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Abstract: Influenza is one of the major threats to public health. Current influenza vaccines cannot
provide effective protection against drifted or shifted influenza strains. Researchers have considered
two important strategies to develop novel influenza vaccines with improved immunogenicity and
broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin
stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and
helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect.
However, few adjuvants are currently licensed for human influenza vaccines, although many poten-
tial candidates are in different trials. While many advantages have been observed using adjuvants
in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral
infection and vaccination-induced immune responses will help to develop new adjuvant candidates.
In this review, we summarize the works related to adjuvants in influenza vaccine research that
have been used in our studies and other laboratories. The review will provide perspectives for the
utilization of adjuvants in developing next-generation and universal influenza vaccines.

Keywords: influenza vaccine; adjuvants; nanoparticles

1. Introduction

Influenza epidemics are a severe public health issue each year. During the 2019–2020
influenza season in the United States, about 38 million illnesses, 400,000 hospitalizations,
and 22,000 deaths were associated with influenza [1]. Compared with previous flu seasons,
higher hospitalization rates were observed among children under four and adults between
18 and 49 [1]. Besides, domestic or wild zoonotic influenza viruses may break the host
barriers, jump to humans, and cause influenza pandemics. Frequent human infection with
H5N1 and H7N9 in recent years foreshadows emerging pandemics. As it takes time to
develop immunity for an emerging virus, an influenza pandemic can be a catastrophe for
humans [2,3].

Vaccination is an effective method to protect humans from influenza viral infection or
alleviate symptoms induced by influenza-associated diseases. Licensed influenza vaccines
include inactivated influenza vaccines (IIV), recombinant influenza vaccines (RIV), and live
attenuated influenza vaccines (LAIV) [4]. However, the formulations selected in each flu
season are primarily dependent on influenza surveillance data because of the continuous
mutation of influenza viruses [5]. A mismatch between the influenza vaccine strains and
the circulating influenza strains could significantly reduce vaccine effectiveness. A panel
of methods was developed for viral isolation, identification, and sequencing, allowing
scientists to rapidly identify mutant strains when a mismatch occurs at the early stage of an
influenza outbreak. In this circumstance, novel manufacturing methods would be required
to produce large-scale of vaccine supply quickly.

With the above challenges to the seasonal influenza vaccine strategy, universal in-
fluenza vaccines that elicit comprehensive, long-term, and broad protection are urgently
needed. Various approaches are undertaken to realize such influenza vaccines. The two
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primary distinctive methods are: (1) Applying conserved epitopes and domains in place
of different influenza strains as vaccine immunogens. The well-known conserved anti-
gens include the head-removed hemagglutinin stalk domain (hrHA), neuraminidase (NA),
matrix protein 2 (M2), and T cell epitopes resident in influenza internal proteins (such as
nucleoprotein (NP) and matrix protein 1 (M1). Some combinations of these antigens have
proven to provide cross-protection against different virus challenges in laboratory animals.
(2) Improving immune responses by various complementary adjuvants. Adjuvants are
molecules or ingredients that are administered with vaccines to improve immune responses.
The early innate immune responses in an infection or vaccination program the dimension
and magnitude of antigen-specific immune responses [6]. As triggers of innate immune
responses, appropriate adjuvants tailor antigen-specific immune responses for optimal
protection and immune memory. Through a deep understanding of the immunological
mechanisms underlying natural influenza infection for immunity generation and memory,
safe and effective adjuvants will be discovered and applied to develop universal influenza
vaccines. This article will review the adjuvants that are under preclinical study and early
phases of clinical trials. We will focus on the novel adjuvants that might have potent effects
in bridging innate and adaptive immune responses and discuss the delivery strategies and
routes used to improve influenza vaccine outcomes.

2. Licensed Influenza Adjuvants

Aluminium salts (Alum) are the most widely used adjuvants in human influenza
vaccines. Other adjuvants licensed for human influenza vaccines in different areas include
oil-in-water emulsions (MF59, AS03, and AF03), virosomes, and heat-labile enterotoxin
(LT) [7]. Studies have suggested that Alum functions in several ways, such as helping
with antigen uptake [8], the induction of interleukin-1ß release by inflammasomes [9],
enhancing antigen presentation, and strengthening the interaction between dendritic cells
(DCs) and CD4+ T cells [10]. The immunological mechanism underlying the function of
Alum is still not entirely understood.

