function Class Scoring (FCS)
approaches identify disease pathways based on the aggregate of their
gene expression values being higher or lower than expected.
Concretely, FCS methods take multiple gene expression data matri-
ces that correspond to case and control samples as an input. First,
genes are sorted in ascending order according to their ability to pre-
dict the case phenotype. Then, pathways are prioritized if they are
enriched in top-ranking genes. FCS methods include GSEA
(Subramanian et al., 2005), GSVA (Hänzelmann et al., 2013) and
many variations thereof. As GSE approaches consider pathways as
gene sets, they ignore the interactions between the genes within and
across pathways.

Network-based approaches consider pathways not as gene sets,
but as networks, where nodes represent genes and edges represent
interactions or associations. Usually, protein–protein interaction
(PPI) networks are considered, in which edges represent physical
interactions between the protein gene products. Within this class of
approaches, pathway-topology-based (PTB) approaches extend FCS
methods to account for the topological importance or centrality of
the genes in a pathway. Intuitively, if a gene has many interactions
in the pathway (i.e. is topologically important), it is assumed to be
important to the pathway’s functioning. So, changes in gene’s ex-
pression should have a larger or lesser impact on a pathway’s per-
turbation score dependent on its topological importance. For
instance, in Signalling Pathway Impact Analysis (SPIA) (Tarca et al.,
2009), the perturbation score of a given gene is based on its own
log-fold change in gene expression and that of its neighbors. As
SPIA diffuses gene expression changes as signals through the path-
way, the (aggregated) pathway perturbation score gets amplified if
the most strongly perturbed genes are also those central to the path-
way (i.e. have many neighbors that are also highly connected).
However, as PTB methods consider pathways in isolation, i.e. gene
perturbations outside the pathway do not affect its score, and cur-
rent pathway annotation data are very incomplete, they are prone to
producing many false negatives (Ogris et al., 2017). Crosstalk en-
richment (CE) methods acknowledge that pathways are part of a
larger network. Given a large-scale network, CE methods prioritize
pathways based on their association, i.e. crosstalk, with a set of dif-
ferentially expressed genes. For instance, EnrichNet performs ran-
dom walks on a large-scale network, starting the walks from nodes
corresponding to differentially expressed genes. Pathways are priori-
tized as cancer pathways based on their overlap with the random
walks (Glaab et al., 2012). Alternatively, ANUBIX first considers
the subnetwork induced by a set of differentially expressed genes on
the large-scale network. A pathway is scored by comparing its edge-
overlap with this subnetwork against the overlap expected by
chance (Castresana-Aguirre and Sonnhammer, 2020).

1.2 Shortcomings of current pathway-focused

approaches
Current pathway-based approaches to study cancer have a few
shortcomings. First, in spirit, current pathway-based approaches
identify cancer implicated pathways as those most (internally) per-
turbed by cancer-driven gene expression changes. However, in pre-
vious work, we observed that known cancer driver genes are central
in the communication between pathways, as they are statistically
significantly frequently found as hub nodes between pathways
(Windels et al., 2022). Moreover, this observation has also been
made for diseases outside cancer. For instance, genes implicated in
cryptorchidism, a congenital disease characterized by the absence of
at least one testy from the scrotum, have also been shown to occur
as hub nodes between disease implicated pathways (Cannistraci

et al., 2013). These findings imply that to identify pathways impli-
cated in cancer, and potentially many other diseases, we should not
focus on pathways that are significantly perturbed internally, but in-
stead prioritize pathways whose interactions and functional rela-
tionships with other pathways change substantially in disease. This
conclusion is in line with prevailing literature, where it is recognized
that to fully understand cancer disease mechanisms, it is essential to
consider the tangled networks into which pathways are integrated
(Vogelstein et al., 2000).

Additionally, current pathway-focused network-based methods
only consider standard adjacency: two nodes are connected by an
edge if they (directly) interact. To go beyond such simple connectiv-
ity patterns and include information about the higher-order molecu-
lar organization of a network (e.g. pathways or protein complexes),
we recently introduced graphlet adjacency, which considers two
nodes adjacent if they participate in a network pattern of a pre-
specified shape, for instance, a triangle or a square (Windels et al.,
2019). In particular, graphlet adjacencies based on paths and claws
have been shown to capture topologically different hub roles of
genes between pathways (Windels et al., 2022). In network biology,
it is assumed that highly interconnected nodes in a network, i.e.
nodes that cluster, contribute to the same biological function.
Through cluster enrichment analysis of molecular networks, we
illustrated that graphlet adjacencies based on different ‘small net-
work shapes’ (i.e. graphlets) capture complementary views of the
networks’ global connectivity and hence of its functional organiza-
tion (Windels et al., 2019). We also illustrated this topology–func-
tion relationship at the node (gene) level, by showing that the
functional importance of some genes in pathways is only reflected in
their topological importance when measured using a particular
graphlet adjacency (Windels et al., 2022). Therefore, by only consid-
ering standard adjacency, current methods ignore the opportunity to
potentially better capture the reorganization of pathway relation-
ships in cancer and the hub-roles of cancer genes.

