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1. INTRODUCTION 

Data useful for biosurveillance are often only available in a 
free-text format that can be easily read and understood by a 
human but not by a computer. Natural language processing 
(NLP) refers to automated methods for converting free-text 
data into computer-understandable format (Allen, 1995). This 
conversion is necessary so that information stored in free-text 
format can contribute to detection and characterization of 
outbreaks. 

2. THE ROLE OF NLP IN BIOSURVEILLANCE 

Detection algorithms count the number of occurrences of a 
variable in a given spatial location over a given time period 
to look for anomalous patterns. Detection algorithms require 
structured data, that is, data in a format that can be interpreted 
by a computer. By far the most common structured data formats 
are relational database tables. An example of a structured data 
element is the number of units of cold and cough medicine 
sold over the last 24 hours in a particular county. Many other 
examples of structured data elements were described in earlier 
chapters and in Part IV. 

Much data that could potentially be useful in biosurveil- 
lance are unstructured. These include symptoms reported by a 
patient when presenting at an emergency facility, physical and 
radiological findings recorded by a physician, and queries to 
healthcare related web sites. In order to use these data for bin- 
surveillance, the information must be converted. We focus our 
discussion on the use of NLP to encode information from tex- 
tual patient records for input to outbreak detection algorithms. 

3. EXAMPLE USE OF NLP 

As an example, assume we want to develop an expert system 
that generates the probability a patient presenting to an emer- 
gency department (ED) has severe acute respiratory syndrome 
(SARS) given their free-text medical records. According to 
the World Health Organization and Centers for Disease 
Control and Prevention case definitions of SARS, the 
required input variables for diagnosing SARS are whether the 
patient (1) has an acute respiratory finding (Respiratory Fx), 
(2) is febrile (Fever), (3) has an abnormal chest radiograph 
consistent with consolidation or pneumonia (CXR), and 
(4) has recently traveled to a country currently affected by 

SARS (Travel). Values for the first three variables are often 
described in electronic textual patient records. Figure 17.1 
shows excerpts from a patient's medical record generated 
during an ED visit, including the triage chief complaint, his- 
tory and physical exam, and chest radiograph report. A human 
physician reading these textual records could easily determine 
the correct values for the first three variables. Information 
from the fourth variable (Travel) may not be accessible any- 
where in the patient's medical record unless the dictating 
physician had been concerned about SARS and had dictated 
the travel history. Retrieving the value for the Travel variable 
may require a semi-automatic technique in which patients 
with a high probability of SARS based on  the three clinical 
values could be interviewed regarding their travel history. 

A simple expert system may only use the variable 
Respiratory Fx, monitoring the number of patients presenting 
to the ED with respiratory complaints. A physician may be able 
to determine the true value of the Respiratory Fx variable 
from information in the triage chief complaint. A more complex 
expert system may use all three variables. According to the 
medical record in Figure 17.1, a physician would assign values 
to the variables in a more complex expert system as follows. 
Respiratory Fx: yes, because the patient had a chief complaint 
of cough, he complained to the ED physician of productive 
cough and shortness of breath, 'and the shortness of breath 
was probably not cardiac in nature, given that the patient did 
not have a history of CHF and denied chest pain; Fever: yes, 
because the chief complaint and the ED report said the patient 
was febrile; and CXR: yes, because the radiograph report 
described an opacity consistent with pneumonia. 

It would be impractical to hire physicians to read medical 
records and extract values for the variables required by our 
expert system. Therefore, if we want to know the variables' 
values, we must determine them automatically using natural 
language processing. 

4. HOW HARD IS NLP? 

NLP can be relatively easy or difficult depending on how 
complex the text is and on what variables you want to extract. 
For example, it is relatively easy to extract symptoms from 
free-text chief complaints using simple methods, because chief 
complaints are short phrases describing why the patient came 
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HISTORY OF PRESENT ILLNESS" 
CHIEF COMPLAINT: FEVER. 

I l l  I [ s  

This is a **AGE[in 60s]-year-old white male who presented to the 
Emergency Department with a one-day histo13~ of fever to 102 degrees 
Fahrenheit, as well as minimally productive cough. The patient also 
complains of shortness of breath that occurs both with rest and with exertion 
over the past 24 hours. No past tfistory of CHF. Denies chest pain. He has 
minimal congestion and denies sore throat. The patient was evaluated by his 
PCP, Dr. **NAME[ZZZ UUU], and was placed on decongestant, as well as 
given one dose of Augmentin today, which he took. Despite this, patient 
continued to have fevers through the day, cough, and shortness of breath, 
which prompted his visit to the Emergency Department. He denies sick 
contacts at h o me . . . .  

There is a subtle opacity in the lower portion of the right lung that may be a 
pneumonia. The patient has norlTN heart size. No pleural or mediastinal 
abnormalities noted. 

IMPRESSION: SUBTLE OPACITY IN THE LOWER PORTION OF THE 
RIGHT LUNG IS CONSISTENT WITH PNEUMONIA. 

F I G U R E 17.1 De-identified excerpts from a patient's electronic medical record. (a) Chief complaint recorded by a triage nurse. (b) First paragraph of a 
history and physical exam dictated by the ED physician. (c) Impression section of a transcribed chest radiograph report. 

to the ED. It is not possible to extract diagnoses from chief 
complaints, because information in a chief complaint is recorded 
before the patient even sees a physician. Once a patient is exam- 
ined by a physician, the patient's diagnosis may be recorded in a 
dictated report. Extracting information from dictated reports 
is much more difficult, because a report tells a complex story 
about the patient involving references to time and negation of 
symptoms that are not present in chief complaints. 

There are many types of technologies used in NLR In general, 
the selection of technology depends on the linguistic charac- 
teristics of the text. There are some linguistic characteristics 
that are so difficult to process that effective NLP methods do 
not exist for them. For example, few NLP systems can accu- 
rately extract information that is being conveyed by use of a 
metaphor.  Fortunately, metaphor  is not a frequent character- 
istic in the data sources of potential value in biosurveillance. 

In the remainder  of this chapter we will discuss (1) the lin- 
guistic characteristics of clinical texts that should be consid- 
ered when implementing NLP for biosurveillance, (2) the types 
of NLP technologies researchers are using to successfully 
model  information in text, (3) evaluation methods for deter- 
mining how successful an NLP application is in the domain 
of outbreak and disease surveillance, and (4) the feasibility 
of using NLP to encode information for biosurveillance expert 
systems. 

5. LINGUISTIC CHARACTERISTICS OF CLINICAL TEXT-WHAT 
MAKES NLP HARD? 

According to Zelig Harris (Friedman et al., 2002), the infor- 
mational content and structure of a domain form a specialized 
language called a sublanguage. The sublanguage of patient 
medical records exhibits linguistic characteristics that influence 
an NLP system's ability to extract information from the text. 
When a physician reads a patient 's medical reports, she under- 
stands the linguistic characteristics of the text and can make 
reasonable inferences from the record. For instance, a physi- 
cian will not assign the Respiratory Fx a value of yes if the 
respiratory finding described in the report is described as 
occurring in the patient's past history. For an NLP application 
to determine the values of clinical variables from patient 
records the same way a physician would, the application 
must account for or model the linguistic characteristics of the 
clinical text. Some important  linguistic characteristics of 
the sublanguage of patient reports are (1) linguistic variation, 
(2) polysemy, (3) negation, (4) contextual information, (5) finding 
validation, (6) implication, and (7) co-reference. 

