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ABSTRACT
Purpose  The receptor tyrosine kinase rearranged during 
transfection (RET) can be oncogenically activated by 
gene fusions or point mutations. Multikinase inhibitors 
such as cabozantinib, lenvatinib and vandetanib have 
demonstrated activity in RET-dependent malignancies, 
and selective RET inhibitors (Selpercatinib and Pralsetinib) 
are in clinical trials. However, the responsiveness of RET-
dependent malignancies to immune checkpoint inhibitors 
(ICIs) is unknown. We compared the time to treatment 
discontinuation (TTD) for ICI versus non-ICI therapy in 
patients with malignancies harbouring activating RET 
mutations or fusions (RET+).
Methods  A retrospective review of all RET+ patients who 
were referred to the phase I clinical trials programme 
at the University of Texas MD Anderson Cancer Center 
was conducted. TTD was estimated using Kaplan-Meier 
analysis. Multivariate analysis using the Cox proportional 
hazard model was performed to identify independent risk 
factors of treatment discontinuation.
Results  Of 70 patients who received systemic therapy 
for RET+ malignancies, 20 (28.6%) received ICI and 
50 (71.4%) received non-ICI therapy. Non-ICI therapy 
was associated with decreased risk for treatment 
discontinuation compared with ICI in the overall population 
(HR=0.31; 95% CI 0.16–0.62; p=0.000834) and in 
patients with RET point mutations (HR=0.13; 95% CI 
0.04–0.45; p=0.00134). In patients with RET fusions, 
non-ICI therapy was associated with a non-statistically 
significant decreased risk of treatment discontinuation 
(HR=0.59; 95% CI 0.25–1.4; p=0.24). ICI therapy and a 
diagnosis other than medullary thyroid cancer (MTC) were 
independent risk factors for treatment discontinuation.
Conclusion  Our study supports the prioritisation of non-
ICI over ICI therapy in patients with RET+ tumours.

INTRODUCTION
Aberrations in the receptor tyrosine kinase 
RET (rearranged during transfection), both 
activating point mutations and gene rear-
rangements, result in constitutive RET kinase 
activation and drive multiple malignancies, 
including medullary thyroid cancer (MTC) 

and lung cancer.1–16 Multikinase inhibitors 
such as cabozantinib, lenvatinib and vande-
tanib non-selectively inhibit RET with modest 
activity in MTC with RET mutations17–22 
and in non-small-cell lung cancer (NSCLC) 
with RET fusions.23–26 However, the benefit 
of multikinase inhibitors in RET-aberrant 
(RET+) malignancies is limited by signifi-
cant toxicity.21 22 The recent development 
of selective RET kinase inhibitors is poised 

key questions

What is already known about this subject?
►► Immune checkpoint inhibitors (ICIs) are known to be 
inefficacious in EGFR and ALK aberrant non-small-
cell lung cancer. The sensitivity of rearranged during 
transfection (RET)-aberrant malignancies to ICIs is 
unclear. Small retrospective studies of RET-aberrant 
non-small-cell lung cancer suggest inadequate ef-
ficacy of ICIs.

What does this study add?
►► This is a large retrospective study comparing the ef-
ficacy of ICIs with non-immune checkpoint inhibitor 
therapy in RET-aberrant malignancies as measured 
by time to treatment discontinuation for disease pro-
gression. The study found that the risk of treatment 
discontinuation was significantly higher in RET-
aberrant malignancies treated with ICIs compared 
with non-ICI therapy. On multivariate analysis, non-
ICI therapy and non-medullary thyroid carcinoma di-
agnosis were independent risk factors for treatment 
discontinuation.

