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Abstract

Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory
syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease
spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using
airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the
network characteristics of network samples obtained under different selection rules. In addition, we have examined
different size samples based on largest flight volume and largest metropolitan populations. We have shown that although
the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that
includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe
the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or
300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease
such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as
the ground transportation.
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Introduction

Airline networks provide fast transportation every day for goods

and people; however, these connections also provide pathways for

the spread of diseases [1]. Recent real and hypothetical threats

have increased interest about the role airline transportation has in

the spread of HIV, severe acute respiratory syndrome (SARS),

pandemic influenza, and drug-resistant tuberculosis (TB) [2–7].

Nevertheless, the role that airline transportation has on infectious

disease epidemiology is not yet completely understood. Global

cross-continental disease transmission is more likely by airline

travel than by other means of travel, such as by boat. Additionally,

air travel is the main form of transportation to remote areas such

as small towns in Alaska, Siberia, and certain islands in the Pacific

[1]. In these remote areas, public health interventions follow the

same airline transportation routes as the spread of disease,

meaning these routes to remote areas cannot be ignored. On the

other hand, local transportation patterns might be more critical for

the continental spread of influenza, and national grounding of air

transport is believed to have little impact on fast disease

propagation [8].

In their study, Guimerà et al. [1] emphasized the importance of

understanding the connectedness of the world’s populated areas.

They showed that the most-connected cities are not necessarily the

largest but play a critical role, not only for economic and cultural

purposes, but also for global public health. Therefore, the role of

both large and small airlines in providing community connections

needs to be better understood. For example, researchers of global

disease spread base their models on different numbers of airports,

ranging from 52 to the entire sample of 3100 connected cities [2–

4,9,10]. Relying on either extreme might lead to flawed results.

On one hand, having too few cities could lead to researchers’

missing important pathways that could be critical in disease

spread. Samples from networks have been shown to lose many

important properties of the entire network, such as scale-free

degree distribution, and lead to bias in the main network measures

[11–14], which might bias the patterns of disease transmission. On

the other hand, using the entire sample of 3100 air transport

connected cities leads to connectedness bias, because two cities can

be weakly connected by air travel but heavily connected by ground

transport. Finally, as was shown by Guimerà et al. [1], some of the

most-connected cities are not necessarily the largest and,

conversely, some of the largest cities (and thus very important

for their role in epidemics) might not be the most connected.

Thus, in the present research we address two questions related

to the network characteristics of disease spread on the samples of

cities connected by air travel:

(Q1) How does sampling affect the main network characteristics of the

entire network?

Although the small samples (representing major cities and

continents) can produce strongly biased network characteristics,

they might still be successfully used in adequate representation of

global disease transmission. Thus, we ask the second question:
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(Q2) Can small samples capture enough network information to

adequately describe the global spread of a disease such as influenza, and

if so, then how should researchers select those samples?

In this paper, we describe the data and sample selection rules,

we describe network characteristics of the entire network and of

the samples, we provide an analysis of disease spread on sampled

networks, and, finally, we discuss the results and practical

implications as they relate to the two research questions.

Methods

Data
Following Guimerà et al. [1] and Epstein et al. [4], we used

flight information that commercial airlines reported to the Official

Airline Guide (OAG) during the first week of November 2000.

Cooper et al. [3] and Colizza et al. [2] report using similar data

sets from 2002 reports, and Hufnagel et al. [15] have also used

similar data. The OAG estimates that 99% of all commercial

airlines report their daily scheduled flight information to the OAG

throughout the year. For each scheduled flight, the airlines report

the number of seats on the plane as well as the cities of origin and

destination for the flight.

Because of the epidemiological implications, the unit of analysis

in our study was a city rather than an airport. Most of the cities

represented in the data set correspond to a single airport. However,

for some larger cities, OAG has aggregated data from multiple

airports. For example, New York City includes data from John F.

Kennedy International Airport, LaGuardia Airport, and Newark

Liberty International Airport. As another example, Washington,

DC includes data from Dulles International Airport and Ronald

Reagan National Airport but not Baltimore/Washington Interna-

tional Airport. The full OAG data set contains 3883 airport codes;

however, a number of codes refer to train stations or bus stops.

Additionally, some small airports (,100 passengers/day) are

located on small islands for which population size was not available,

and some airports are disconnected (i.e., do not have flights) from

the main connected component. In our analysis, we have included

only those locations from the largest connected network component

for which we could obtain information on both flight volume and

population size, resulting in a list of 2904 locations. We will refer to

this reduced list as the OAG list.