5.1. Linguistic Variation 

Natural language provides us with freedom to express the 
same ideas in different ways. Humans  are generally capable of 
understanding the meaning of a natural language expression 
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in spite of such variation; however, the freedom that accom- 
panies natural language makes computerized understanding 
of the language difficult. In patient reports, a patient's clinical 
state can be expressed differently due to the linguistic charac- 
teristics of derivation, inflection, and synonymy. 

Derivation and inflection change the form of a word (the 
word's morphology) while retaining the underlying meaning 
of the word. The adjective "mediastinal" can be derived from 
the noun "mediastinum" by exchanging the suffix -um for the 
suffix -al. Similar rules can be used to derive the adjective 
"laryngeal" from the noun "larynx" or to derive the noun 
"transportation" from the verb "transport." 

There are other forms of linguistic variation to contend with. 
The two most important are inflectional rules (which change 
a word's form, such as by pluralization of a noun or tense 
change of a verb) and synonymy (in which different words or 
phrases mean the same thing). 

Physicians reading reports are seldom confused by deriva- 
tion, inflection, or synonymous expressions. An NLP applica- 
tion attempting to determine whether a patient has shortness 
of breath, for example, must account for linguistic variation in 
order to identify "dyspnea," "short of breath," or "dyspneic" 
as evidence of shortness of breath. 

5.2. Biomedical Polysemy 

Terms that have the identical linguistic form but different 
meanings are polysemous. Biomedical polysemy manifests 
itself in different ways (Roth and Hole, 2000, Liu et al., 2001). 
Some words in clinical texts have different biomedical mean- 
ings or word senses. For instance, the word "discharge" has two 
word sensesmone word sense meaning a procedure for being 
released from the hospital, as in "prior to discharge," and one 
word sense meaning a substance that is emitted from the body, 
as in "purulent discharge." 

Acronyms and abbreviations with more than one meaning 
may be the most frequently occurring type of biomedical 
polysemy. A striking example of this is the acronym "APC," 
which has more than thirty unique biomedical definitions, 
including activated protein c, adenomatosis polyposis coli, 
antigen-presenting cell, aerobic plate count, advanced pancreatic 
cancer, age period cohort, and alfalfa protein concentrated. 
According to one study (Wren and Garner, 2002), 36 % of the 
acronyms in MEDLINE are associated with more than one 
definition. The number of unique acronyms in MEDLINE is 
increasing at the rate of 11,000 per year, and the number of 
definitions associated with unique acronyms is increasing at 
44,000 per year. In the sublanguage of patient reports, the type 
of report is helpful in disambiguating the correct meaning of 
an acronym or abbreviation, because the report type indicates 
the type of medical specialty. In this way, "APC" in a micro- 
biology lab report is more likely to mean aerobic plate count, 
whereas "APC" in a discharge summary may be referring to 
advanced pancreatic cancer. 

Triage chief complaints are full of abbreviations created by 
clerks and triage nurses to keep the complaint short (Travers 
and Haas, 2003). Some of the abbreviations are standard and 
are easily understood by physicians, such as "rt" for "fight" and 
"h/a" for headache. But many abbreviations in chief complaints 
are unique to the sublanguage of chief complaints or perhaps 
even to a single hospital or registration clerk. For example, 
"appy" is commonly used to describe an "appendectomy," and 
in one hospital "gx" indicates the patient came to the ED by 
ground transportation. 

Depending on the particular clinical variables that we want 
to extract or encode from text, understanding the meaning 
or word sense of polysemous words in the patient reports can 
be critical to success. 

5.3. Negation 
One of the primary goals in differential diagnosis is to defin- 
itively rule out as many hypotheses as possible in order to 
concentrate on the most probable set of diagnoses. One study 
(Chapman et al., 2001a) estimated that between 40% and 80% 
of all findings were explicitly negated in ten different report 
types, with surgical pathology and operative notes demon- 
strating the least amount of negation and mammograms and 
chest radiograph reports demonstrating the most. Explicit 
negations are indicated by negation terms such as "no," "with- 
out," and "denies." Findings can also be implicitly negated. 
For example, "The lungs are clear upon auscultation" indi- 
cates that rales/crackles, rhonchi, and wheezing are all absent. 
We focus on explicit negation, which is the most common type 
of negation in patient reports. 

In most cases, a physician can easily determine from a 
report whether a finding is negated in the text. In the sen- 
tence, "The patient denies chest pain but has experienced 
shortness of breath," a physician would assign the clinical 
variable chest pain the value of no and the variable shortness 
of breath the value of yes. The types of information a human 
uses to identify explicitly negated findings include (1) nega- 
tion terms, (2) scope of the negation term, and (3) expressions 
of uncertainty. 

5.3.1. Negation Terms 
Explicit negations are triggered by negation terms that may 
precede the finding being negated, as in "The chest x-ray 
revealed no abnormalities," or may follow the observation, 
as in "The patient is tumor free." Consistent with Zipf's law 
(Manning and Schutze, 1999), which states that there exist 
a few very common words, a middling number of medium- 
frequency words, and many low-frequency words, very few 
negation phrases account for the majority of negation in 
patient reports. Two studies on automated negation (Mutalik 
et al., 2001, Chapman et al., 2001a) found that a few negation 
phrases accounted for approximately 90% of negation in dif- 
ferent report types: "no," "denies~denied," "without," and "not." 
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The other 10% of negated observations are triggered by a 
potentially huge number of low-frequency negation phrases. 

Once a human identifies a negation term, he must decide 
whether a relevant finding in the sentence is being negated by 
that term, that is, whether the finding is within the scope of the 
negation term. For example, in sentences (1) and (2) the words 
"source" and "change" are being negated by "not" instead of 
the findings "infection" and "pain." 

(1) This is not the source of the infection. 
(2) There has not been much change in her pain. 

5.3.2. Expressions of Uncertainty 
Unfortunately, differential diagnosis is not a clear-cut science 
in which physicians are completely confident in what findings 
or diseases a patient has, and the language used in patient 
reports expresses the dictating physician's uncertainty on a 
continuum ranging from certain absence to certain presence. 
Consider the implications of sentences (5) to (12). The first 
sentence expresses certainty that pneumonia is absent, whereas 
the last sentence expresses certainty that pneumonia is present. 
The intervening sentences express different amounts of 
uncertainty about a diagnosis of pneumonia. A sophisticated 
expert system may try to incorporate uncertainty of the vari- 
ables into its decision making. A simpler expert system may 
only allow variables to be present or absent. In that case, 
determining whether pneumonia is negated in the sentences 
below depends on the goal of the expert system. An expert 
system designed to be especially sensitive may accept a find- 
ing with uncertainty to be present and may set the value 
of pneumonia to yes for all but the first two sentences. An 
expert system designed to be specific may consider uncer- 
tainty about the variable an indication of negation and may 
only set the value of pneumonia to yes for the last two. 

(5) The chest x-ray ruled out pneumonia. 
(6) We performed a chest x-ray to rule out pneumonia. 
(7) Cannot rule out pneumonia. 
(8) It is not clear whether the opacity is atelectasis or 

pneumonia. 
(9) Radiographic findings may be consistent with pneumonia. 