How might this impact on clinical practice?
►► The findings of this study support prioritisation of 
non-ICI therapy over ICIs in RET-aberrant malig-
nancies. This study was conducted prior to FDA-
approval of the selective RET kinase inhibitors, 
selpercatinib and prasetinib. However, our findings 
add to the growing body of evidence regarding the 
role of ICIs in RET-aberrant malignancies.
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to alter the landscape of therapies for RET-aberrant 
malignancies.27–32 In contrast, immune checkpoint inhib-
itors (ICIs) are Food and Drug Administration (FDA)-
approved in a variety of malignancies with a response rate 
of 20%–30%.33 The efficacy of ICIs in certain subsets of 
oncogene-driven NSCLC is limited.34 35 However, their 
efficacy in NSCLC, MTC and other solid tumours driven 
by RET aberrations in comparison with multikinase inhib-
itors or systemic chemotherapy is uncertain. To determine 
whether there is a benefit of ICIs in RET+ malignancies, 
we performed a retrospective study comparing the time 
to treatment discontinuation (TTD) of ICI with non-ICI 
therapy among patients with RET+ malignancies.

METHODS
We conducted a retrospective review of all patients with 
RET+ malignancies who were referred to the Depart-
ment of Investigational Cancer Therapeutics, the phase I 
clinical trials programme at The University of Texas MD 
Anderson Cancer Center. The study was approved by MD 
Anderson’s Institutional Review Board. Informed consent 
was waived due to the retrospective nature of the study. 
RET+ malignancy was defined as a tumour harbouring a 
known activating RET aberration (RET rearrangement or 
RET point mutations). Patients who did not receive any 
systemic therapy prior to referral and those who received 
selective RET kinase inhibitors were excluded from this 
analysis.

Baseline patient demographics, diagnosis, treatments 
received prior to referral, type of RET aberration and 
reason for treatment discontinuation were collected by a 
retrospective chart review. RET aberrations were detected 
by next-generation sequencing (NGS) methods as a part 
of routine clinical care from CLIA-certified laboratories 
(Oncomine, Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA; FoundationOne, Foundation Medicine, 
Cambridge, Massachusetts, USA; Guardant360, Guar-
dant Health, Redwood City, California, USA). Informa-
tion regarding programmed cell deathprotein ligand 
1 (PD-L1) expression was collected if available from 
pathology reports. Tumour mutation burden (TMB) and 
microsatellite status were also collected if available from 
patients who underwent comprehensive NGS through 
FoundationOne.

TTD, defined as the time from treatment start to treat-
ment discontinuation for disease progression or death, 
was chosen as the primary endpoint because of the vari-
ation in timing and modality of restaging imaging in 
the real-world setting prior to referral for phase I clin-
ical trials.36 TTD was analysed using the Kaplan-Meier 
method (JR, KRH). The R software packages ‘survival’ and 
‘survminer’ were used for statistical analysis. Patients who 
discontinued treatment for reasons other than disease 
progression were censored. To identify independent 
predictors of TTD, multivariate analysis was performed 
using the Cox proportional hazard model.

RESULTS
Ninety-five patients with RET+ malignancies were 
referred to the MD Anderson phase I clinical trials 
programme between September 2014 and August 2018 
(online supplemental figure 1). Twenty-five patients who 
had not received any systemic therapy prior to referral 
were excluded from this analysis. Of the 70 patients who 
had received systemic therapy, 20 (28.6%) had received 
ICI and 50 (71.4%) non-ICI therapy. Forty-five (64.3%) 
patients had discontinued treatment because of disease 
progression, 4 (5.7%) because of treatment completion 
and 16 (22.9%) patients because of toxicity (14 for non-
ICI-related and 2 for ICI-related toxicity). Five patients 
remained on treatment at the time of referral.