We also considered a cruder aggregation of U.S. cities into

larger metropolitan areas using the U.S. Census Bureau definitions

of Combined Statistical Areas. For example, we aggregated

Washington, DC, and Baltimore into a single Washington listing.

This additional level of aggregation was performed to create a list

of cities matching the one used in Epstein et al. [4], and, therefore,

we will refer to it as the Epstein list.

Samples
From the OAG and Epstein lists of cities, we selected several

samples so that we may compare their network structures and their

effects on a model of global disease spread. The samples varied by

city list (OAG list, Epstein list), sampling method (most populous

cities, cities with the greatest airline seat traffic, cities from Rvachev

and Longini [10], cities from Epstein et al. [4]), and sample size.

Following Rvachev and Longini [10], Epstein et al. [4], Cooper et

al. [3], Colizza et al. [2], and Hufnagel et al. [15], we have selected

networks containing the 52, 155, and 500 largest connected city

nodes. We have also used the entire network of 2904 nodes. These

sample sizes are equivalent to sampling proportions of 0.018, 0.05,

0.17, and 1 (on a natural logarithmic scale these sample sizes

correspond approximately to 4, 5, 6, and 8). For the sampling

methods, we will refer to sampling the most populous cities as

population-based, sampling the cities with the greatest airline seat

traffic as volume-based, sampling the Rvachev and Longini [10] cities

as Rvachev-based, and sampling the Epstein et al. [4] cities as Epstein-

based. Our set of samples included a sample that matched, or at least

closely approximated, the list of cities used in Rvachev and Longini

[10] (Rvachev-based, n = 52), Epstein et al. [4] (Epstein-based,

n = 155), Hufnagel et al. [15] (volume-based, n = 500), and Colizza

et al. [2] (volume-based, n = 2904).

For each sample, we created an adjacency matrix A such that

an element aij is equal to 1 when a flight exists between cities i and j

and is equal to 0 otherwise. We also created a weighted adjacency

matrix W such that an element wij is the average daily number of

seats on flights between cities i and j.

Results

Regional Coverage for the Samples and Flight Volume
For global disease spread it is critical to include cities that cover

all major regions. When the regions are defined broadly, a small

sample size like 52 may or may not provide adequate coverage. In

Table 1 and Figure 1, we see that the population-based, n = 52

sample provides reasonably good coverage if regions are defined as

continents, while the volume-based, n = 52 sample includes no

African cities and only one South American city. This result is not

surprising since air traffic volume tends to reflect economic

development, and so most of the highest-volume cities would be

concentrated in developed parts of the world. Therefore, to obtain

adequate regional coverage, volume-based samples typically need

to be larger than population-based samples.

When the regions of interest are small, such as the 101 regions

recognized by the World Bank, one would expect numerous

coverage gaps even with the population-based, n = 155 sample.

Even some of the U.S. regions might not be adequately covered.

For example, no Alaskan cities appear in any of the n = 155

samples. Many of these smaller regions rely on ground

transportation for most local connections; in fact, more than

1000 of the 2904 cities in the OAG list have a total daily volume of

fewer than 100 seats. Nevertheless, for places that are remote or

are separated by country borders (such as Alaska) airline transport

is critical for disease transmission.

In addition to regional coverage, global flight volume coverage

may also be an important factor in modeling disease spread since

the largest flight volumes may be more indicative of potential

major disease routes. For example, a sample of 52 cities with the

largest flight volume (which represents just 1.7% of the cities in the

Table 1. Distribution of sampled cities across continents.

Region
52 cities,
population-based

52 cities,
volume-based

52 cities,
Rvachev-based

Africa 5 0 6

Asia and Middle
East

32 9 15

Europe 3 14 9

South America 5 1 7

North America 5 27 11

Australia and
Oceania

2 1 4

doi:10.1371/journal.pone.0003154.t001
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OAG list) accounts for about 40% of the total traffic. The coverage

increases to about 75% for n = 155 and to about 90% for n = 500.