(10) Discharge diagnosis: possible pneumonia. 
(11) The patient has pneumonia. 
(12) He did have sputum that grew out klebsiella pneumonia 

during his admission. 

5.4. Contextual Information 

Information contained in a single word or phrase is not always 
sufficient for understanding the value of a clinical variable; 
the context around the phrase is often essential in understand- 
ing the patient's clinical state. Among other things, contextual 
information is important for determining when the finding 
occurred and what anatomic location was involved. 

Any expert system attempting to increase timeliness in 
outbreak detection must distinguish between findings that 
occurred in past history and current problems. For example, 
one of the variables in our SARS detector is whether the 
patient has an acute respiratory finding. The definition of acute 
is not straightforward. However, at the least, an NLP applica- 
tion attempting to determine the value of this variable should 
be able to accurately assign the value yes to pleuritic chest 
pain in sentence 13 and no to pneumonia in sentence 14. 

(13) The patient presents today with pleuritic chest pain. 
(14) She has a past history significant for pneumonia. 

A physician reading a report uses contextual clues like the 
structure of a report to discriminate between acute or current 
findings and those in the past history. For example, a finding 
described in an ED report within a section that is titled "Past 
Medical History" is probably a historical finding. A human may 
also use linguistic cues within sentences to determine whether 
a finding is current. For instance, in sentence 15, a physician 
would know that myocardial infarction occurred in the past 
history but that chest pain is a current finding. 

(15) He has a past history significant for myocardial infarction, 
and presents to the ED today with chest pain. 

Determining what findings are described in a patient report 
also entails discriminating current findings from future or 
hypothetical findings. In sentence 16, the instance of fever is 
described as a hypothetical finding, but shortness of breath is 
described as a finding that probably occurred at the current 
hospital visit. 

(16) She should return for fever or exacerbation of her 
shortness of breath. 

Some findings can occur with multiple anatomic locations. For 
detection of SARS, our expert system needs to know whether 
the edema described in sentence 17 was found in the lung or 
in the skin. 

(17) Chest is edematous. 

Sometimes the anatomic location is explicitly stated, as in 
sentence 18. Other times, the anatomic location is not explic- 
itly stated (e.g., sentence 19). The context around the finding 
is important for disambiguating the anatomic locationmeven 
when a location is not explicitly stated. 

(18) The lump on her back has not changed. 
(19) Chest x-ray showed no mass. 

5.5. Finding Validation 

Not all terms representing findings or diseases in a patient 
report are actual findings in the patient; some findings must 
have a particular value in order to be considered positive. The 
variable of oxygen desaturation may be useful in our SARS 
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detector, but a physician may not describe oxygen desatura- 
tion with those words. Instead he may say "the patient's 02 
saturation is low" or "the patient is satting at 85% on room 
air." The qualitative value of "low" in the first example and 
the quantitative value of"85%" are what let the reader know the 
patient has oxygen desaturation. Similarly, the presence of 
the word "temperature" does not inform the reader of whether 
the patient has a fever-the variable together with its value 
provide the requisite information to the reader. 

5.6. Implication 
The main audience of patient reports consists of other physi- 
cians. For this reason, understanding what is said in a dictated 
medical report is difficult for a human reader without domain 
knowledge. Researchers compared laypeople against physi- 
cians at reading chest radiograph reports and judging whether 
the report described radiological evidence of acute bacterial 
pneumonia (Fiszman et al., 1999). Not surprisingly, laypeople 
performed much worse than physicians. As long as the report 
stated explicitly that the findings were consistent with pneu- 
monia, the laypeople agreed with the physicians in their judg- 
ment, but pneumonia was mentioned in only one-third of the 
positive reports. In the remaining two-thirds of the reports, 
the evidence for pneumonia was inferred by the physicians 
and missed by the laypeople. 

Implication in medical reports can occur at the sentence level 
and at the report level. A simple example is the sentence, "The 
patient had her influenza vaccine." If our SARS expert system 
had a variable for influenza, even a layperson reading the pre- 
vious sentence could determine that the value for the variable 
would probably be no, because the patient was vaccinated. 
This inference requires domain knowledge that a vaccine 
generally prevents the target disease. In the radiology study 
reported above, evidence for pneumonia in positive reports 
was not always explicitly stated by the radiologist. Instead, the 
radiologist described "hazy opacities" or "ill-defined densities" 
in the lobes of the lung, which can be inferred to mean local- 
ized infiltrates. Once the inference at the sentence level has 
been correctly made, a physician reading the radiology report 
can integrate the findings described throughout the entire 
report and can infer that because the chest x-ray shows local- 
ized infiltrates not explained by other causes, there is evidence 
for acute bacterial pneumonia. Domain knowledge about 
words, combinations of words, and combinations of findings 
make it possible for a physician to make inferences from reports 
that a lay person--or  an:expert system--may not be able to 
make without training in knowledge of the domain. 

5.7. Coreference 
As described above, sometimes information across sentences 
must be combined to truly understand the patient's clinical 
state. A single entity (which could be a finding, a person, or 
some other object mentioned in a report) may be referred to 

in more than one sentence. True to the human inclination 
towards conciseness, once an entity has been evoked, we can 
refer to the entity with shortened phrases, including pronouns 
(e.g.,"'it," "he," or "she") or definite noun phrases (e.g., "the 
finding," or "her mother"). When two expressions refer to 
the same entity, they corefer. Determining which referring 
expressions refer to which referent is important in understand- 
ing a clinical report. 

5.8. Summary of Linguistic Issues 
We have described some of the linguistic characteristics of the 
sublanguage of patient medical records, including linguistic 
variation, polysemy, negation, contextual information, finding 
validation, implication, and coreference. If we want to automati- 
cally determine an individual patient's values for the variables 
used in our expert system, we must address these linguistic 
characteristics, using the types of information a physician uses 
to understand the meaning of the words and sentences in the 
reports. Below we describe some of the techniques current 
natural language processing research employs for extracting 
information from clinical texts. 

6. TECHNOLOGIES FOR NATURAL LANGUAGE PROCESSING 
NLP techniques fall into two broad classes: statistical and 
symbolic. Statistical techniques use information from the 
frequency distribution of words within a text to classify or 
extract information. Symbolic techniques use information 
from the structure of the language (syntax) and the domain 
of interest (semantics) to interpret the text to the extent nec- 
essary for encoding the text into targeted categories. Although 
some NLP applications exclusively use one or the other tech- 
nique, many applications use both statistical and symbolic 
techniques. In this section, we give a brief background of 
NLP research in the medical domain and describe some statis- 
tical and symbolic NLP techniques used for classifying, 
extracting, and encoding information from biomedical texts, 
focusing on techniques useful for addressing the linguistic 
characteristics of patient medical reports described in the 
previous section. 