Baseline patient characteristics are described in table 1. 
Thirty-four patients (48.6%) had RET fusions and 36 
(51.4%) had RET point mutations. RET aberration was 
detected by tumour NGS in 47 (67.1%), fluorescent in 
situ hybridisation in 10 (14.3%), circulating cell–cell free 
DNA in 10 (14.3%), and unknown method in 3 (4.3%) 
patients. Sixty-four patients (91.4%) had somatic and 
6 (8.6%) had germline RET aberrations. The online 
supplemental figure 2A and B shows specific RET aber-
rations, with M918T being the most common RET point 
mutation (66.7%) and KIF5B being the most common 
upstream fusion partner (41.2%). MTC (45.7%) was the 
most common diagnosis, followed by NSCLC (41.4%). 
All patients with MTC harboured RET point mutations. 
Among patients with NSCLC, 27 (93.1%) had RET fusions 
and 2 (6.9%) had RET point mutations. Among patients 
with NSCLC, 16 patients (55.2%) received ICI therapy, 
of which 14 had RET fusions and 2 had RET point muta-
tions. Among patients with MTC, four (12.5%) received 
ICIs. All other patients received non-ICI therapies (online 
supplemental figure 3). The types of treatment received 
are listed in table 1. Multikinase inhibitors were the most 
common form of non-ICI therapy (64.0%), followed by 
systemic chemotherapy (26.0%), and anti-PD-1 antibody 
(60.0%) was the most common ICI therapy. Patients who 
received non-ICI therapy had a median of 0 prior lines 
of therapy (range 0–6), and patients who received ICI 
had a median of 1 prior line of therapy (range 0–6). Most 
patients (71.4%) had no tobacco exposure (current or 
former smoking). Among patients who received ICI and 
non-ICI therapies, 6 (30%) and 14 (28%) had tobacco 
exposure, respectively.

Overall, non-ICI therapy was associated with a longer 
median TTD compared with ICI (18.0 vs 5.2 months, 
p=0.00045) (Figure  1 A). A swimmer plot comparing 
the TTD of patients who received non-ICI and ICI thera-
pies is displayed in Figure 2. Among the 36 patients with 
RET point mutations, non-ICI therapy was associated 
with a significantly longer median TTD compared with 
ICI therapy (31.9 vs 5.6 months, p=0.00016) (Figure 1B)
(). Among the 34 patients with RET fusions, although 
the median TTD was longer in patients who received 
non-ICI therapy than in those who received ICI therapy, 
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the difference was not statistically significant (8.3 vs 3.2 
months, p=0.24) (Figure 1C) . Among the 29 patients 
with NSCLC, the median TTD was longer in patients 
who received non-ICI therapy, but the difference was not 
statistically significant (9.3 vs 3.4 months, p=0.16) (Figure 

1 D) . On multivariate analysis, diagnosis (MTC vs non-
MTC) and type of therapy (ICI vs non-ICI) were indepen-
dent predictive factors of treatment discontinuation for 
disease progression (table 2). A non-MTC diagnosis was 
associated with a higher risk of treatment discontinua-
tion compared with an MTC diagnosis (HR=2.67; 95% CI 
1.29–5.51; p=0.0081), and non-ICI therapy was associated 
with a lower risk of treatment discontinuation compared 
with ICI therapy (HR=0.43; 95% CI 0.20–0.96; p=0.039)

PD-L1 expression, TMB and microsatellite status 
are described in table  3. The PD-L1 expression level 
was available in 18 patients, of which 15 (83.3%) had 
NSCLC. Overall, 4 patients (22.2%) had strong (≥50%), 
4 (22.2%) had intermediate (1%–49%) and 10 (55.6%) 
had weak (<1%) PD-L1 expression by immunohistochem-
istry (IHC). All eight patients with strong and interme-
diate PD-L1 expression had NSCLC. Of the 10 patients 
with weak PD-L1 expression, 7 (70%) had NSCLC and 1 
patient each had MTC, papillary thyroid cancer (PTC) 
and another cancer type. Two of the three patients with 
strong PD-L1 expression who received ICIs (one combi-
nation chemotherapy with an ICI and one pembroli-
zumab monotherapy) discontinued treatment because of 
disease progression within 2 months. The third patient 
with strong PD-L1 expression who received combination 
chemotherapy with ICI discontinued treatment because 
of toxicity at 0.7 months. One of the four patients with 
intermediate PD-L1 expression received combination 
chemotherapy with an ICI and had been on treatment 
for 1.4 months at the time of analysis without disease 
progression.

TMB data were available for 15 patients, of which 9 
(60%) had NSCLC, 3 (20%) had MTC, 1 (6.7%) had PTC 
and 2 (13.3%) had other cancers. TMB was low (≤5/Mb) 
in all 15 patients. Microsatellite status was available for 
10 patients, of which 5 (50%) had NSCLC, 1 (10%) had 
MTC, 1 (10%) had PTC and 3 (30%) had other cancers. 
All patients had microsatellite-stable tumours.