Large-scale Structures of the Samples
A simple correlation analysis shows that city sizes and flight

volumes are not strongly correlated to each other (Figure 2). The

lower slope in the regression line compared to the orthogonal

regression indicates that there are many large cities that have a

small flight volume. One example of this type of city would be

Lagos, Nigeria. On the other end of the scale, there are small hub

cities like Frankfurt, Germany, where the daily flight volume can

be comparable with the city size. Additionally, the city size

distribution is not as steep as the size distribution for the flight

volumes. For example, the 155 largest flight volume cities cover

about 75% of all flight volumes while the 155 largest city

populations contain less than 50% of the total city populations.

One would expect that as the sample size increases and includes

more peripheral cities, the average shortest paths between the

cities (the geodesics) would become longer and betweenness (the

average number of geodesics passing through a node) would

increase because a larger number of geodesics would pass through

a node. These effects are in fact observed in the samples (Figures 3a

and 3d). At the same time, the sample’s average degree does not

show a monotonic decrease. When the sample size is very small,

the probability is low that cities connected to a selected city have

also been selected into the sample. As more cities are added from

the highly connected end of the city list, more connections are

filled and the average degree increases. When smaller and less-

connected cities are added, the average degree decreases

(Figure 3b). The clustering coefficient (the probability that two

cities connected to a third city are also connected directly to each

other) monotonically decreases with increases in the sample size

(Figure 3c). This outcome is associated with the results for the

mean geodesic (i.e., for the small sample sizes almost all cities are

directly connected to each other). As more cities are added these

new cities are less likely to be clustered.

Although the trends are similar for the samples selected by

volume and population size, there are differences in quantitative

values. The peak of the mean degree for the volume-based samples

is around 155 cities and the average degree in the samples is about

32. For the population-based samples, the peak corresponds to the

largest degree of 500, and the average degree is around 17. This

discrepancy reflects the fact that the largest cities are not

necessarily the most connected nor do they have the largest flight

volumes. The same argument applies to the clustering coefficient

and the geodesic.

Figure 1. Map of the cities selected in (a) the population-based sample, n = 52 and (b) the volume-based sample, n = 52.
doi:10.1371/journal.pone.0003154.g001
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As mentioned in Guimerà et al. [1] and Borgatti et al.[16],

betweenness is a critical characteristic related to the bottlenecks in

travel flows and disease transmission. Guimerà et al. [1] showed

that the 25 most-connected cities are not necessarily the most

central in terms of betweenness. Therefore, we evaluated the

impact of the sample size and sampling type (population-based vs.

volume-based). We have created lists of cities sorted by air travel

volume, population size, city betweenness, and city degree. For

each sample size, we calculated the percentage of cities common to

two or more lists and present the results in Figure 4. For example,

80% of the 155 highest volume cities also appear among the 155

highest degree cities and vice versa.

The presented plots indicate that inclusiveness of volume,

degree, and betweenness is fairly stable across the range of sample

sizes. In particular, volume-based samples consistently contain

more than 80% of the cities selected based on the highest degree

and vice versa. The highest volume and highest betweenness

samples share no less than 50%. In fact, the percentage of shared

cities increases as the sample size gets larger than 1000. The

highest betweenness and degree cities show a similar pattern. On

the other hand, samples based on the population show little

commonality (less than 30%) with samples based on other

characteristics when the sample size is smaller than 100 cities.

This percentage increases as the sample size increases. It is

monotonic for population-volume and population-degree, but is

not monotonic for population-betweenness. A sample as large as

1500 cities (about one-half of the total network) is needed to ensure

that 50% of the cities appear on all four lists. If a researcher wants

to include the cities that are within the top 100 of both population

size and flight volume, he or she will need to have a sample size of

about 165 cities (Figure 5). The multiplier generally decreases with

increasing sample size; however, we observe that a nonlinear

relationship between sample size and betweenness produces a

bump in the three curves involving betweenness. Similar shapes,

but the opposite directions, are observed in commonality plots.

Disease Spread on the Sampled Networks
The Global Epidemic Model (GEM) has been developed as a

tool for studying the global spread of influenza and consists of a

number of coupled stochastic differential equations with param-

eters corresponding to the epidemiology and transmission of

influenza [4]. The GEM is based on a number of previously

published models, such as those by Rvachev and Longini [10] and

Grais et al. [9], and is similar to the models developed by Colizza

et al. [2] and Cooper et al. [3]. The GEM differs from other

models mostly in the details of stochasticity (we used Poisson

distribution for the numbers of infective contacts) and seasonality

(we used a sinusoidal function with the amplitude depending on

the latitude). The specific details about the model equations, table

of parameters, and multi-lag travel matrix can be found in the

supporting materials Text S1, Table S1, and Text S2, located in

the supplementary material provided in Epstein et al. [4]. The

requests for the code and information about the latest version of

the model can be found at https://www.epimodels.org/midas/

globalmodel.do. Thus, our model represents a larger group of

robust, equation-based models describing the global spread of

infectious disease. Using the GEM as a common modeling

framework for all samples allows us to study the influence of

sample size and sampling method on disease dynamics.