1.3 Taking ideas from Natural Language Processing
Learning relationships between entities is a key part of Natural
Language Processing (NLP). Semantic analysis, which tries to deter-
mine the meaning of a word or sentence, starts by learning a seman-
tic space: a dense, low dimensional space that captures the semantic
similarity between words or sentences. In this space, words and sen-
tences are represented by embeddings, d-dimensional vector repre-
sentations, where words or sentences of similar meaning have
similar embeddings (i.e. are embedded nearby in space) (Mikolov
et al., 2013). This semantic space can be queried through analogies:
simple linear operations on the word or sentence embeddings. For
instance, in a semantic space trained by Glove, based on their word
embeddings King—Man þ Woman � Queen (Pennington et al.,
2014).

A more recent trend is the embedding of biological networks,
finding applications in protein function prediction, drug repurposing
and patient stratification (Su et al., 2020). Analogous to NLP’s se-
mantic space, the goal of network embedding is to find a low dimen-
sional space that captures the global connectivity of the network, i.e.
nodes are embedded nearby in this space if they tend to connect to
the same nodes (i.e. if they cluster) in the network. Non-negative
matrix tri-factorization (NMTF), a machine learning method origin-
ally proposed for co-clustering and dimensionality reduction (Wang
et al., 2008), is a popular network embedding method because of its
interpretability and flexibility as a data integration algorithm.

1.4 Contribution
In this study, we aim to prioritize cancer-implicated pathways whilst
simultaneously providing insight into the key genes involved, in four
cancers: lung and colorectal cancer, respectively the deadliest can-
cer, and prostate and ovarian cancer, the most prevailing gender-
specific cancers (Sung et al., 2021). To do so, we define a two-step
approach: we first identify pathways implicated in cancer and then
predict genes implicated in cancer in those pathways. We predict
pathways or genes not based on their (internal) perturbation, but
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based on their functional importance and the change in their func-
tional relationships in cancer.

For a given cancer, we create a case and control PPI network,
representing a cancerous and a healthy cell, by overlaying a generic
PPI network with cancerous and healthy gene expression data. To
learn the functional organization of a healthy cell, we propose
pathway-driven non-negative matrix tri-factorization model
(PNMTF), which simultaneously decomposes ‘healthy’ curated
pathways, encoded as induced subgraphs of the control PPI net-
work. In this space, we define pathway and gene embeddings, based
on the pathways in a healthy and diseased state (represented by the
subgraphs induced by curated pathways on the case and control PPI
network). Based on these embeddings, we define ‘NMTF centrality’,
which measures the functional importance of a pathway or gene as
the norm of its healthy embedding and ‘moving distance’, which
measures the disruption of a pathway’s or gene’s functional relation-
ships as the distance between its healthy and cancerous embedding.

We validate that PNMTF captures the functional organization of
pathways in the cell: embedding all pathways in the shared space, we
find that their embeddings form well-separated and functionally coher-
ent clusters. Then, we show that pathways or genes with high central-
ities and moving distances are likely to be cancer related, effectively
identifying cancer-related pathways and genes not based on their (in-
ternal) perturbation but their functional relationships in the cell.
Additionally, we show that higher-order topologies based on graphlets
that encode different hubness properties allow us to exploit cancer
drivers tending to perform hub roles between pathways to improve our
prediction accuracy. Finally, we focus on the top 15 predicted genes
for each of the four cancers, which cover 28 unique genes in total. We
find that they rewire pathway–pathway interactions in the immune sys-
tem for three of the four cancers. We validate 47/60 (78%) of the
gene–cancer associations in the literature and show that the genes of
the 13 unvalidated gene–cancer associations are implicated in other
cancers. Moreover, 15/28 (54%) of the prioritized genes are known
drug targets. As 6 of the 13 unvalidated cancer–genes associations in-
volve druggable genes, we suggest them as cancer-specific drug targets.

2 Materials and methods

To allow us to consider the higher-order topology of networks to
better capture different types of roles of nodes, we first recall the for-
mal definition of graphlet adjacency (see Section 2.1). Next, to cap-
ture the higher-order organization encoded by graphlet adjacencies
in a lower-dimensional space, we define our baseline model Global-
NMTF (see Section 2.2.1). Then, we extend our NMTF model to
Pathway-driven NMTF to benefit from the known functional organ-
ization of pathways in Reactome (see Section 2.2.2). Finally, to iden-
tify pathways and genes implicated in cancer, we define our
embedding-based centrality and moving distance measures, which
respectively measure the (topological) importance of a pathway or
gene and how much the their functional relationships change be-
tween a healthy to a diseased state (see Sections 2.3.1 and 2.3.2).