DISCUSSION
In this retrospective analysis, we found that patients with 
RET-aberrant malignancies who received non-ICI therapy 
were at a decreased risk of disease progression when 
compared with those who received ICIs. This is the largest 
study of real-world evidence comparing the efficacy of ICI 
versus non-ICI therapy in all RET-aberrant malignancies. 
As potent and highly selective RET tyrosine kinase inhib-
itors are under development, findings from this study are 
relevant to clinical decision making.

ICIs are currently US FDA-approved for the treatment 
of a variety of malignancies, including NSCLC. A retro-
spective analysis of 551 patients with oncogene-driven 
lung cancer who received ICIs included 16 patients with 
RET rearrangements.37 For these patients, the median 
overall survival was 21.3 months (range 3.8–28), median 
progression-free survival (PFS) was 2.1 months (range 
1.3–4.7), and only two patients had a long-term response. 

Table 1  Baseline characteristics of the 70 patients with 
RET+ malignancies

Characteristics

n (%)

Non-ICI (N=50) ICI (N=20)

Age, years, median (range) 57 (18-81) 59 (35-76)

Sex

 � Female 27 (54.0) 9 (45.0)

 � Male 23 (46.0) 11 (55.0)

Ethnicity

 � Caucasian 44 (88.0) 16 (80.0)

 � African American 3 (6.0) 0 (0.0)

 � Hispanic 3 (6.0) 1 (5.0)

 � Other 0 (0.0) 3 (15.0)

Tobacco exposure 14 (28.0) 6 (30.0)

Diagnosis

 � Non-small-cell lung cancer 13(26.0) 16 (80.0)

 � Medullary thyroid cancer 28 (56.0) 4 (20.0)

 � Papillary thyroid cancer 4 (8.0) 0 (0.0)

 � Anaplastic thyroid cancer 1 (2.0) 0 (0.0)

 � Other 4 (8.0) 0 (0.0)

Origin of RET aberration

 � Somatic 45 (90.0) 19 (95.0)

 � Germline 5 (10.0) 1 (5.0)

Type of RET aberration

 � Fusion 20 (40.0) 14 (70.0)

 � Mutation 30 (60.0) 6 (30.0)

Median number of prior systemic 
therapies*

0 (0-6) 1 (0-6)

Treatment

 � Chemotherapy 13 (26.0) -

 � MKI 32 (64.0) -

 � Arginase inhibitor 1 (2.0) -

 � Chemotherapy+MKI 3 (6.0) -

 � Osimertinib 1 (2.0) -

 � Anti-CTLA-4 - 1 (5.0)

 � Anti-PD-1 - 12 (60.0)

 � Anti-PD-L1 - 3 (15.0)

 � Anti-PD-1+chemotherapy - 3 (15.0)

 � Anti-PD-1+MKI - 1 (5.0)

*Systemic therapies received prior to the most recent systemic 
therapy at the time of referral to MD Anderson Cancer Center
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; ICI, 
immune checkpoint inhibitor; MKI, multikinase inhibitor; PD-
1, programmed cell death protein 1; PD-L1, programmed cell 
death protein ligand 1; RET, rearranged during transfection.
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Our study included 70 patients with RET-aberrant malig-
nancies and the TTD was significantly longer among 
patients who received non-ICI compared with ICI therapy 
(18 vs 5.2 months, p=0.00045).

The overall decreased risk of treatment discontinua-
tion with non-ICI therapy could be attributed to the more 
indolent course of MTC because the majority of patients 
who received non-ICI therapy had MTC and most patients 
who received ICI therapy had NSCLC. However, on 
subgroup analysis, among patients with RET point muta-
tions, most of whom had MTC, non-ICI therapy was asso-
ciated with decreased risk of treatment discontinuation 
compared with ICIs. In patients with RET fusions, most of 
whom had NSCLC, non-ICI therapy was associated with 
a non-statistically significant decreased risk for treatment 
discontinuation compared with ICI therapy, which is in 
line with the findings of Offin et al.38 Multivariate anal-
ysis showed that a non-MTC diagnosis was associated with 
increased risk of treatment discontinuation, once again 
highlighting the relatively indolent course of MTC irre-
spective of the type of therapy. However, non-ICI therapy 
was also independently associated with a decreased risk 
of treatment discontinuation. These findings suggest 
that both histological diagnosis and type of therapy inde-
pendently influence the risk of disease progression in 
RET+ malignancies. The lack of statistically significant 
difference in TTD between the non-ICI and ICI arms 
among patients with NSCLC may be due to the use of 