During the 2020–2021 influenza season, both trivalent and quadrivalent FLUAD
inactivated influenza vaccines containing the adjuvant MF59 were approved for people 65
and older. MF59 is an oil-in-water emulsion, which works very distinctly from Alum. MF59
injection leads to the release of some specific chemokines and cytokines, like CCL2, CCL3
IL-8, and IL-5 [11,12]. MF59 preferentially induces Th2-biased immune responses [13]. Like
MF59, AS03 and AF03 are oil-in-water adjuvants that take effect in the fashion of MF59.

Virosomes are lipid vesicles that incorporate the influenza antigens on the surface
and encapsulate an aqueous solution. Influenza virosomes incorporate influenza antigens
onto the vesicle surfaces to mimic the physical features of viruses, such as shapes and sizes,
which enhances antigen uptake and presentation and the subsequent immune cell activa-
tion [14,15]. Inflexal® V is a commercially available virosome-based influenza vaccine [16].
LT was previously licensed as a mucosal adjuvant for the influenza vaccine; however, it
was later found that LT induced Bell’s palsy in the recipients [17].

The advantages and disadvantages of Alum [7,18], oil-in-water emulsions [18,19],
virosomes [20,21], and LT [22] were listed in Table 1. More adjuvants are being developed
and studied to improve influenza vaccine outcomes in preclinical and clinical trials.

Table 1. Advantages and disadvantages of licensed influenza adjuvants.

Adjuvants Advantages Disadvantages

Aluminium Salts
a. Have minor toxicities.

b. Improve antigen uptake.
c. Increase immune responses.

a. Fail to induce cytotoxic T cell response.
b. Ineffective with weak antigens.

Oil-in-water emulsions

a. Induce stronger immune responses including
both humoral and cellular immune responses.

b. Dose sparing.
c.Work efficient with less immunogenic antigens.

a. Highly local reactogenicity.
b. Cause systemic symptoms.

c. Induce autoimmune disease.
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Table 1. Cont.

Adjuvants Advantages Disadvantages

Virosomes

a. Appropriate to wide age groups;
b. Facilitate antigen stability,

c. Excellent safety profile
d. Long-lasting antibody responses

a. Unstable in blood.
b. Production and preservation problems.

Heat labile enterotoxin a. Applicate as mucosal adjuvant a. Development of Bell’s palsy

3. Adjuvants in Immune Responses

The progress in understanding innate immunity and its role in directing adaptive im-
mune responses have provided new thoughts for the next generation of adjuvants [23]. As
the early responders in an infection, various cell types—including macrophages, DCs, γδ T
cells, and NKT cells—can sense and respond to adjuvants. Pattern recognition receptors
(PRRs) are expressed inside or on the surfaces of these innate cells. Transmembrane recep-
tors, like Toll-like receptors (TLRs), and cytoplasmic receptors, like the nucleotide-binding
and oligomerization domain (NOD)-like receptors (NLRs), are two kinds of PRRs that have
been well studied. PRRs recognize pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs) and activate the downstream signaling
pathways, resulting in pro-inflammatory cytokine generation modulating the humoral and
cellular immune responses. PAMPs, DAMPs, or other innate signaling molecules could
be potential adjuvants to guide immune outcomes during immunization [24,25]. Some
adjuvants (systems) are summarized in Table 2.

3.1. TLR Agonists

The activation of TLR signaling pathways is essential for protection against influenza
virus infection [26]. Administration of TLR3, TLR9, TLR7, or TLR7/8 agonists resulted
in viral inhibition and improved mouse survival [27]. Recent publications have further
demonstrated that the combinations of synthesized TLR4, TLR7, and TLR7/8 ligands
were potent adjuvants for recombinant influenza HA vaccines in different animal mod-
els [28–31]. Significantly, the TLR4 and TLR7 ligands—such as MPL/R837, TRAC-478,
and 1Z105/1V270—synergistically increased antigen-specific, long-lasting humoral im-
mune responses, Th1 cell-mediated or Th1/Th2-balanced immunity, and protection against
homologous, heterologous, and heterosubtypic viral challenges [6,28,30]. Intranasal co-
administration of a synthetic TLR3 ligand, poly I:C, with inactivated human, avian, or
swine influenza vaccines activated mucosal and systemic humoral responses in mice, ducks,
or pigs [32–35]. Thus, the inclusion of appropriate TLR agonists can alter the directions of
the immune response.