2.1 Graphlet adjacency
Graphlets are small, connected, non-isomorphic, induced subgraphs
of a large network (Pr�zulj et al., 2004). All graphlets with up to four
nodes are depicted in Figure 1A. Nodes u and v of a network H are
considered graphlet adjacent w.r.t. a given graphlet, Gi, if they
simultaneously touch Gi (Windels et al., 2019). In the network pre-
sented in Figure 1B, we find that nodes a and b are adjacent with re-
spect to graphlet G1 (a three-node path) twice, as G1 can be induced
on the example network twice including both nodes a and b: along
paths a-b-c and a-b-e. Given this extended definition of adjacency,
the graphlet adjacency matrix is defined as:

AGi
ðu; vÞ ¼ cGi

uv if u 6¼ v
0 otherwise;

�
(1)

where cGi
uv is the number of times the nodes u and v are graphlet adja-

cent w.r.t. graphlet Gi. Note that AG0
, is equivalent to the standard

adjacency matrix. Analogously, the graphlet degree generalizes the
node degree as the number of times node u touches graphlet Gi. The
Graphlet Degree matrix for graphlet Gi, DGi

, is defined as:

DGi
ðu; vÞ ¼ dGi

u if u ¼ v
0 otherwise;

�
(2)

where dGi
u is the number of times node u touches graphlet Gi. The

symmetrically normalized graphlet adjacency matrix is defined as:

~AGi
¼ D

�1=2
Gi
ðAGi

=hGi
ÞD�1=2

Gi
; (3)

where hGi
is a scalar equal to the node count of graphlet Gi minus 1.

This scaling factor is applied so that the entries in ~AGi
fall in the

½0;1� range. For more details, see Windels et al. (2019).

2.2 NMTF models
To capture the functional organization of the cell as an embedding
space, we define our baseline NMTF model called Global NMTF
(GNMTF) (see Section 2.2.1). Then, we extend our NMTF model to
benefit from the known functional organization of pathways (see
Section 2.2.2). The solvers for both models are presented in
Supplementary Section S2.

2.2.1 Global NMTF model: a basic approach to learning the

organization of the healthy cell

GNMTF aims to learn a d-dimensional embedding space that cap-
tures a healthy cell’s higher-order connectivity as described by a
given graphlet adjacency. We represent the n-node PPI network of
a healthy cell by graphlet adjacency matrix ~A

n�n

Gi
, and decompose

~AGi as the product of three non-negative matrix factors,
Un�d; Sd�d and Vn�d: ~AGi

� USVT . This corresponds to solving
the following optimization problem:

min
U;S;V�0

X8

i¼0

k ~AGi
�USVTk2

F; s:t: : VTV ¼ I; (4)

where F denotes the Frobenius norm. We determine the numbers of
dimensions d using the rule of thumb: d ¼

ffiffiffiffiffiffiffiffi
n=2

p
(Kodinariya and

Makwana, 2013). We interpret V as an orthogonal basis that cap-
tures the functional organization of the cell as captured by ~AGi

, and
E ¼ US as embedding all genes in common space V. Each row of E
corresponds to the embedding of a gene, which we denote g!, in the
space spanned by V. Then, analogous to NLP, where sentences can
be represented by the average embedding of their constituent words

G0 G1 G2 G3 G4 G5 G6 G7 G8

H:
abc

ed

AG0 =

⎡
⎢⎢⎢⎢⎢

a b c d e

0 1 0 0 0 a

1 0 1 0 1 b

0 1 0 1 0 c

0 0 1 0 1 d

0 1 0 1 0 e

⎤
⎥⎥⎥⎥⎥ AG1 =

⎡
⎢⎢⎢⎢⎢

a b c d e

0 2 1 0 1 a

2 0 3 2 3 b

1 3 0 2 2 c

0 2 2 0 2 d

1 3 2 2 0 e

⎤
⎥⎥⎥⎥⎥

A

B

C

Fig. 1. An illustration of graphlets and graphlet adjacencies. Node a is highlighted

throughout. (A) All graphlets with up to four nodes, labeled G0 to G8. (B) Example

network H. (C) The graphlet adjacency matrices AG0
and AG1

for graphlets G0 and

G1 of the example network H, shown in panel (B). The off-diagonal elements cor-

respond to the number of times two nodes touch a given graphlet together.

AG0
ða; bÞ ¼ 1, as a and b form G0 once. AG1

ða; bÞ ¼ 2, as a and b form G1 twice,

via paths a-b-c and a-b-e. This figure is adapted from Fig. 1 in Windels et al. (2019)
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(Le and Mikolov, 2014), we define the embedding of a pathway,
which we denote p

!
, as the average embedding of its genes:

p
! ¼ 1

jmp j
P

g!2mp
g!, where mp is the set of gene embeddings for

genes in a given pathway p.