6.1. Brief Background of NLP in Medicine 
Over the last few decades researchers have actively applied 
NLP techniques to the medical domain (Friedman and 
Hripcsak, 1999, Spyns, 1996). NLP techniques have been used 
for a variety of applications, including quality assessment in 
radiology (Fiszman et al., 1998, Chapman et al., 2001b); iden- 
tification of structures in radiology images (Sinha et al., 2001a, 
Sinha et al., 2001b); facilitation of structured reporting (Morioka 
et al., 2002, Sinha et al., 2000) and order entry (Wilcox et al., 
2002, Lovis et al., 2001); encoding variables required by auto- 
mated decision-support systems such as guidelines (Fiszman 
and Haug, 2000), diagnostic systems (Aronsky et al., 2001), 
and antibiotic therapy alarms (Fiszman et al., 2000); detecting 
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patients with suspected tuberculosis (Jain et al., 1996, Knirsch 
et al., 1998, Hripcsak et al., 1999); identifying findings sus- 
picious for breast cancer (Jain and Friedman, 1997), stroke 
(Elkins et al., 2000), and community acquired pneumonia 
(Friedman et al., 1999b); and deriving comorbidities from text 
(Chuang et al., 2002). 

Probably the most widely used and evaluated NLP system 
in the medical domain is MedLEE,  which was created at 
Columbia Presbyterian Medical Center (Friedman, 2000, 
Friedman et al., 1994, 1998, 1999a). MedLEE extracts clinical 
information from several types of radiology reports, discharge 
summaries, visit notes, electrocardiography, echocardiography, 
and pathology notes. MedLEE has been shown to be as accu- 
rate as physicians at extracting clinical concepts from chest 
radiograph reports (Hripcsak et al., 1995, 2002). 

NLP has only recently been applied to the domain of 
outbreak and disease surveillance, and most of the research 
has focused on processing free-text chief complaints recorded 
in the ED (Olszewski, 2003, Ivanov et al., 2002, Ivanov et al., 
2003, Travers et al., 2003, Travers and Haas, 2003, Chapman 
et al., 2005a). 

Below we describe some of the statistical and symbolic 
NLP techniques implemented in the medical domain. 

6.2. Statistical NLP Techniques 
Statistical text classification techniques use the frequency 
distribution of words to automatically classify a set of docu- 
ments or text fragments into one of a discrete set of predefined 
categories (Mitchell, 1997). For example, a text classification 
application may classify MEDLINE abstracts into one of many 
possible MeSH categories or may classify websites by topic. 
Various statistical models have been applied to the problem of 
text classification, including regression models, Bayesian 
belief networks, nearest neighbor algorithms, neural networks, 
decision trees, and support vector machines. The basic element 
in all text classification algorithms is the frequency distribu- 
tion of the words in the text. Applications of text classification 
of free-text patient medical records include retrieving records 
of interest to a specific research query (Aronis et al., 1999, 
Cooper et al., 1998), assigning ICD-9 admission diagnoses to 
chief complaints (Gundersen et al., 1996), and retrieving med- 
ical images with specific abnormalities (Hersh et al., 2001). 
In the domain of biosurveillance, text classification techniques 
have been applied to triage chief complaints and chest radio- 
graph reports. CoCo (Olszewski, 2003) is a naive Bayesian 
text classification application that classifies free-text triage 
chief complaints into syndromic categories, such as respiratory, 
gastrointestinal, or neurological, based on the frequency dis- 
tribution of the words in the chief complaints. For example, 
the chief complaint "cough" would be assigned a higher prob- 
ability of being respiratory than of being gastrointestinal or 
neurological, because chief complaints in the training corpus 
that contained the word "cough" were classified most frequently 

as respiratory. The IPS system (Aronis et al., 1999, Cooper 
et al., 1998) was used to create a query for retrieving chest 
radiograph reports describing mediastinal findings consistent 
with inhalational anthrax (Chapman et al., 2003). The IPS 
system uses likelihood ratios to identify words that discrimi- 
nate between relevant and not relevant documents. 

Statistical NLP techniques have been applied to the problem 
of biomedical polysemy. Given a word or phrase with multiple 
meanings, the statistical distribution of the neighboring words 
in the document could be helpful in disambiguating the cor- 
rect meaning or sense of the word. As an example, consider 
the word "discharge," which has two word senses: a procedure 
for being released from the hospital (Dischl) and a substance 
emitted from the body (Disch2). If we applied a statistical 
learning technique to text containing the word "discharge," 
we may learn that Dischl occurs significantly more often 
with the neighboring words "prescription," "upon," "home," 
"today," and "instructions," and that Disch2 occurs more often 
with the words "purulent," "rashes," "swelling," and "wound." 

Beyond text classification, statistical techniques can be used 
for complex NLP tasks. For instance, Taira and Soderland (1999) 
have developed an NLP system for radiology reports that uses 
mainly statistical techniques to encode detailed information 
about radiology findings and diseases, including the finding, 
whether it was present or absent, and its anatomic location. 

Because of the complexity of patient medical reports, purely 
statistical techniques that only rely on words and their fre- 
quencies are less common than hybrid or purely symbolic 
techniques that leverage knowledge about the structure or 
meaning of the words in the text in order to classify, extract, 
or encode information in clinical documents. 

6.3. Symbolic NLP Techniques 
Linguistics is the study of the nature and structure of language, 
including the pronunciation of words (phonetics), the way 
words are built up from smaller units (morphology), the way 
words are arranged together (syntax), the meaning of linguis- 
tic utterances (semantics), and the relation between language 
and context of use (pragmatics) including the relationships of 
groups of sentences (discourse). As humans, we combine all of 
this linguistic knowledge with knowledge of the world to 
understand natural language. Symbolic NLP techniques also 
utilize this linguistic information in attempting to interpret 
free-text. Below we describe NLP techniques that take advan- 
tage of syntactic, semantic, and discourse knowledge in order 
to address the linguistic characteristics of clinical texts. 

6.3.1. Syntax: The Way Words Are Arranged Together 
Every word in a language has at least one part of speech. 
The most common parts of speech in English are noun (e.g., 
"tuberculosis," "heart"), verb (e.g., "see," "prescribe"), adjec- 
tive (e.g., "severe," "red"), adverb (e.g., "quickly, .... carefully"), 
determiner (e.g., "the," "some"), preposition (e.g., "of, .... in"), 
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participle (e.g., "up," "out"),  and conjunction (e.g., "and," 
"but"). The difficulty in automatically assigning a part of 
speech to words in a sentence is that some words can have 
more than one part of speech. For example, the word "dis- 
charge" can be a verb or a noun. Automated part-of-speech 
taggers use either rules or probability distributions learned 
from hand-tagged training sets to assign parts of speech and 
perform with an accuracy of 96-97% on general English 
texts, such as newspaper  articles, scientific journals,  and 
books. Part-of-speech distribution in patient reports is differ- 
ent than that of nonclinical texts. For example, discharge sum- 
maries contain more nouns and past tense verbs and fewer 
proper  nouns (e.g., people and company names) and present 
tense verbs (Campbell  and Johnson, 2001). Not surprisingly, 
training a part-of-speech tagger on medical texts improves its 
accuracy when assigning parts of speech to patient reports 
(Campbell and Johnson, 2001, Coden et al., 2005). Publicly 
available part-of-speech taggers trained on medical documents 
are just beginning to become available (Smith et al., 2004). 

A word's part  of speech can sometimes be helpful in 
understanding which word sense is being used in a sentence. 
Returning to the example of the word "discharge," a statistical 
analysis of the distribution of "discharge" in patient reports 
may show that if "discharge" is being used as a verb, the word 
sense is more likely Dischl  (release from hospital). 