Flagellin (FliC) is a natural ligand of TLR5 and has proven to be a potent adjuvant
when administered with influenza antigens [36]. Our laboratory has studied FliC as a
potent adjuvant by constructing various antigen-FliC formulations [37–44]. Skin immuniza-
tion with recombinant fusion protein 4M2e-FliC induced strong M2e-specific humoral and
mucosal immune responses [37]. We also redesigned the 4M2e-FliC construct to include
M2e sequences from different influenza subtypes. We demonstrated that microneedle
patch (MNP)-based boosting immunizations with the 4M2e-FliC could rapidly broaden
influenza-vaccine-induced immunity [43]. An MNP encapsulating 4M2e-FliC and inac-
tivated influenza vaccines (H1N1 and H3N2) was developed and demonstrated to have
antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 and A/Shanghai/2013
H7N9 virus challenge. However, a recent clinical trial showed an overproduction of
inflammatory molecules from the vaccination of a flagellin-M2e fusion protein vaccine
(STF2.4 ×M2e) [45]. In the trial, the ratio of flagellin to the antigen was fixed due to
the fusion protein state of STF2.4 × M2e. One of our previous studies in guinea pigs
demonstrated that 0.5 µg of flagellin-adjuvanted HIV virus-like particles (VLPs) induced
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significantly higher levels of neutralizing antibody responses than non-adjuvanted VLPs
without over-production of inflammatory cytokines [46]. An optimal dose of flagellin is to
be studied as a safe adjuvant in influenza vaccine development.

TLR9 agonists—unmethylated CpG oligodeoxynucleotides (CpG ODN or CpG)—are
among the most promising adjuvants that could be used in humans. The administration of
CpG has induced Th1-biased responses. The inclusion of CpG in the inactivated influenza
vaccines enhanced T cell responses and provided protection against a heterosubtypic
influenza infection [47]. Two research groups simultaneously reported that combinations
of MPL and CpG (MPL + CpG) induced various inflammatory cytokines and chemokines
within one day. MPL + CpG double-adjuvanted influenza vaccines improved protective
efficacy with elevated IgG2a antibodies and Th1-biased immune response [48,49].

3.2. Cytosolic Nucleic Acids

In addition to TLR signaling pathways, detecting and responding to pathogens
through nucleic acid sensors is another approach to activating innate immune responses.
Various RNA and DNA-sensing receptors, such as RIG-I-like receptors (RLRs) and cyclic
GMP-AMP synthase (cGAS), regulate downstream signaling pathways and subsequent cy-
tokine secretion. The activation of RIG-I induced the production of type I interferons (IFNs)
and pro-inflammatory cytokines. 5′ triphosphorylated and diphosphorylated short dsR-
NAs (5′pppRNA), synthesized small molecule compounds, and poly I: C are well-studied
RIG-I-associated adjuvants for enhancing the efficacy of influenza vaccines [50–52].

The cGAS-STING pathway was activated during an influenza virus infection and
played essential roles in the battle against the infection [53]. 2′3′-cyclic GMP-AMP (cGAMP)
is a natural agonist of stimulator of interferon genes (STING), which strongly augmented
protective cellular and humoral immune responses induced by influenza vaccines. Mean-
while, compared with intramuscular injection, cGAMP showed a superior adjuvant effect
on cutaneous vaccination. cGAMP-adjuvanted H5N1 induced long-lasting protective
immunity [54]. An important discovery is that lung delivery of pulmonary surfactant
(PS)-biomimetic liposomes encapsulating cGAMP-augmented influenza vaccines induced
humoral and CD8+ T cell immune responses in mice. The immunity conferred strong
cross-protection against distant H1N1 and heterosubtypic H3N2, H5N1, and H7N9 viruses
for at least 6 months [55,56]. cGAMP was also reported as a mucosal adjuvant by intranasal
immunization. Co-delivery of H7N9 vaccines with cGAMP enhanced humoral, cellular,
and mucosal immune responses in mice [57]. These studies suggest that cGAMP is a
promising adjuvant for developing a universal influenza vaccine.