2.2.2 Pathway-driven NMTF model: improved learning of

the organization of the healthy cell

We extend our model to benefit from the known functional organ-
ization of pathways in Reactome. With PNMTF, we learn a latent
representation for each pathway and an embedding space that
organizes these discrete latent representations. Specifically, we en-
code how each pathway p interacts within the healthy cell by taking
the rectangular submatrix, H

jmp j�n
p , induced by the jmpj genes in the

pathway and n genes in the cell on ~AGi
. Then, we simultaneously de-

compose the Hp-matrices for all of the r pathways in Reactome into

r pairs of non-negative latent matrices U
jmp j�1
p and S1�d

p and one or-

thogonal non-negative latent matrix Vd�n: Hp � UpSpVT for all

p 2 ½1; r�. This corresponds to solving the following optimization
problem:

min
Up ;Sp ;V�0

Xr

p¼1

kHp �UpSpVTk2
F; s:t: : VTV ¼ I; (5)

Analogous to d, we determine the numbers of dimensions dp

using the rule of thumb: dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mp=2

p
(Kodinariya and Makwana,

2013). We interpret Ep ¼ UpSp as embedding the genes of pathway
p in the orthogonal space spanned by V. Each row of Ep corresponds
to the embedding of a gene in the (functional) context of a given
pathway p, which we denote by g!p. Analogous to our GNTMF
model, we define the embedding of a pathway p as the average

embedding of its genes: p
! ¼ 1

jmp j
P

g!p2mp
g!p, where mp is the set of

gene embeddings for genes in pathway p.

2.2.3 Extending PNMTF: learning representations for cancer-

affected pathways

To enable us to identify pathways whose functional relationships
change the most in cancer (see Section 2.3.2), we aim to learn how
cancer-affected pathways change their interactions with other path-
ways. To do so, we fix the common space V learned in Equation (5)
based on the control PPI network, and solve PNMTF based on the
case (cancer) PPI network to learn a second latent representation for
each pathway, this time in a diseased state.

2.3 NMTF scores for cancer predictions
To identify pathways and genes implicated in cancer, we define
three heuristics based on our PNMTF pathway and gene
embeddings.

2.3.1 NMTF centrality

Here we define how we measure the topological importance of a
pathway or gene based on its embedding. To do so, we take inspir-
ation from the eigencentrality, which considers a node important if
it is highly connected to other highly connected nodes, i.e. if it is
part of a cluster of nodes in the network. It is computed as the eigen-
vector corresponding to the highest eigenvalue of the adjacency
matrix:

A v! ¼ k v!; (6)

where k is the highest eigenvalue of A and v! is the corresponding
eigenvector. By replacing A with the normalized graphlet-adjacency
matrix, we defined graphlet eigencentrality in Windels et al. (2022).

In NMTF, the left and right latent matrices’ rows can also be
interpreted as cluster-indicator vectors, where the entity correspond-
ing to the row is assigned to the cluster corresponding to the column
containing the highest valued entry. Therefore, following the prop-
osition that an entity is considered central if it is part of one or more

clusters, we measure the centrality of a pathway or gene by the
Euclidean norm of its embedding:

NMTF centrality ðE!Þ ¼ kE
!k2; (7)

where E
!

is the embedding of a healthy pathway (i.e. P
!

) or gene
(i.e. G
!

) (see Section 2.2.2).

2.3.2 Moving distance

Here we define our moving distance, which measures how a path-
way’s or gene’s functional relationships change when moving from a
healthy to a diseased state. To do so, we take the Manhattan dis-
tance between a pathway’s or gene’s embedding in a healthy and dis-
eased state (see Sections 2.2.2 and 2.2.3):

moving distance ðE!1; E
!

2Þ ¼ kE
!

1 � E
!

2k1; (8)

where E
!

1 and E
!

2 are the embeddings of a pathway or gene in a
healthy and cancerous state, respectively (see Sections 2.2.2 and
2.2.3).

2.3.3 Hybrid score

We use the geometric mean to combine our centrality and moving
distance:

hybrid ðE!1; E
!

2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NMTF centr:ðE!1Þ �mov:dist:ðE!1; E

!
2Þ

q
; (9)

where E
!

1 and E
!

2 are the embeddings of a pathway or gene in a
healthy and cancerous state, respectively (see Sections 2.2.2 and
2.2.3).

2.4 Data
2.4.1 Case and control protein–protein interaction networks

We create four pairs of case and control PPI networks (i.e. cancerous
and healthy), one pair for each of the four cancers considered. First,
we create a generic PPI network by combining the experimentally
validated PPI, only those captured using Two-hybrid or Affinity
Capture-based methods, from BioGRID version 4.4.197 (Stark
et al., 2006) and the PPI from Reactome (Jassal et al., 2019). Then,
we overlay the RNA-SEQ gene expression data for four cancer cell
lines and their corresponding control tissue from the Human Protein
Atlas, on the generic PPI network (Uhlén et al., 2015). We consider
prostate cancer (cell line PC-3), lung cancer (cell line A549), colon
cancer (cell line CACO-2) and ovarian cancer (cell line EFO-21).
Basic network statistics are presented in Supplementary Tables S1
and S2.