older, less potent multikinase inhibitors. Patients who 
received highly potent and selective RET inhibitors were 
excluded from our study as trials are ongoing. These 
selective RET inhibitors have demonstrated promising 
clinical activity with limited toxicity. Thus, the treatment 
strategy for RET-aberrant malignancies may shift away 
from ICIs in the near future.

Where data were available, RET+ malignancies demon-
strated low TMB and were microsatellite-stable. Among 
15 patients with NSCLC whose PD-L1 status was known, 4 
(26.7%) had a strong expression. Yet, the TTD was less than 
2 months in two out of three patients with strong PD-L1 
expression who received ICIs. Intrinsic induction of PD-L1 
expression by oncogenes such as activating EGFR muta-
tions or ALK fusions in NSCLC drive immune escape.39–42 
However, PD-L1 expression in oncogene-driven NSCLC is 
rarely accompanied by a high level of CD8+ TILs (tumor 
infiltrating lymphocytes), which are thought to be the main 
effectors of anti-PD-1/PD-L1 therapy.35 43 This could explain 
low response rates to anti-PD-1/PD-L1 therapy in oncogene-
driven NSCLC.

Although MTC patients who received ICIs had TTDs of up 
to 8.2 months, this duration was significantly lower than the 
median TTD of 31.9 months with multikinase inhibitor-based 
therapy among patients with RET point mutations in our 
study and lower than the PFS reported for vandetanib and 
cabozantinib in randomised phase III trials in MTC.21 22 Our 
study lacks sufficient data regarding PD-L1 status and TMB 

Figure 1  Time to treatment discontinuation A. Allpatients B. Patientswith RET point mutations C. Patientswith RET fusions D. 
Patientswith NSCLC. ICI, immune checkpoint inhibitor.
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of patients with MTC. However, other studies have demon-
strated the non-immunogenic nature of MTCs. One retro-
spective study of 16 MTC patients showed that 94% of patients 
were PD-L1 negative with a paucity of TILs, which were also 

negative for PD-L1 expression in a majority of cases.44 Another 
retrospective study of 87 MTC patients showed that only 22% 
of patients were PD-L1 positive (>1% by IHC, SP263), and 
89.5% of these had weak to moderate staining intensity.45 
Hence, patients with MTC tend to have weak PD-L1 expres-
sion, low TMB and tend to be microsatellite-stable and there-
fore may not benefit from ICIs in comparison with non-ICI 
therapies.

Combination of chemotherapy and ICI has been FDA-
approved for patients with NSCLC, including those with 
oncogenic drivers. In addition to direct cytotoxic effects, 
chemotherapeutic agents have been proposed to have a 
synergistic effect when combined with the anti-PD-1/PD-L1 
blockade in NSCLC.46 In our study, three patients received 
combined carboplatin, pemetrexed and pembrolizumab. 
One patient discontinued treatment because of toxicity at 
0.7 months, one discontinued because of disease progression 
at 1 month, and one remained on treatment at 1.4 months 
without disease progression. The one MTC patient who 
received combined lenvatinib and pembrolizumab discon-
tinued treatment at 0.4 months because of disease progres-
sion. Although ICIs may be used in combination with non-ICI 
therapies in patients with RET-aberrant malignancies, the 
benefit of adding ICI to non-ICI therapy needs to be studied.

Our study is limited by its retrospective nature, single-centre 
experience, lack of radiological assessments at prespecified 
intervals using RECIST criteria, and lack of centralised PD-L1 

Figure 2  Time to treatment discontinuation swimmerplot. ICI, immune checkpoint inhibitor; RET, rearranged during 
transfection.