We tested the samples that include 52, 155, and 500 cities

selected by population and volume, as well as the samples used in

Rvachev and Longini [10] and Epstein et al. [4]. We have also

included the entire network of 2904 cities and a sample of 204

cities composed of the union of cities in the top 100 in terms of

flight volume, population size, betweenness, and degree.

Assuming that the flu epidemic started in Hong Kong on

January 1, we used the GEM to calculate first passage times (FPT)

to each city in the sample. The FPT to a particular city is defined

as the number of days between the epidemic origination (the first

day when 100 individuals in any single city became sick) and the

moment when the number of infectious people in the destination

city reaches or exceeds 1. The FPTs are presented in Table 2.

Each number in the table is an average over 50 runs. The standard

deviations varied between 3 and 6 days. We have highlighted the

values that are significantly different from the estimates based on

the entire census of the cities. A cell containing ‘‘–’’ indicates that

the city was not selected for inclusion in that sample.

Although the data are available for all cities in the samples, we

have chosen just a few for illustration. We chose cities that

represent major world regions (Athens, Beijing, Bogotá, Cairo,

Cape Town, Istanbul, Lagos, London, Moscow, New Delhi, Sao

Paulo, Shanghai, and Sydney) that are key entry ports to the

United States (Los Angeles, New York, and Washington, DC), or

that are among those identified by Guimerà et al. [1] as remote

hubs that are unusually weakly connected with the rest of the

communities (Barcelona, Detroit, Fairbanks, and St. Petersburg,

Russia).

Our simulation results show that for most large and well-

connected cities there is little difference in disease dynamics with

respect to the sample size. A large expected difference is regional

coverage. When the sample size is small some critical cities such as

Figure 2. Log-log relation between the city and flight volume
size in the data. Ordinary regression is represented with a solid black
line, while an orthogonal regression is a dashed red. Orthogonal
regression minimizes the orthogonal distance from the regression line
as opposed to minimizing vertical distance in ordinary regression. The
spread of the residuals is comparable to the range of the data
indicating high variation of the flight volume for cities of the similar
sizes. Orthogonal regression provides a useful reference line because it
treats flight volume and city size as equal variables and could be viewed
as the principle component capturing the essence of the relationship
between the two variables. At the same time ordinary regression
considers flight volume as a function of the city size. The lower slope in
the regression line compared to the orthogonal regression indicates
that there are many large cities that have a small flight volume as well
as small cities with high flight volume.
doi:10.1371/journal.pone.0003154.g002
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Cape Town or Lagos would be left out of the sample. An example

of selection discrepancy between population size vs. flight volume

is Washington, DC, which is not a part of the 52 largest city

sample but is a part of the 52 largest volume sample. The results

also show that larger sample sizes tend to produce smaller FPTs,

possibly due to the additional routes through which the disease can

travel. Furthermore, when the sample size is large enough, there is

no difference between the results from the volume-based and the

population-based samples. However, when the sample size is

small, air traffic connections to some cities can be inadequately

represented, and the disease transmission time can be significantly

biased. Most of the discrepancies occur in the small, population-

based samples. This is especially true for the large cities that are

relatively weakly connected, such as St. Petersburg, Russia, where

the FPT is about 130 days for a sample of 52 population-based

cities, compared to 94 days in the full network. This difference is

more than a month, which is very important for public health

preparedness. Similar differences are observed for better-connect-

ed cities such as Cape Town (98 vs. 54 days), Bogotá and

Washington, DC, although for the latter two the differences are

not as dramatic.

These results suggest that ignoring a large number of short

connections produces artificial delays in disease transmission.

Thus, to avoid bias in disease spread, a reliable sample should

include at least the 100–150 cities with the largest flight volume

and cities that are well connected. The addition of cities with large

population sizes or those in remote locations will improve regional

coverage. For example, Fairbanks, Alaska would not be selected in

a population-based or a volume-based sample of size n,1000, but

given its regional importance, it should be considered for inclusion

regardless of the sample size in studies where the Alaskan region is

of interest.