Syntactic rules use the part of speech to combine words into 
phrases and phrases into sentences. For instance, an adjective 
followed by a noun is a noun phrase, an auxiliary verb followed 

by a verb is a verb phrase, and a preposition followed by a 
noun phrase is a prepositional phrase. Phrases can be com- 
bined so that a noun phrase followed by a prepositional phrase 
creates another noun phrase and a noun phrase followed 
by a verb phrase creates a sentence. This process of breaking 
down a sentence into its constituent parts is called parsing. 
Automated  parsers employ a grammar consisting of rules or 
probabil i ty distributions for generat ing combinat ions of 
words and a lexicon listing the possible parts of speech for the 
words. Automated parsers may at tempt to produce a deep 
parse that connects all the words and phrases together into 
a sentence (Figure 17.2[a]) or a partial parse (also called a 
shallow parse), which combines words into noun phrases, verb 
phrases, and prepositional phrases but does not at tempt to 
link the phrases together  (Figure 17.2[b]). A deep parse gives 
you more information about the relationships among the 
phrases in the sentence but is more prone to error. A partial 
parse is easier to compute without errors and may be sufficient 
for some tasks. 

As with part-of-speech tagging, the syntactic characteristics 
of patient reports differ from those of nonclinical texts 
(Campbell  and Johnson, 2001). A publicly available parser 
trained on medical texts does not yet exist. Szolovitz (2003) 
showed that  the Link G r a m m a r  Parser  (available at www.  
l ink.cs .cmu.edu/l ink/)  only recognized 38% of the words in a 
large sample of ED reports. For this reason, he adapted the 
SPECIALIST Lexicon distributed by the National Library of 
Medicine to the format required for the Link Grammar  Parser 

F ! G U R E 17.2 (a) The tree structure of a deep parse in which words are combined into phrases and phrases are combined into a sentence, det, 
determiner; N, noun; prep, preposition; adj, adjective; aux, auxiliary verb; v, verb. (b) A partial parse that only labels simple phrases and conjunctions 
(conj) without linking the phrases together. 
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and provided over 200,000 new entries for the Link Grammar 
Lexicon, quintupling the size of the original Lexicon (available 
at www.medg, lcs.mit, edu/projects/text/). 

The syntactic structure of a sentence can provide information 
about the semantic relationships among the words. For exam- 
ple, in Figure 17.2(a) a relationship between the mass and the 
right upper lobe is indicated by the fact that the prepositional 
phrase "in the right upper lobe" is attached to the noun 
phrase "the mass." Statistical methods that rely on whether or 
not a word or phrase occurs in the sentence without requiring 
a syntactic relation between the constituents may mistakenly 
infer a location relation between a noun phrase and preposi- 
tional phrase. For instance, in sentence 22, the noun "mass" 
and the prepositional phrase "in the right upper lobe" both 
occur in the sentence, but without syntactic knowledge there 
is no way to know the phrases are actually unrelated. 

(22) There is no change in the mass, but the infiltrate in the 
right upper lobe has increased.. 

6.3.2. Semantics: The Meaning of Linguistic Utterances 
Understanding the syntactic relationships among words in 
a sentence does not assure understanding the meaning of 
the sentence. Sentence (23) shows a famous example by 
Noam Chomsky, the father of modern linguistics, of a perfectly 
grammatical sentence that has no meaning. 

(23) Colorless green ideas sleep furiously. 

Understanding a patient report requires not only knowledge 
of the syntactic relation of the words but also knowledge of 
the meaning of the words in the report, knowledge of semantic 
relations between the words, and knowledge of the relation- 
ships between the words and the ideas they represent. 

Lexical Semantics Refers to Meaning of Words. Understanding 
the meaning of the words used in a patient medical report is 
the first step to understanding what is wrong with the patient. 
The National Library of Medicine's (NLM) Unified Medical 
Language System| (UMLS| has created several resources 
to "facilitate the development of computer systems that behave 
as if they 'understand' the meaning of the language of biomed- 
icine and health" (www.nlm.nih.gov/research/umls/about_ 
umls.html). The NLM freely distributes three UMLS knowl- 
edge sources: the Metathesaurus@, the Semantic Network, and 
the SPECIALIST Lexicon. The three knowledge sources can 
assist NLP applications in understanding the meaning of the 
words in clinical reports. 

The Metathesaurus is a vocabulary database of biomedical 
and health related concepts containing over 900,000 concepts 
compiled from more than 60 different source vocabularies. 
The Metathesaurus integrates existing vocabularies (such as 
SnoMed and ICD-9), which provide terms and sometimes 
hierarchies relating the terms. The Metathesaurus organizes 

the terms into concepts, organizes the concepts into hierarchies, 
and relates concepts to each other. If a concept from a new 
source vocabulary already exists in the Metathesaurus, the 
concept is added as a synonym. The Metathesaurus is the most 
complete collection of biomedical concepts and their synonyms. 

The Semantic Network provides a consistent categorization 
of all concepts represented in the Metathesaurus, which are 
the nodes in the network, and provides a useful set of relations 
among these concepts, which are the arcs in the network. 
Every concept in the Metathesaurus is assigned at least one of 
135 different semantic types (e.g., finding, anatomical structure, 
pathologic function, etc.). The Semantic Network contains 
54 relationships among the semantic types, such as "part of," 
"is-a," and "caused by." 

An NLP application for our SARS detector may find the 
phrase "shortness of breath" in a patient report, which is a 
synonym for the Metathesaurus concept Dyspnea. Other syn- 
onyms for the concept Dyspnea are "difficulty breathing," 
"SOB," and "breathlessness." The concept Dyspnea has the 
semantic type of Sign or Symptom and has children like 
"hypoventilation," "paroxysmal dyspnea," and "respiratory 
insufficiency." A knowledge base with synonyms and seman- 
tic information can be helpful in identifying variables and 
their values from text. 

The SPECIALIST Lexicon is a general English lexicon that 
includes many of the biomedical terms in the Metathesaurus 
together with the most commonly occurring English words. 
As of 2003, the SPECIALIST contained almost 300,000 entries. 
A lexical entry for each word or term records information 
about spelling variants, derivation, inflection, and syntax. Using 
the SPECIALIST, we could know, for example, that the term 
"mediastinal" is the adjectival form of the noun "mediastinum" 
and that the following phrases are equivalent: "mediastinal 
widening," "widened mediastinum," and "wide mediastinum." 

The Semantic Relationships Among Words Are Also Important. 
An NLP technique with a syntactic model of a sentence and a 
semantic model of the words in a sentence has a better chance 
of understanding relationships among the words in the sen- 
tence. For example, a noun phrase comprising an adjective 
followed by a noun signifies a relationship between the noun, 
which is the head of the phrase, and the adjective, which is 
the modifier. Precisely what that relationship is depends on 
the meaning of the words in the phrases. Consider the phrase 
"atrial fibrillation." The UMLS semantic type for "atrial" is 
Body Part, Organ, or Organ Component, and the semantic 
types of "fibrillation" are Disease or Syndrome and Sign or 
Symptom. An NLP application that modeled both the syntac- 
tic and the semantic information in this phrase could have a 
rule that stated: I f  a syntactic modifier has the semantic type 
Body Part, Organ, or Organ Component, and the head has 
the semantic type Disease or Syndrome or Sign or Symptom, 
the semantic relationship is Head-has-location-Modifier. 
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An application that validated whether a term ment ioned in 
a report actually is a finding could benefit from modeling 
semantic and syntactic relationships. For instance, the NLM 
system FindX (Sneiderman et al., 1996) contains rules based 
on the semantic type of the words in a modifier-head relation 
to validate the finding. For example, one rule states: A n  abnor- 
mality or anatomical site modif ied by a S N O M E D  adjective is 
a finding, validating "chest clear to auscultation" as a finding. 
Another  rule says: A diagnostic or laboratory procedure mod- 
ified by a S N O M E D  adjective or a numeric value is a finding. 
This rule correctly validates arterial blood gas as a finding in 
(24) and invalidates it in (25). 