2.4.2 The Reactome Pathway Ontology

The Reactome Ontology is a collection of 23 directed acyclic graphs
(DAGs), encoding the relationships between 2516 pathway annota-
tions from the most generic to the most specific (Jassal et al., 2019).
For each of our four pairs of case and control networks, we deter-
mine the set of pathways that induce a subnetwork of at least 10
and up to 100 nodes on either of the networks. The number of path-
ways per pair of networks (case and control) is presented in
Supplementary Table S3.

2.4.3 Cancer annotation data

For the pathways and genes considered for each cancer (see
Sections 2.4.2 and 2.4.1), we collect cancer annotation data. At
the pathway level, we collect ‘cancer pathway’-annotations from
Reactome, which indicate if a given pathway is considered to be a
cancer pathway. At the gene level, we collect driver genes from
the COSMIC database (Tate et al., 2019). We consider a gene to
be a cancer driver if it is a known cancer driver in at least one
cancer, with strong evidence (i.e. ‘Tier 1’) in the literature. Also,
we collect a set of tissue-specific prognostic genes from the
Pathology Atlas (Uhlen et al., 2017). The number of cancer
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pathways, driver genes and prognostic genes per cancer are pre-
sented in Supplementary Table S4.

3 Results and discussion

We apply our method to uncover novel pathways and genes
involved in lung, colorectal, prostate and ovarian cancer.

Specifically, for a given cancer type, we construct a case and a con-
trol network, representing a cancerous and a healthy cell (see
Section 2.4.1). For the case and control networks, we compute all

graphlet adjacency matrices for graphlets up to four nodes (see
Section 2.1). Then, for a given graphlet adjacency, we learn the

higher order functional organization of the healthy cell as an embed-
ding space using our PNMTF model, in which we embed pathways
and genes (see Section 2.2.2). Next, in this same space, we also com-

pute embeddings for pathways and genes of a cancer affected cell,
by fixing the basis trained for the control cell and solving PNMTF

for the case PPI network (see Section 2.2.3). Finally, having com-
puted a pair of embeddings for each pathway and gene based on the
cell’s healthy and cancerous state, we apply our NMTF-scores:

NMTF centrality, moving distance and hybrid score (see Section
2.3) to predict their cancer relatedness.

In our analysis, we first validate that PNMTF captures the func-
tional organization of pathways in the cell (Section 3.1). Then we
show that using our NMTF scores we can prioritize pathways and

genes implicated in cancer (Sections 3.2 and 3.3). Finally, for
each of our four cancers, we validate our top 15 predicted cancer

genes and pathways involved in the literature (i.e. predicting
60 cancer-specific gene-pathway pairs in total, see Section 3.4). Due
to different cancers sharing disease mechanisms, there is some

overlap between our predictions at both the pathway and gene level,
which we quantify in Supplementary Sections S3.4 and S3.7,

respectively.

3.1 PNMTF captures the functional organization of the

cell described by the Reactome pathway ontology
First, we validate that PNMTF best captures the functional organ-

ization of pathways in the healthy (control) cell, compared to
GNMTF (essentially a standard NMTF model). To do so, for a

given control network and graphlet adjacency, we train PNMTF
and GNMTF (see Sections 2.2.1 and 2.2.2), embed all pathways in
the shared space V and apply agglomerative hierarchical clustering

on their pairwise Euclidean distances. Then, we confirm that path-
way embeddings based on PNMTF form better separable and more

functionally coherent clusters than those based on GNMTF.
We present the results for lung cancer based on graphlet adja-

cency ~AG1 in Figure 2. We observe that the agglomerative clustering
uncovers a better separable clustering when applying PNMTF than
GNMTF (cophenetic correlation 86.5% versus 66%). To measure

how well both methods group functionally related pathways, we ex-
tract 65 clusters from both hierarchical clusterings (we determine
this is the optimal number of clusters applying an elbow method in

Supplementary Section S3.1.2), and check their enrichment in path-
way ancestors, less specific pathways higher up in the Reactome

ontology (see Supplementary Section S3.1.3). We observe that clus-
ters of pathways based on PNMTF are more functionally coherent
than those based on GNMTF (95% of the 65 clusters are enriched

versus 75%). We provide similar results for all four control net-
works (representing four healthy cells) and graphlet adjacencies in

Supplementary Section S3.1.
In conclusion, compared to GNMTF, PNMTF-based pathway

embeddings form clusters that are better separable (indicated by the
high cophenetic correlation coefficient) and more functionally co-
herent (indicated by the high percentage of ancestor-enriched clus-

ters), hence we conclude that PNMTF better captures the functional
organization of pathways in the (healthy) cell than the standard

GNMTF model.