3.3. Agonists for Inflammasomes Activation

Inflammasomes are another essential component of the innate immune system. The
three major types are NOD-like receptor protein 3 (NLRP3) inflammasomes, NLR-family
CARD domain-containing protein 4 (NLRC4) inflammasomes, and absent in melanoma 2
(AIM2) inflammasomes [58].

Inflammasomes regulate inflammation by activating caspase-1 and releasing pro-
inflammatory cytokines such as IL-1β and IL-18 [59]. Aluminium salts [60], MF-59, AS03,
QS-21 [61], and chitosan [62] have been shown to activate inflammasome as part of their
mechanisms of immunological activities [63]. Flagellin can also activate inflammasomes
through its cytosolic receptor NLRC4 [64]. Nucleic acids (DNA and RNA) could be
used for both vaccines and potential adjuvants, as both DNA and RNA can activate
inflammasomes [65]. Single- and double-stranded RNAs (ssRNAs and dsRNAs) are
recognized by RIG-I, which can subsequently activate NLRP3 inflammasome [66]. In
contrast, double-stranded DNA (dsDNA) can be sensed by the AIM2 inflammasome
signaling pathway [67].

The activation of inflammasomes vitally inhibits influenza virus infection by limiting
the lung damage or enhancing adaptive immune responses through the activation of down-
stream IL-1R signaling events [68–70]. While most works have been focused on the role of
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NLRP3 in adjuvanticity, the characteristics of other NLR-associated inflammasomes are
also being investigated, such as the NRLC5 inflammasome [71]. Inflammasome activators
could be used as adjuvants to strengthen immune responses.

Table 2. Potential influenza adjuvants base on immune responses.

TLRs Agonists

TLR3 agonist-poly I:C [25–28]
TLR9 agonist-CpG [38–40]

TLR4 agonist-MPL, 1Z105 [20,22,24]
TLR5 agonist-FliC [29–37]

TLR7/8 agonist-R837, TRAC-478, 1V270 [20–24]

Cytosolic Nucleic Acids RLRs receptor agonists: dsRNAs, Small nucleic acids compounds, ploy I:C [41–43]
STING agonist-cGAMP [45–48]

Inflammasomes Agonists NLRC4 inflammasome-FliC [55]
NLRP3 or AIM2 inflammasomes-Nucleic acids (DNA and RNA) [56–58]

Immune Cells Activator iNKT cells activator- α-GalCer [63]
Mast cells activator-C48/80, IL-33, IL-18 [64–67]

Cytokines and Chemokines

IL-1β [68,69]
TNF [65,67]

GM-CSF, GIFT4 [71–73]
CCL27, CCL28 [74,75]

Abbreviations: TLRs, Toll-like receptors; RLRs, RIG-I-like receptors; STING, Stimulator of interferon genes; cGAMP, 2’3’-cyclic GMP-
AMP; NLRC4, NLR-family CARD domain-containing protein 4; NLRP3, NOD-like receptor protein 3; iNKT cells, Invariant (i) natural
killer T cells; α-GalCer, Glycolipid ligand α-galactosylceramide; TNF, Tumor necrosis factor; GM-CSF, Granulocyte-macrophage colony-
stimulating factor.

3.4. Activators of Immune Cells

Besides the primary professional antigen-presenting cells (APCs), i.e., DCs and
macrophages, γδ T cells, NK cells, NKT cells, neutrophils, eosinophils, and mast cells
are essential components of the innate immune system. Synergistically activating the
function of different innate immune cells could facilitate comprehensive immune responses
and provide broad protection. Molecules participating in the activation of these cells are
promising adjuvants.

Invariant (i) NKT cells, a significant subset of NKT cells, serve as a bridge between the
innate and adaptive immune responses. Activated iNKT cells rapidly secrete both Th1 and
Th2 cytokines to facilitate DCs maturation and germinal center (GC) B cell responses [72].
Glycolipid ligand α-galactosylceramide (α-GalCer) is a stimulator of iNKT cells. The
adjuvanticity of α-GalCer has been studied for influenza vaccines in different animal
models. α-GalCer is a promising adjuvant for influenza vaccines, which enhances antigen-
specific antibody production and increases protective efficacy.