(24) Arterial blood gas 7.41/42/43/27 
(25) We suggest arterial blood gas preoperat ively 

Semantic modeling of syntactically related words can also 
be useful in understanding implicit information in a report. 
MPLUS (Medical Probabilistic Language Unders tanding 
System) is an NLP system that uses Bayesian networks to 
model the relationship between the words in a report  and the 
ideas or concepts the words represent  (Christensen et al., 
2002). Figure 17.3 shows a simplified network for radiological 
findings. The syntactic parse helps determine which words 
in the sentence should be slotted together into the Bayesian 
network (i.e., which words are syntactically related). When a 
new phrase or sentence is slotted into the network, MPLUS 
can make inferences about the meaning of the words in a 
sentence in spite of the different combinations of words that 
can be used to describe the same concept. For example, the 
phrases "hazy opacity in the left lower lobe"  and "ill-defined 

densities in the lower lobes" both indicate localized infil- 
t r a t e s - e v e n  though the word "infiltrate" was not used by the 
radiologist. 

6.4. Discourse: Relationships Among Sentences 
Sentences in a patient report  are not meant  to stand a lone-  
they often convey a story about the differential diagnosis and 
t rea tment  process for a patient. Some of the variables our 
example SARS expert  system would need cannot be obtained 
without integrating and disambiguating information from the 
entire report. Once the individual variables have been located 
in a report,  some type of discourse processing must integrate 
values for the variables to answer questions such as: (1) Were 
the relevant findings reported for the patient or for someone 
else (e.g., a family member,  as in "patient 's mother  died at 
the age of 48 with an MI")? (2) Did the relevant findings 
occur at the current hospital visit (versus past history or hypo- 
thetical findings)? (3) Is it likely the patient has a respiratory 
disease or disorder? Three discourse techniques that may help 
answer these questions are section identification, co-reference 
resolution, and diagnostic modeling. 

Patient reports are semistructured, depending on the type 
of repor t  and the inst i tut ion from which the repor t  is gen- 
erated. For instance, ED reports may contain sections for 
chief complaint, past history, history of present illness, physi- 
cal exam, radiologic or lab findings, hospital course, discharge 
diagnosis, and plan. The section in which a finding is described 
can provide information important to understanding the mean- 
ing of the report. For example, our SARS detector may have 
a variable for pneumonia  history, a variable for radiological 

Overall Concept 
(a) *Localized Infiltrate 
(b) *Localized Infiltrate 

Intermediate C on ce_p__~_ ~ - ~  
(e) *LeR Lower Lobe . / " ~ _  . 
if) *Upper L o b e s  ~ _ . . . .  ~ (a) *Infiltrate 

Input from 

(a) nil left lower lobe hazy opacity 
(b) both nil upper lobes ill-defined densities 

F I G U R E 17.3 Partial Bayesian network for radiological findings. Words in leaf nodes come directly from text, concepts in other nodes (shown with aster- 
isks[*]) are inferred based on training examples. Two sentences are slotted in the network: (a) There is a hazy opacity in the left lower lobe. (b) Both upper 
lobes show ill-defined densities. 
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evidence of pneumonia,  and a variable for a pneumonia  diag- 
nosis. An instance of pneumonia  described in the radiological 
findings section of a report  is likely to provide radiological 
evidence of pneumonia,  whereas an instance of pneumonia  in 
the discharge diagnosis section probably indicates a diagnosis. 
Repor t  section identification can also assist in understanding 
whether  the finding occurred in the past history, the current 
visit, or as a hypothetical finding (e.g., a finding described in 
the plan section is more likely to be a hypothetical finding), 
can identify findings for family members  (e.g., a finding in the 
social history section may not be the patient 's finding), and 
can provide insight regarding the anatomic location of an 
ambiguous finding (e.g., a mass described in the radiology 
finding section is probably a pulmonary mass). 

Patient reports tell a story involving various findings, 
physicians, patients, family members,  medications, and treat- 
ments that are often referred to more than once in the text. 
Identifying which expressions are really referring to the same 
entity is important in integrating information about that entity. 
Useful discourse clues for identifying coreferring expressions 
include how close the expressions are within the text (e.g., 
a referring expression is more likely to refer to a referent in 
the previous sentence than to a referent five sentences back), 
overlapping words (e.g. "the pain" is more likely to refer to 
"chest pain" than to "atelectasis"), and the semantic type of 
the entities (e.g., "she" can only refer to a human entity, not 
to a finding or disease). 

Integrating the clinical information within a report  to deter- 
mine the clinical state of the patient (e.g., the likelihood the 
patient has SARS) requires a diagnostic model relating the 
individual variables or findings to the diagnosis. Many diag- 
nostic models have been used in medicine, including rule 
sets, decision trees, neural networks, and Bayesian networks. 
Diagnostic models are also helpful for determining the values 
of individual variables. For example, a Bayesian network can 
model which radiological findings occur with which diseases. 
With this type of semantic model, even if a report  did not 
mention pneumonia,  for example, the model could infer that 
acute bacterial pneumonia  is probable given the radiologic 
finding of a localized infiltrate (Chapman et al., 2001c). 

None of the NLP techniques we have described perform 
perfectly, but some of the techniques described in this section 
are easier to address than others. For instance, automatic 
part-of-speech taggers perform similarly to human taggers. 
The ability to perform inference on information in a report  
as a physician does is more  complex, entailing both semantic 
and discourse modeling. 

Although the task is difficult, developing NLP techniques 
for classifying, extracting, and encoding individual variables 
from patient medical reports is feasible and has been accom- 
plished to different extents by many groups. Successful extrac- 
tion of variables in spite of imperfect syntactic and semantic 
techniques can occur for many reasons, including access to the 

UMLS databases and tools, structure and repetition within 
reports, and modeling a limited domain. NLP research over 
the years has revealed that NLP techniques perform better in 
narrower domains. For instance, modeling the lexical seman- 
tics of the biomedical domain is easier than modeling the 
lexical semantics of all scientific domains, and modeling the 
lexical semantics of patient reports related to SARS would be 
easier than modeling all clinical findings in patient reports. 

Most of the studies in NLP have focused on the ability of 
the technology to extract and encode individual variables 
from the reports. Fewer studies have integrated NLP variables 
from an entire report  to diagnose patients or have evaluated 
whether an NLP-based expert system can improve patient 
care. Below we discuss different levels of evaluation of NLP 
technology related to biosurveillance. 