3.2 PNMTF identifies pathways implicated in cancer
Having validated that PNMTF captures the functional organization
of pathways in the healthy cell, we assess if our three NMTF scores:
centrality, moving distance and hybrid score (defined in Sections
2.3.1–2.3.3) can be used to prioritize pathways implicated in cancer.
Specifically, for a given NMTF score, cancer and graphlet adja-
cency, we measure the Matthews Correlation Coefficient (MCC)
using the set of known cancer pathways in Reactome as a gold
standard and a set of top-scoring pathways for each method as pre-
dictions for pathways implicated in cancer (see Supplementary
Section S2.4). To determine the set of top-scoring pathways for each
cancer, graphlet adjacency and NMTF score, we apply an elbow
method. The results are presented in Supplementary Figure S4. As
all three NMTF scores plateau beyond 100 pathways, regardless of
the cancer and graphlet adjacency, we consider the top 100 highest
scoring pathways as our prediction set for pathways implicated in
cancer. Applying a hypergeometric test, we find that this set of path-
ways is enriched in Reactome cancer pathways (least significant
P-value � 4.67e�08). Additionally, we acknowledge that many
pathways not labeled as cancer pathways in Reactome might over-
lap with cancer-mechanisms. For that reason, we also consider the
ratio of driver genes in a pathway as an indication of its engagement
in cancer. Then, to evaluate a given pathway prediction method, we
measure the Spearman rank correlation between this ratio and a
pathway’s score.

We compare the results for all different graphlet adjacencies,
averaged over the four cell types, in Supplementary Figure S5. We
observe the highest MCC and rank correlations when applying
PNMTF based on AG0

;AG1
;AG3

; and AG6
. Here, we compare the

Fig. 2. PNMTF best captures the functional organization of pathways in the healthy

lung cell. (A) and (B) show a clustered heat map of the pairwise cosine distances be-

tween all pathway embeddings in the shared space V learned based on graphlet adja-

cency ~AG1
by GNMTF and PNMTF, respectively. For each heat map, the color bar

under the hierarchical tree on the top indicates the 65 pathway clusters
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results based on these top-scoring graphlet adjacencies and those
based on pathway prediction methods ‘ORA’ (which despite its sim-
plicity is still widely used) and ‘ANUBIX’ (a state of the art CE
method), see Figure 3. Note that the three methods share the same
input data: the set of genes expressed in a healthy and diseased sam-
ple, the assignment of genes to pathways and, for ANUBIX and
PNMTF, PPI data. As such, all three methods are unsupervised, i.e.
do not rely on any prior knowledge on pathway–cancer association
when making their predictions. We cannot compare against FCS
and PTB methods as they require multiple case and control samples
for a given cancer.

First, we observe that in terms of MCC (see Fig. 3A), the best
performance is achieved using our moving distance and regular adja-
cency (0.244), just outperforming our hybrid score with graphlet
adjacencies AG1

;AG3
; and AG6

(0.237, 0.220 and 0.233, respective-
ly). All of the variations of our method mentioned above outperform
ORA (�0.054) and ANUBIX (0.032). This renders our PNMTF
scores more practical for further downstream analysis than ORA
and ANUBIX, as our top ranked pathways are more likely to be can-
cer related. Looking at our correlation results (see Fig. 3B), we find
that our hybrid score with graphlet adjacencies AG1

;AG3
; and AG6

greatly outperform the moving distance with regular adjacency
(0.42, 0.443 and 0.461, compared to 0.363). We also observe
ANUBIX scores drastically better in terms of correlation (0.302)
than in terms of MMC, which indicates that ANUBIX is able to
rank pathways according to their likely involvement in cancer in
general, although the set of top 100 highest ranked pathways is not
particularly enriched in cancer pathways. We consider our hybrid
score based on graphlet adjacency AG1

as the best approach, as it is
only marginally behind our moving distance with AG0

, the best
method in terms of MMC, but greatly outperforms this method in
terms of rank correlation. Finally, we note that the highest scoring
graphlet adjacencies, AG1

;AG3
; and AG6

happen to be based on
graphlets capturing betweenness and hubness, suggesting that
cancer-related pathways tend to have hub roles. This is in line with
our previous results, where we observed that cancer driver genes
occur in statistically significantly more pathways than non-driver
genes (Windels et al., 2022).

To further validate that our method captures cancer-implicated
pathways, we investigate the top 10 highest scoring pathways in
lung cancer (see Supplementary Table S5). We observe that 5/10
pathways are cancer pathways. All top 10 pathways are related to
the RAS-MAPK pathway, which transduces extracellular signals to
the cell nucleus, regulating cell growth, division and repair. The
RAS-MAPK pathway is frequently associated with oncogenesis,

tumor progression and drug resistance, and is a frequent subject of
therapeutic studies (Braicu et al., 2019).