Mast cells are important innate immune cells and play a crucial role in fighting against
bacterial and viral infection. Activated mast cells regulate the migration of immune cells
and the induction of adaptive immune responses. Mast cells can be stimulated by various
activators, including compound 48/80 (C48/80), IL-33, IL-18, alum, and IgG immune com-
plexes [73,74]. Intranasal immunization with C48/80 adjuvanted recombinant influenza
HA elicited protective immunity against 2009 pandemic H1N1 influenza in mice [75].
Intranasal vaccination with the IL-18 and IL-33 adjuvanted recombinant influenza vaccine
significantly enhanced antigen-specific antibody responses in systemic compartments and
mucosal sites and increased mouse survival during lethal influenza challenges [76].

3.5. Cytokines and Chemokines

Other cytokines that modulate immune cells are potential adjuvants for influenza
vaccines. IL-1β is an inflammatory cytokine released from its proprotein by inflammasome-
mediated caspase-1 activation [77]. Mucosal delivery of recombinant adenoviral vectors
(rAd) encoding IL-1β enhanced influenza HA-specific antibody responses. rAd-IL-1β-
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adjuvanted immunization increased mucosal and systemic T cell immune responses, local
tissue-resident memory T cell population, and improved protection against heterologous
influenza strains H1N1, pH1N1, H3N2, and H7N7 [78].

Tumor necrosis factor (TNF) is one product of C48/80 stimulation, which directs DC
migration [74]. A combination of influenza antigens with particulate TNF increased GC
activities and mouse survival rates after a lethal influenza challenge [79].

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an immunomodula-
tory cytokine that promotes the maturation of granulocytes and macrophages and regulates
DC homeostasis [80]. Skin vaccination with GM-CSF-adjuvanted influenza vaccines in-
duced robust long-term antibody responses and improved mouse protection against lethal
influenza challenges [81]. GIFT4 is a novel cytokine that was constructed in our lab by
fusing GM-CSF and interleukin-4. We found that a glycolipid (GPI)-anchoring GIFT4
enhanced the immunogenicity of HIV VLPs [82].

Chemokines are a group of small chemoattractant proteins that play a critical role
in the tissue-directed migration of immune cells. The use of chemokines as adjuvants
is a potential option for developing novel influenza vaccines to direct immune effectors
to vulnerable sites for intensive protection [83]. Mucosa-associated epithelial chemokine
(CCL28) and cutaneous T-cell-attracting chemokine (CCL27) represent attractive homing
chemokines. CCL27, CCL28, and their receptor, CCR10, are essential regulators of mucosal
immune responses and important for lymphocyte recruitment to specific mucosal sites.
Our lab has previously demonstrated that GPI-anchored CCL28 (GPI-CCL28) acted as an
effective adjuvant in an influenza VLP vaccine, which induced robust immune responses
at systemic and mucosal compartments and provided significant cross-protection against
heterologous viral infection [84] (Figure 1B).
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4. Particulate Adjuvants and Self-Adjuvanted Particulate Vaccine Platforms

Particles of various types have been investigated as vaccine adjuvants for both injection
and mucosal routes. Encapsulating antigens into nanoparticles or onto their surfaces has
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been shown to enhance antigen-specific antibody responses and cell-mediated immunity.
Nanoparticles are an important class of nanoscale materials that have been engineered
with controllable and tunable physicochemical properties, including size, shape, structure,
and surface chemistry.

The development of self-adjuvanted nanoparticle platforms carrying molecular ad-
juvants and antigens is highly desirable because such particles can efficiently transport
antigens to target cells and activate innate signaling. Different self-adjuvanted nanoparticle
platforms are displayed in Figure 1.