7. EVALUATION METHODS FOR NLP IN BIOSURVEILLANCE 

The first step in evaluating an NLP application is to validate 
its ability to classify, extract, or encode features from text 
(feature detection). Most evaluations of NLP technology in 
the biomedical domain have focused on this phase of evalua- 
tion. Once we validate feature detection performance, we can 
evaluate the ability of the encoded features to diagnose indi- 
vidual cases of interest (case detection). Finally, we can perform 
summative evaluations addressing the ability to detect epi- 
demics (epidemic detection). Figure 17.4 shows how the three 
levels of evaluation relate to one another, using the diagnostic 
system for SARS as an example. 

F I G U R E 17.4 Relationship between the three levels of evaluation for 
biosurveillance. Evaluations of feature detection quantify how well vari- 
ables and their values are automatically encoded from text. Evaluations of 
case detection quantify the ability to accurately diagnose a single patient 
from the variables encoded from text, which may or may not be combined 
with other variables. Evaluations in epidemic detection quantify whether the 
variable being monitored by detection algorithms can detect outbreaks. 
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7.1. Feature Detection 

The first type of NLP evaluation should measure the applica- 
tion's ability to detect features from text. The question being 
addressed when quantifying the performance of feature detec- 
tion for the domain of biosurveillance is: How well does the 
NLP application determine the values to the variables of  interest 
from text? For our SARS detector, examples of feature detec- 
tion evaluations include how well the NLP application can 
determine whether a patient has a respiratory-related chief 
complaint, whether an ED report describes fever in a patient, 
or whether a patient has radiological evidence of pneumonia 
in a radiograph report. 

Figure 17.5 illustrates the evaluation process for feature 
detection. Studies of feature detection do not evaluate the truth 
of the feature in relation to the patient-that is, whether the 
patient actually had the finding of interest-but only evaluate 
how well the technique interpreted the text in relation to the 
feature. Therefore the reference standard for an evaluation of 
feature detection is generated by experts who read the same 
text processed by the NLP application and assign values to the 
same variables. If the reference standard and the NLP appli- 
cation both believe the chest radiograph report describes the 
possibility of pneumonia, the NLP system is considered correct- 
even if the patient turned out to  no t  have pneumonia. 

F I G U R E 17.5 In an evaluation of feature detection, the NLP application 
and the reference standard independently extract the relevant variable 
values from the same text. Performance metrics are calculated by compar- 
ing the NLP output against that of the reference standard. 

Several studies have evaluated how well NLP applications 
can encode findings and diseases, such as atelectasis, pleural 
effusions, CHF, stroke, and pneumonia from radiograph reports 
(Hripcsak et al., 1995, Friedman et al., 2004, Fiszman et al., 2000, 
Elkins et al., 2000). The reference standard for these studies 
was physician encodings of the variables, and the studies showed 
that the NLP applications performed similarly to physicians. 
One study (Chapman et al., 2004) evaluated how well the 
variable fever could be automatically identified in chief com- 
plaints and ED reports compared to a reference standard 
of physician judgment from the ED report. The application 
identified fever from chief complaints with 100% sensitivity 
and 100% specificity, and from ED reports with 98% sensitivity 
and 89% specificity. 

Other studies have evaluated how well NLP technology 
can classify chief complaints into syndromic categories (e.g., 
respiratory, gastrointestinal, neurological, rash, etc.). Olszewski 
(2003) evaluated CoCo, a naive Bayesian classifier (Mitchell, 
1997) that classifies chief complaints into one of eight syn- 
dromic categories. Chapman et al. (2005a) evaluated a chief 
complaint classifier (MPLUS [Christensen et al., 2002]) that 
used syntactic and semantic information to classify the chief 
complaints into syndromic categories. The reference standard 
for both studies was a physician reading the chief complaints 
and classifying them into the same syndromic categories. 
Performance of the NLP applications was measured with the 
area under the receiver operating characteristic (ROC) curve 
(areas under curve [AUC]), with AUCs ranging from 0.80 to 
0.97 for CoCo and 0.95 to 1.0 for MPLUS, suggesting that 
NLP technology is quite good at classifying chief complaints 
into syndromes. 

Studies of feature detection do not make claims about 
whether the NLP technology can accurately diagnose patients 
with the target findings, syndromes, or diseases. The conclusions 
only relate to the application's ability to determine the correct 
values for the variables given the relevant input text. Once 
feature detection has been validated, the next step is to apply 
the technology to the problem of diagnosing the patients and 
evaluate the technology's accuracy at case detection. 

7.2. Case Detection 

The question being addressed when measuring the case detec- 
tion ability of an NLP application for the domain of biosur- 
veillance is: How well does the NLP application identify relevant 
patients from textual data? For our SARS detector, examples 
of case detection evaluations include how well the NLP appli- 
cation can determine whether a patient has a respiratory 
syndrome, whether a patient has a fever, whether a patient 
has radiological evidence of pneumonia, or whether a patient 
has SARS. 

Figure 17.6 illustrates the evaluation process for a study on 
case detection. The reference standard is generated by expert 
diagnosis of the patients. The source of the expert diagnosis 
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FIG U R E 17.6 In an evaluation of case detection, the NLP application 
extracts relevant variable values from text, which may or may not be com- 
bined with variables from other sources (dashed box) to diagnose patients. 
The reference standard reviews test cases independently and generates a 
reference diagnosis. Performance metrics are calculated by comparing the 
diagnoses generated in part or in whole by the NLP application against 
that of the reference standard. 

depends on the finding, syndrome, or disease being diagnosed, 
and may comprise review of textual patient reports or complete 
medical records, results of laboratory tests, autopsy results, 
and so on. 

One of the first case detection studies involving an NLP- 
based system evaluated the ability of a computerized protocol 
to detect patients suspicious for Tuberculosis with data stored 
in electronic medical records (Hripcsak et al., 1997, Knirsch 
et al., 1998). In a prospective study, the system correctly iden- 
tified 30 of 43 patients with TB. The computerized system also 
identified four positive patients not identified by clinicians. 
Aronsky et al. (2001) showed that a Bayesian network for diag- 
nosing patients with pneumonia performed significantly better 
with information from the chest radiograph encoded with an 
NLP system than it did without that information (AUC 88% 
without NLP vs. 92% with NLP). 

Several studies have evaluated how well automatically 
classified chief complaints can classify patients into syndromic 
categories (Espino and Wagner, 2001, Ivanov et al., 2002, Beitel 
et al., 2004, Chapman et al., 2005b, Gesteland et al., 2004). The 
studies used either ICD-9 discharge diagnoses or physician 

judgment from medical record review as the reference stan- 
dard for the syndromic categories. The majority of the studies 
have focused on more prevalent syndromes~respiratory and 
gastrointestinal~but a few studies have evaluated classification 
into more rarely occurring syndromes, such as hemorrhagic 
and botulinic. Results suggest that syndromic surveillance from 
free-text chief complaints can diagnose patients into most 
syndromic categories with sensitivities between 40% and 77%, 
in spite of the limited nature of chief complaints. 