The sample of 204 cities adequately represents global disease

dynamics while also being reasonably small and providing

reasonable regional coverage. (Recall that the sample of 204 cities

was formed as the union of the top 100 cities with respect to each

of flight volume, population size, betweenness, and degree.) We

base our assessment of its ability to represent global disease

dynamics on the observation that for our cities of interest it

reproduced the FPTs found in the entire list of 2904 cities (within

random error). The samples of size 500 and the volume-based

sample of size 155 also share this same result. Choosing between

these samples may depend on other factors such as size (larger

samples require more processing time) and coverage of particular

regions.

Discussion

We have reviewed a number of published global epidemic

models and analyzed the global airline transportation network

data with respect to its use in epidemic modeling. We have shown

that in order to reduce bias in the estimation of global disease

dynamics, a network of connected cities should be based on the

volume-based core that also includes the most-connected cities.

Figure 3 a–d. The relationships between network characteristics and sizes of network samples. Samples are selected based on flight
volume (solid black line) and population (broken red line). Subplots correspond to the following network characteristics: (a) betweenness, (b) degree,
(c) clustering, and (d) geodesic.
doi:10.1371/journal.pone.0003154.g003

Global Epidemic Models

PLoS ONE | www.plosone.org 5 September 2008 | Volume 3 | Issue 9 | e3154



About 150 cities are sufficient for adequate coverage of the major

world regions. The results of the simulations suggest that samples

based on air traffic volume better describe sample characteristics

but can have poor regional coverage and thus need to be

complemented by the samples based on population size,

betweenness, and clustering characteristics. Next, one could add

remote locations for answering questions about specific regions.

We have shown through dynamic simulations that a relatively

small number of cities (around 200 or 300) can capture enough

network information to adequately describe the global spread of a

disease such as influenza.

Although the use of 52 cities was justified for the purposes of

previous studies [17] and illustrated the role of airline transpor-

tation as a major factor in global disease spread, the models that

aim to answer more specific questions need to consider a more

systematic approach. For example, for practical optimization of

the global distribution of antiviral medicine, mathematical models

are more likely to consider the role of individual regions or cities in

the context of the global spread of disease. If a model is based on a

small number of cities, such as in the Rvachev-Longini model, the

role of individual cities in the global spread will be underestimated.

Incidentally, in a recent paper by Kernéis et al. [17], the authors

consider the role of different cities in a global epidemic under

different disease characteristics. We would argue that some of their

conclusions about the speed of the global spread and the behavior

of different city types would change if the authors had considered a

more representative set of cities including large metropolitan areas

with little traffic as well as smaller but extensively connected cities.

In the present study, we have performed a systematic analysis of

network characteristics such as average degree, betweenness,

clustering coefficient, and geodesic length, and have shown how

these characteristics depend not only on the sample size but also

on how the sample is selected. We have provided guidance for the

sample size selection when certain network characteristics need to

be preserved.

Major network characteristics such as degree, clustering,

betweenness, and regional coverage become more biased com-

pared to the entire network as the sample size decreases. The

results also show that the bias is smoothly dependent on the

population size for all sampling methods and there is no ‘‘natural’’

threshold suggesting the optimal choice of the sample size. For

each objective, the ‘‘optimal’’ sample size should be the balance of

the scale at which the conclusions are made and the appropriate-

ness of using airline transportation as the basis for human travel

flows. One should keep in mind that very small airports can reflect

insignificant private traffic flows, while most of the regional

transportation is based on ground traffic. Although a large number

of network characteristics could be studied with respect to the

network samples, we have selected the ones that are clearly defined

and were shown to be related to the spread of diseases, innovation,

or information. Some measures were inevitably left out. For

example, Ghani et al. [18] and Ghani and Garnett [19]

demonstrated that network measures such as assortative mixing

patterns and population representativeness were strongly affected

by the way in which nodes were selected for inclusion in the

simulated network. We did not consider the estimation of

‘‘mixing’’ matrices because the actual definition can be ambigu-

ous. Mixing matrices can be defined in terms of flight volume,

population size, region, etc. A number of other network measures

can be found in Wasserman and Faust [20].