4.1. Gold (Au) Nanoparticles

Gold (Au) nanoparticles are one of the most common inorganic nanoparticles used
for vaccine formulations. Due to the strong affinity of thiol moieties with Au nanoparticle
surfaces, thiol-modified polymers or biomolecules (proteins, peptides, oligonucleotides,
targeting ligands) can be readily conjugated onto the nanoparticles. With good biosafety
and biocompatibility, Au nanoparticles have been used for developing influenza and
HIV vaccines [42,85–87]. We previously developed multifunctionalized dual-linker gold
nanoparticles (AuNPs) to co-deliver influenza antigens and FliC [86] (Figure 1A). Com-
pared with soluble proteins, self-adjuvanted AuNPs-HA/FliC enhanced antigen uptake
and induced significantly improved antibody responses. We reported later that the AuNP-
HA and AuNP-FliC particle mixtures generated strong mucosal and systemic immune
responses and protected immunized mice against lethal influenza virus challenges [42].
The self-adjuvanted Au nanoparticle influenza vaccines demonstrated a high potential for
an intranasal influenza vaccine with enhanced vaccine efficacy.

4.2. Lipid Nanoparticles

Lipid nanoparticles (LNPs), typically composed of an ionizable lipid, cholesterol, lipid
conjugated with polyethylene glycol (PEGylated lipid) and a helper lipid, have recently
been recognized as a novel delivery system. LNPs have been used for antigen and adjuvant
codelivery. CpG-incorporated LNPs improved the adjuvant effects of CpG ODN and
broadened the protection against influenza virus infection [88]. Combinations of TLR
ligands with lipid formulations are of particular interest. A split influenza vaccine with
co-encapsulated TRAC-478 (a synthetic dual TLR adjuvant) liposome delivery system
stimulated strong humoral immune responses and induced Th1-cell-mediated immunity;
The immunity protected immunized mice against a heterologous influenza challenge [28]
(Figure 1E).

mRNA vaccines are a promising alternative to other vaccine approaches. One mRNA
vaccine formulation could easily include multiple mRNAs encoding different viral anti-
gens and innate signaling triggers. mRNA LNPs are one of the novel mRNA vaccine
technologies. Nucleoside-modified mRNA LNPs have induced increased GC responses.
Full-length influenza HA mRNA-encapsulated LNPs induced HA-stalk-specific antibodies
that provided cross-protection in mice [89]. Meanwhile, intradermal (ID) delivery of com-
bined influenza HA stalk, neuraminidase (NA), matrix-2 ion channel (M2), and NP mRNA
LNPs have induced robust immune responses and provided broad protection [89–92].
Thus, codelivery of appropriate adjuvants with the mRNA LNPs is an effective method to
enhance the immune response.

4.3. Protein Nanoparticles

Compared with other particulate platforms, protein nanoparticles are exclusively anti-
genic and adjuvant proteins. With self-assembling motifs or under some physical condition
(like desolvation), proteins can automatically assemble into nanoparticles. With virtually
no polymer or nanocarrier, protein nanoparticles have an extremely high antigen-loading
capacity. The methods for the preparation and characterization of double-layered protein
nanoparticles have been well established in our laboratory. We have found that layered
protein nanoparticles composed of an HA stalk from both H1N1 and H3N2 influenza
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strains and M2e induced immune protection against homo- and heterosubtypic influenza
A viruses [93]. This double-layered protein nanoparticle platform can be adapted to ac-
commodate different influenza conserved antigens. We have developed nanoparticles
by desolvating M2e or NP into cores and crosslinking HA stalks, HA, NA, or NP on the
core surfaces as coating antigens [94,95] (Figure 1C). The immunogenicity and protective
efficiency of these nanoparticles have been determined. Based on this nanoplatform, we
are interested in incorporating different adjuvants or targeting molecules together with
influenza antigenic proteins into nanoparticles to improve the vaccine outcomes. These self-
adjuvanted nanoparticles will be fabricated into MNP for skin delivery in our laboratory.

4.4. Other Nano-Platforms

Other types of nanoparticles have also been studied to construct self-adjuvanted
vaccine formulations, such as silver (Ag) nanoparticles and calcium phosphate (CaP)
nanoparticles. In a recent report, Ag nanoparticles demonstrated promising results in
boosting the mucosal immunity of inactivated flu vaccines in a pulmonary immunization
and protected against lethal influenza infection [96]. The inclusion of silver nanoparti-
cles induced much stronger antigen-specific IgA in bronchus-associated lymphoid tissue
(BALT), reducing the lung viral titers and concomitant lung inflammation. Compared
with other adjuvants, such as poly I:C and AddaVax, Ag nanoparticles displayed superior
potential in providing potent mucosal immunity potency and protecting mice against in-
fluenza infection. For example, a single oral immunization of the AgNP/H5 DNA vaccine
in chickens successfully induced antigen-specific antibody responses and cell-mediated
immune responses, and enhanced cytokine production [97].