In the section on feature detection, we described a study 
that evaluated the ability of an NLP application to deter- 
mine whether chief complaints and ED reports described 
fever (Chapman et al., 2004). The fever study also measured 
the case detection accuracy of fever diagnosis from chief 
complaints and ED reports. The NLP application for identify- 
ing fever in chief complaints performed with perfect sensitivity 
and specificity in the feature detection evaluation. However, 
when quantifying how well the automatically extracted vari- 
able of fever from chief complaints identified patients who had 
a true fever based on reference standard judgment from the 
ED report, the chief complaint fever detector only performed 
with a sensitivity of 61%. The specificity remained at 100%. 
On the one hand, whenever a chief complaint mentioned 
fever, the patient actually had a fever, so there were no false- 
positive diagnoses from chief complaints. On the other hand, 
despite the fact that the NLP technology did not make any 
mistakes in determining if fever was described in a chief 
complaint, the chief complaints themselves did not always 
mention fever when the patient was febrile in the ED. As 
demonstrated by this study, coupling evaluations on feature 
detection with evaluations on case detection can inform us 
about the source of diagnostic errors, which could be the NLP 
technology, the input data itself, or a combination of the two. 

7.3. Epidemic Detection 

The question being addressed when measuring the epidemic 
detection performance of an NLP application in the domain 
of biosurveillance is How well does the NLP application 
contribute to detection o f  an outbreak? Evaluating epidemic 
detection is difficult. The first requirement for an epidemic 
detection study is reference standard identification of an 
outbreak. Outbreaks of respiratory and GI illnesses, such as 
influenza, pneumonia, and gastroenteritis, occur yearly through- 
out the country. Outbreaks of other infectious or otherwise 
concerning diseases, such as anthrax, West Nile virus, hemor- 
rhagic fever, or SARS, rarely occur in the United States. Once 
an outbreak is identified, the next requirement for an epi- 
demic detection evaluation is having access to textual data for 
an adequate sample of patients living in the geographical area 
of the outbreak. 

One example of an evaluation of epidemic detection involv- 
ing NLP technology was performed by Ivanov et al. (Ivanov 
et al., 2003). The evaluation used ICD-9 discharge diagnoses 
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to define retrospective outbreaks of pediatric respiratory 
and gastrointestinal syndromes over a five year period 
(1998-2001) in four contiguous counties in Utah. Outcome 
measures were reported for correlation between chief com- 
plaint classifications and ICD-9 classifications and for timeli- 
ness of detection. Figure 17.7 from the Ivanov publication 
shows the time series plot of respiratory illness admissions 
(reference standard) and chief complaints. It is evident from 
the plot that chief complaints generated the same type of signal 
that the reference standard generated. Chief complaint classi- 
fication detected three respiratory outbreaks with 100% sen- 
sitivity and specificity, and time series of chief complaints 
correlated with hospital admissions and preceded them by an 
average of 10.3 days. 

A study by Irvin (Irvin et al., 2003) showed that numeric 
chief complaints could correctly detect an influenza outbreak 
between 1999 and 2000 with one false positive alarm.Although 
the chief complaints were numeric instead of textual, the same 
study design could be applied to free-text chief complaint 
classification for known outbreaks. 

Evaluating feature detection is an important first step in 
evaluation of NLP techniques to ensure that the technology 
is working as expected. However, to truly understand the 
impact of NLP in outbreak and disease surveillance, evalua- 
tions of case detection and epidemic detection must also be 
performed. 

8. SUMMARY 
i 

Natural language processing techniques are far from perfect. 
However, the question is not whether the techniques perform 
perfectly but whether the performance is good enough to con- 
tribute to disease and outbreak detection. For instance, a few 
errors in part-of-speech tagging or negation identification may 
not substantially decrease the ability of an NLP application to 
determine whether a patient has a fever. Evaluation studies of 
NLP in biosurveillance are still young, but we have learned a few 
things about how variables extracted from free-text medical 
records with NLP can contribute to outbreak detection. 

First, we have learned that automated classification of free- 
text chief complaints, while not perfect, is sufficient to detect 
one-third to two-thirds of positive syndromic cases. Moreover, 
chief complaints for pediatric patients are accurate and timely 
at detecting respiratory and gastrointestinal outbreaks. 
Second, we have learned that ED reports can provide more 
detailed information about the state of a patient than chief 
complaints. For example, we can detect 40% more patients with 
fever from ED reports than from chief complaints (Chapman 
et al., 2004). Third, several researchers have shown that iden- 
tification of radiological variables required for detection of 
many public health threats (including SARS and inhalational 
anthrax) from chest radiograph reports is feasible with NLP 
techniques. 

This chapter has focused on applying NLP techniques to 
variable extraction from patient medical records, but other 
types of free-text documents contain information that may be 
useful for biosurveillance, including web queries, transcripts 
from call centers, and autopsy reports. Regardless of the type 
of free-text data, we suggest three questions to consider when 
deciding whether application of NLP techniques to textual 
data is feasible for disease and outbreak detection: (1) How 
complex is the text? The simple phrases in chief complaints 
are much easier to understand than complex discourses 
contained in ED reports. Textual data that require corefer- 
ence resolution, domain modeling for inference, and other 
more difficult techniques required to identify values for the 
variables of interest will be more challenging to process 
and will be more prone to error. (2) What is the goal of the 
NLP technique? If the goal is to understand all temporal, 
anatomic, and diagnostic relations described in the text as 
well as a physician could, you may be in for a lifetime of hard 
but interesting work. Extraction of a single variable, such as 
fever, or encoding temporal, anatomic, and diagnostic rela- 
tions for a finite set of findings, such as all respiratory findings, 
is more feasible. (3) Can the detection algorithms that will use 
the variables extracted with NLP handle noise? Detecting 
small outbreaks requires more accuracy in the input variables. 

F I G U R E 1 ?. 7 Time series plot of chief complaint syndromic classifications against ICD-9 discharge diagnoses for admissions of patients with respiratory 
illnesses including pneumonia, influenza, and bronchiolitis. 
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As an extreme example, some diseases such as inhalational 
anthrax require only a single case to be considered a threat- 
ening outbreak. If the NLP-based expert  system did not 
correctly detect that case, then the detection system would 
have failed. However,  in detecting an outbreak of a gastroin- 
testinal illness, for example, if the NLP-based expert system 
only detected two-thirds of the true cases, there may still be 
enough positive patients to detect a modera te  to large-sized 
outbreak. In addition, the consistent stream of false positive 
cases identified by the NLP-based expert  system would com- 
prise a noisy baseline that may not prevent  the algorithm from 
detecting a significant increase in gastrointestinal cases but 
would require a larger increase to detect the outbreak. 
Consideration of these three questions can help determine the 
feasibility of using NLP for outbreak and disease surveillance. 

NLP techniques can be applied to determine the values of 
predefined variables that may be useful in detecting outbreaks. 
The linguistic structure of the textual data being processed 
and the nature of the variables being used for surveillance 
determine the feasibility of applying NLP techniques to the 
problem. Characteristics such as linguistic variation, polysemy, 
negation, contextual information, finding validation, implica- 
tion, and coreference must be accounted for to understand the 
information within patient  medical reports as well as a physi- 
cian does. However,  because many of the variables helpful 
in biosurveillance do not require complete understanding of 
the text, NLP techniques may successfully extract variables 
useful for outbreak detection. In fact, evaluations of feature 
detection, case detection, and epidemic detection of NLP 
techniques have begun to demonstrate  the utility of NLP 
techniques in this new field. More research in NLP techniques 
and more evaluation studies of the effectiveness of NLP will 
not only increase our understanding of how to extract infor- 
mation from text but will also help us continue to learn what 
types of data provide the most timely and accurate informa- 
tion for detecting outbreaks. 
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