3.3 PNMTF identifies genes implicated in cancer
Having shown that our method can identify pathways implicated in
cancer, we move on to find cancer-related genes within our set of
100 top-scoring pathways for each cancer. To identify a set of top
scoring genes, we apply an elbow method to our three NMTF -
scores: centrality, moving distance and hybrid score (defined
Sections 2.3.1–2.3.3). The results are presented in Supplementary
Figure S7. We observe that our gene scores plateau beyond the top
100 scoring genes, hence we choose to focus on the top 100 highest
scoring genes in our previously identified set of top 100 highest scor-
ing pathways (see Section 3.2). Then, we measure the MCC score
using our set of top-scoring genes as a prediction and the driver
genes in COSMIC as the gold standard (see Section 2.4.3). We com-
pare PNMTF for graphlet adjacency ~AG1

against: PNMTF with
regular adjacency, graphlet eigencentrality for ~AG1

(which predicts
cancer genes based on their topological importance, see Section
2.3.1) and network diffusion for ~AG1

(which predicts genes as can-
cer related if they are in the network neighborhood of differentially
expressed genes, see Supplementary Section S2.5. We tune diffusing
parameter a to 1.9, which leads to the highest MCC scores when
ranging a from 0.1 to 2.0 in increments of 0.1). The results are pre-
sented in Figure 4.

We observe that by using PNMTF based on ~AG1
and by using our

hybrid heuristic, we achieve the highest score (average MCC of 0.18).
This implies that cancer-related genes are best predicted when they
are simultaneously of high importance in the control (healthy) net-
works (i.e. have a high centrality) and have a large shift in functional
relations between case and control (i.e. have a high moving distance).
Additionally, we observe that by considering the higher-order top-
ology of pathways, as captured by ~AG1

, to take advantage of cancer
drivers performing hub roles between pathways, we manage to in-
crease the performance of our method compared to regular adjacency
by 40% (average MCC with hybrid heuristic of 0.12). Lastly, we ob-
serve that our method outperforms graphlet eigencentrality and diffu-
sion (average MCC of 0.09 and 0.10). Given that our method greatly
outperforms our baseline methods, we conclude that PNMTF allows
us to predict cancer-related genes with high accuracy, whilst indicat-
ing the pathways involved. In the next section, we investigate our
results more in detail and perform literature validation.

3.4 Case study: identifying cancer-implicated genes in

lung cancer and the pathways involved
We showed that by applying our PNMTF scores consecutively at the
pathway and gene level, we can predict cancer-implicated pathways
and cancer-implicated genes within those pathways (see Sections 3.2
and 3.3). In other words, our method allows us to predict cancer-
implicated genes, whilst predicting for each gene the main pathway
involved. Next, we validate in the literature the top 15 predicted
genes in Section 3.3 based on our hybrid PNMTF scores with graph-
let adjacency AG1

for each cancer (lung, colon, prostate, ovarian),
and discuss the potential cancer relatedness of the prioritized path-
ways associated with those 15 gene predictions. Here, we discuss the
results for lung adenocarcinoma (see Supplementary Table S9). For
the other cancers, see Supplementary Tables S10–S12.

We first validate that our method prioritizes genes with hub roles
between pathways. We apply a Mann–Whitney U (MWU) test to con-
firm that our prioritized genes, i.e. the top 15 genes based on our hy-
brid score (see Supplementary Table S9, column 2), participate more
frequently in our prioritized pathways (see Supplementary Table S9,
column 3) compared to the remaining, non-prioritized genes in those
pathways. The MWU test yields a significant result (the prioritized
genes participate on average in 2.0 of the prioritized pathways com-
pared to 1.4 for the remaining, non-prioritized genes, P-value �
2.22e�04). Therefore, as our prioritized genes occur more frequently
in the prioritized pathways, they are the genes connecting those path-
ways, validating our method. We do not find this when applying our
method on regular adjacency, highlighting that graphlet adjacency G1

A

B

Fig. 3. PNMTF identifies pathways implicated in cancer. Sub-plots (A) and (B) show

the MCC and rank-correlation scores for predicting Reactome cancer pathways, re-

spectively. From left to right, we present the results for PNMTF based on different

graphlet adjacencies (x-axis) and different NMTF-scores (legend), against the state-

of-the-art (far right)
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enables us to capture the hub roles of potential cancer drivers.
Further, we validate in the literature that 11/15 (73%) of the priori-
tized genes are implicated in lung cancer (see Supplementary Table S9,
column 4). For our four unvalidated genes: CSK, HSP90AA1,
HNRNPH1 and GNG2, we find strong web-lab evidence in the litera-
ture that they are involved in other cancers (see Supplementary Table
S9, column 6). We find that HSP90AA1 is a known cancer driver in
non-Hodgkins lymphoma (COSMIC), HNRNPH1 supports cancer-
cell proliferation in rhabdomyosarcoma (Li et al., 2018) and CKS and
GNG2 have tumor suppressing roles in colon cancer and melanoma,
respectively (Nakagawa et al., 2000; Yajima et al., 2014). Moreover,
we find that 11/15 (73%) of the prioritized genes are known drug tar-
gets, including CSK, HSP90AA1 and HNRNPH1 (see Supplementary
Table S9, column 7).