Calcium phosphate nanoparticles (CaP) are a kind of biodegradable nanoparticle with
excellent biocompatibility. Knuschke et al. reported the high potential of CaP nanoparticles
in inducing cellular immunity when formulated with a conserved influenza A/PR/8/34
(H1N1) HA peptide and a TLR9 agonist, CpG [98]. These nanoparticles were efficiently
internalized by DCs in vivo and elicited potent T-cell-mediated immunity; Greatly in-
creased numbers of antigen-specific, IFN-γ-producing CD4+ and CD8+ effector T cells
were detected. Moreover, CaP nanoparticles were useful adjuvants in multiple administra-
tion routes and powerfully induce the balanced T helper type-1 (Th1) and Th2 immune
responses [99,100].

Biodegradable synthetic polymeric (PLGA) nanoparticles containing influenza anti-
gens, TLR4, and TLR7 ligands (MPL + R387) have been reported to induce synergistic in-
creases in antigen-specific antibodies and complete protection against lethal influenza virus
strains challenge in mice and rhesus macaques [6] (Figure 1D). The immune-stimulating
complex (ISCOM) is another type of particulate adjuvant. It is composed of antigens, choles-
terol, phospholipid, and the immunostimulatory saponin. Matrix M was the third genera-
tion of ISCOM and used as an adjuvant in clinical trials for influenza vaccines [101,102].

In addition to three-dimensional nanomaterials, two-dimensional sheet-like nanomate-
rials, such as graphene oxide (GO) nanoparticles, also attract interest in constructing novel
self-adjuvanted vaccine platforms. As the typical example, GO nanoparticles demonstrated
great potential as vaccine delivery systems, because of their extraordinary advantages,
including the high loading capacity resulting from the intrinsically high aspect ratio and
ultra-large surface area, the easy and flexible surface modification with the presence of
a wealth of chemical groups (carboxylic acid, epoxy and hydroxyl groups, etc.), and the
biocompatible and nonimmunogenic features. GO-nanoparticle-based vaccines can be
prepared in many ways, including direct absorption via hydrogen bonding, hydrophobic
or π–π stacking interactions, and chemical conjugation with the rich chemical groups. Flex-
ible surface modification with polymers makes the design and fabrication of GO vaccine
formulations amiable.

Inorganic materials possess many advantages for drug delivery, like increased load-
ing efficacy, controlled release, stability, and low-toxicity. These properties make them
ideal vectors for vaccine delivery. Although various inorganic nanoparticles, such as Au
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nanoparticles, are extensively studied in vaccine research, the safety issues, such as toxicity,
metabolism and side effects, still need to be further evaluated [103,104]. Lipid and protein
nanoparticles belong to the organic nanoparticles, which are relatively safe. PLGA is one
kind of biocompatible and biodegradable polymer that has been approved by the US Food
and Drug Administration (FDA) for human use [105], thus PLGA-based nanoparticles will
be a promising platform for vaccine delivery. Besides the platforms, the fabrication process,
particle size, dose, characteristics of carried antigens and adjuvants are also important
factors that could influence the application of vaccines.

5. Conclusions

Taken together, adjuvants participating in innate immunity could initiate innate
immune responses and orchestrate the direction and scale of adaptive immune responses.
Appropriate administration routes for different adjuvants could differentiate the effects
of vaccines because of the uneven distribution of innate sentinel cells. The optimization
of combinations of adjuvants is important to regulate the magnitude and breadth of
influenza vaccines.

The immune system recognizes many molecules as ligands of innate sensors. The
use of the functionally characterized molecules as adjuvants will significantly promote the
rational design of influenza vaccines. Simultaneous applications of different adjuvants via
particulate carriers are a potential approach to achieve universal influenza vaccines.
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