Table 2  Multivariate analysis of predictive variables for 
disease progression using the COX proportional hazard 
model

Predictor HR (95% CI) P value

Age* 0.99 (0.97–1.01) 0.37

Sex

 � Female Reference

 � Male 1.45 (0.73–2.91) 0.29

Tobacco exposure

 � No Reference

 � Yes 0.82 (0.39–1.70) 0.59

Diagnosis

 � MTC Reference

 � Non-MTC 2.67 (1.29–5.51) 0.0081

Type of treatment

 � ICI Reference

 � Non-ICI 0.43 (0.20–0.96) 0.039

*Continuous variable.
ICI, immune checkpoint inhibitor; MTC, medullary thyroid cancer.
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and molecular testing. Although TTD is a pragmatic substi-
tute for PFS in the real-world setting, PFS may not be an 
accurate indicator of efficacy in patients receiving ICIs. Addi-
tionally, our study does not report overall survival, which may 
be a better indicator of efficacy. This study was conducted 
prior to FDA-approval of the selective RET kinase inhibitors, 
selpercatinib and prasetinib. However, our findings add to 
the growing body of evidence regarding the role of ICIs in 
RET-aberrant malignancies.

In conclusion, our study supports the prioritisation of 
non-ICI over ICI therapies in patients with RET aberra-
tions. Clinical trials evaluating the efficacy of ICIs in MTC 
(NCT03246958, NCT03072160) are ongoing. The selective 
RET inhibitor, selpercatinib, has received FDA-approval for 
the treatment of RET-fusion-positive NSCLC and thyroid 
cancer (radioactive iodine-refractory) as well as RET-mutant 
MTC.29 47 Similarly, another selective RET inhibitor, pral-
setinib, has received FDA approval for RET fusion positive 
NSCLC and was granted breakthrough designation by the 
FDA for RET-mutated MTC with no acceptable alternative 
treatments.48 49 Randomized controlled trials comparing selp-
ercatinib (NCT04194944) and pralsetinib (NCT04222972) to 

platinum doublet based regimen are ongoing. Other newer 
selective RET inhibitors such as BOS172738, TPX-0046 and 
TAS0953/HM06 are currently in clinical trials.50 51 Until the 
results of these trials become available, we conclude that FDA-
approved selective RET inhibitor, enrollment in selective 
RET inhibitor trials, initiation of multikinase inhibitors with 
RET activity or systemic chemotherapy should be prioritised 
over ICIs for the treatment of all RET-aberrant malignancies.
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Table 3  PD-L1 expression, tumour mutation burden and 
microsatellite status for patients with available data, by 
diagnosis and type of therapy received

n (%)

PD-L1 expression Non-ICI (N=11) ICI (N=7)

Weak (<1%)

 � NSCLC 4 (36.4) 3 (42.9)

 � MTC 1 (9.1) 0 (0.0)

 � PTC 1 (9.1) 0 (0.0)

 � Other 1 (9.1) 0 (0.0)

Intermediate (1%–49%)

 � NSCLC 3 (27.3) 1 (14.2)

Strong (≥50%)

 � NSCLC 1 (9.1) 3 (42.9)

Tumour mutation burden Non-ICI (N=7) ICI (N=8)

Low (≤5/Mb)

 � NSCLC 3 (42.8) 6 (75.0)

 � MTC 1 (14.3) 2 (25.0)

 � PTC 1 (14.3) 0 (0.0)

 � Other 2 (28.6) 0 (0.0)

Microsatellite status Non-ICI (N=7) ICI (N=3)

Stable

 � NSCLC 2 (28.6) 3 (100.0)

 � MTC 1 (14.3) 0 (0.0)

 � PTC 1 (14.3) 0 (0.0)

 � Other 3 (42.8) 0 (0.0)

ATC, anaplastic thyroid cancer; ICI, immune checkpoint inhibitor; 
MTC, medullary thyroid cancer; NSCLC, non-small-cell lung 
cancer; PTC, papillary thyroid cancer.
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