Next, we focus on the associated prioritized pathways, which
serve as a functional contexts to our gene predictions (see
Supplementary Table S9, column 3). From the network perspective,
we observe that the union of the prioritized pathways induces on
both the case and control PPI network a connected sub-network that
is denser than expected by chance (both P-values � 1.00e�4, based
on bootstrapping, obtained by sampling 10 000 sets of pathways
that are of size within the range of those in our prioritized pathway
list). This indicates that our prioritized pathways are likely function-
ally related (as they are overlapping in the PPI network) and that
our method is capturing an underlying disease-related signal (as the
pathways are more intertwined than expected by chance). Further,
we validate that our method prioritizes pathways based their altered
pathway–pathway interactions rather than their internal perturb-
ation. To do so, we assess if our prioritized pathways have signifi-
cantly more edges rewired (i.e. added or deleted) that connect them
to the other prioritized pathways compared to the number of edges
they have rewired within them, by applying a hypergeometric test.
We find that edges between pathways are 12 times more rewired (P-
value � 3.40e�19), validating our method.

From a functional perspective, we find that our prioritized path-
ways are enriched in Reactome ‘Immune System’ pathways (pathways
ranked 2, 3, 4, 8 and 15 in Supplementary Table S9, P-value �
2.31e�2). Furthermore, the remaining pathways can easily be related
to the immune system. For instance, pathways 9 and 14 are down-
stream of GCPR signaling, which regulates T-cell immunity (Wang,
2018). Pathway 12, ‘Receptors for oestrogens signalling’, regulates im-
mune system pathways, as well as immune cell development (Kovats,
2015). These results are in line with the cancer literature, as immune
system rewiring is necessary for cancer cells to evade immunological re-
sponse and to enable them to abuse inflammatory responses as a source
for bioactive molecules (e.g. growth factors) (Hanahan and Weinberg,
2011). Combined with our results at the gene level, we conclude that
our method uncovers a cancer-induced rewiring of the proteins linking
immune system pathways in lung cancer.

We obtain similar results across all four cancers, see Supplementary
Section S3.7. Considering the top 15 predicted genes for the four can-
cers collectively, we validate 47/60 (78%) of these gene–cancer associa-
tions in the literature. We show that the genes involved in the 13
unvalidated gene–cancer associations are implicated in other cancers.
As the top 15 predicted genes across the four cancers overlap, which is
expected as cancers can share the same disease mechanisms, we predict

28 unique genes in total. Of these genes, 15/28 (54%) are known drug
targets (see Supplementary Tables S9–S12, column 7). As 6 of the 13
unvalidated gene–cancer associations that involve druggable genes, we
suggest them as cancer-specific drug targets: CSK, HSP90AA1 and
HNRNPH1 for lung cancer, HSP90AA1 for colon cancer and prostate
cancer, and HNRNPH1 for ovarian cancer. At the pathway level, find
that our method uncovers a cancer-induced rewiring of the proteins
connecting pathways involved in the immune system in colon and pros-
tate cancer. As cancer immunotherapy is becoming a pillar in cancer
treatment (Esfahani et al., 2020), this gives further interest to our
predictions.

4 Conclusion

In this study, we suggest our PNMTF model, which learns an
embedding space that captures the functional organization of path-
ways in a cell. In this embedding space, we define two heuristics:
NMTF centrality and moving distance, which measure the import-
ance and disruption of functional relationships of a pathway or gene
in cancer, respectively. We apply these heuristics to predict cancer-
implicated pathways and genes in four cancers. Additionally, we ex-
ploit cancer genes tending to perform hub roles between pathway
interactions by considering graphlet-based higher-order topologies
that encode hub roles. We find that our method uncovers a cancer-
induced rewiring of the genes linking pathways involved in the im-
mune system for three out of the four cancers. This is in line with
the literature, where the immune system’s rewiring is considered a
hallmark of cancer. Finally, we provide literary evidence indicating
our top predicted genes are likely involved in cancer and find many
are known drug targets, allowing us to predict six druggable cancer-
specific drug targets.

Further, our analysis opens up multiple research questions:

1. To uncover emerging (disappearing) functional relationships in

cancer and thus give insight into cancer development, it could be

interesting to see what pathways become (less) central and form

new (no longer form) dense clusters in cancer.

2. To extend PNMTF’s applicability, additional data could be inte-

grated. For instance, to give insight into drugs affecting path-

ways, gene–drug data could be added. To study pathway

relationships at different omics levels, more omics data could be

added (e.g. Durán et al., 2021).

3. PNMTF could be applied to diseases outside cancer, particularly

as disease genes perform hub roles between pathways in other

diseases.

4. Lastly, PNMTF can be applied outside of biology, when the in-

put data are a network and domain knowledge categorizing the

nodes. For instance, PNMTF could be applied on trade net-

works, where nodes are countries and edges are the value of the

trade between them, while trade agreements form a prior group-

ing of the nodes.
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