While the field of network analysis is quickly developing, there is

still not much literature about the effects of different sampling

methods on network characteristics. Most works in network

Figure 4. Proportion of cities sharing the top ranks between 2
or more characteristics. For each pair of network characteristics we
consider 2 lists of cities ordered by each of the characteristics. The list
size is shown on the horizontal axis. The proportion of cities shared by
both lists is shown on the vertical axis. The minimum value of the
shared proportion, 0, occurs when the lists have no city in common. The
maximum value, 1, occurs when the two lists are identical. This is
achieved only in the whole sample. For the 52 city lists, only 11 cities
are among top 52 in all four characteristics.
doi:10.1371/journal.pone.0003154.g004

Figure 5. Inflation coefficient indicating the union of two
ranking lists is larger than the size of a single list. For each pair of
network characteristics, we consider two lists ordered by each of the
characteristics. The single list size is shown on the horizontal axis. The
inflation coefficient is shown on the vertical axis. The minimum value of
the inflation coefficient, 1, occurs when the two lists are identical. This is
achieved only in the whole sample. The maximum value of the inflation
coefficient for the union of two categories, 2, occurs when the lists do
not share any cities. For all four categories the maximum value of the
inflation coefficient is 4. The size of the union of 52-city lists in all four
categories is 2.2 times larger than the size of a single list, which
translates into 114 cities.
doi:10.1371/journal.pone.0003154.g005
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sampling have focused on the problem of estimating how the

network measures will change in the sample given a particular

sampling scheme such as a snowball, random sampling of nodes

and links, or random walk [13,21,22]. In our study, we addressed

the problem of selecting nodes based on other objectives such as

regional coverage and preservation of disease properties rather

than just random sampling of nodes or dyads.

The current study has a number of limitations. The analysis is

based on the airline network, and its generalizability to other

networks such as social or ground transportation might be limited.

However, this study is the first attempt to use a systematic

approach for the selection of a network sample for dynamic

modeling. Although the actual curves and the quantitative results

would be different for each specific study, the methodology of

selecting a sample based on individual and network characteristics

will guide future studies. Another limitation is that in this study the

entire network of connected cities is known. Although complete or

nearly complete network information is sometimes available in

transportation studies, this is usually not the case in social network

studies. Nevertheless, having an estimate of which percent of the

population the sample represents allows one to extrapolate the

network characteristic curves to what they are likely to be in the

entire population.
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Bogotá 125 – 114 111 95 102 95 99 96 95

Cairo 75 – 69 69 69 68 68 68 66 68

Cape Town – – 58 99 57 58 59 58 59 58

Detroit – 69 – – 69 69 69 69 69 68

Fairbanks – – – – – – – – – 112

Istanbul – – – 49 49 49 49 49 49 50

Lagos 104 – 83 93 – 83 83 81 83 83

London 29 27 26 27 27 27 26 26 27 27

Los Angeles 27 29 28 28 27 29 28 28 30 26

Moscow 53 – – 52 52 54 52 52 53 52

New Delhi 43 – 42 42 42 44 42 43 43 42

New York 62 55 66 57 53 59 54 56 54 54

Sao Paulo 79 77 79 77 74 76 75 75 74 75

Shanghai 20 21 20 20 20 19 20 20 21 21

St. Petersburg, Russia 130 – – 115 98 94 92 95 93 94

Sydney 25 27 26 27 25 27 25 24 27 27

Washington, DC – 65 76 – 65 72 64 65 65 63

A double dash means that the city is not present in the sample. For each city in each sample, we computed the difference in the first passage times between the model
based on the sample and the model based on the entire network. If this difference was 7 days or larger (6 days was the largest standard deviation), we used bold font in
that cell.
doi:10.1371/journal.pone.0003154.t002

Global Epidemic Models

PLoS ONE | www.plosone.org 7 September 2008 | Volume 3 | Issue 9 | e3154



12. Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not

scale-free: Sampling properties of networks. PNAS 102: 4221–4224.
13. Yoon S, Lee S, Yook SH, Kim Y (2007) Statistical properties of sampled

networks by random walks. Phys Rev E Stat Nonlin Soft Matter Phys 75:

046114.
14. Lee SH, Kim PJ, Jeong H (2006) Statistical properties of sampled networks. Phys

Rev E Stat Nonlin Soft Matter Phys 73: 016102.
15. Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in

a globalized world. Proc Natl Acad Sci USA 101: 15124–15129.

16. Borgatti SP (2006) Identifying sets of key players in a network. Comput Math
Organ Theor 12: 21–34.
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