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A B S T R A C T   

Introduction: Preclinical studies provide foundational knowledge to develop new effective treatments for use in 
clinical practice. Similar to clinical exercise oncology studies, it is also important to monitor, identify and/or 
avoid cancer-induced complications in preclinical (e.g., murine) exercise oncology studies. This may help close 
the gap between preclinical and clinical exercise oncology studies. The aim of the present mini review is to 
provide insight into exercise protocol design in preclinical exercise oncology studies in order to close the 
preclinical-clinical gap. A secondary aim was to examine exercise-responsive outcomes in the preclinical versus 
clinical setting. 
Method: We reviewed animal studies in exercise oncology. A literature search was performed in PubMed/Medline 
and studies in English were screened. 
Results: We found that the majority of preclinical exercise protocols have not been at least tested clinically. We 
found some evidence that certain outcomes of preclinical studies (e.g., markers of cellular and molecular 
adaptation) that translate to clinical studies. However, this translation was dependent on the use, by investigators 
in their study design, of suitable and applicable preclinical exercise protocols. 
Conclusions: Cancer and its treatment-induced complications (e.g., fatigue, cardiac atrophy, cachexia, etc.) have 
largely been ignored in the exercise protocols of preclinical oncology studies. Preclinical exercise oncology 
studies should consider the limitations of human exercise oncology studies when conducting gap analysis for 
their study design to increase the probability that findings related to mechanistic adaptations in exercise 
oncology will be translatable to the clinical setting. By virtue of paying heed to patient compliance and adverse 
effects, clinical exercise oncology research teams must design relevant, feasible exercise protocols; researchers in 
preclinical exercise oncology should also take such factors into consideration in order to help bridge the gap 
between preclinical and clinical studies in exercise oncology.   

1. Context 

1.1. Translating protocols from preclinical to clinical studies 

Gap analysis is a process that identifies what aspects of human study 
need to be supported by future preclinical studies. This process may also 
include defining the preclinical strategy that will address the re-
quirements of the target regulatory body. In reviewing available infor-
mation, literature should be evaluated not only for ‘content’ to support 

the preclinical strategy but also scrutinized for factors/issues that may 
render the findings not applicable to the investigator’s goals (e.g., 
technical or procedural issues) [1]. (This has parallels to conducting a 
systematic review— identifying risks of bias as well as the standardized 
overall effect size). 

Though gap analysis is time consuming, thanks to the harmonization 
of different regulatory bodies [1], subsequent preclinical studies could 
be conducted at multiple locations (e.g., outsourcing globally) to expe-
dite time lines and minimize costs. It is well known that the rate of 
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translating preclinical success into viable clinical applications is very 
low (~5%), due to many factors including poor experimental design, 
animal models and poor reporting owing to having not been tested in an 
practical manner [2]. Whereas various mitigation strategies are ongoing 
[3], the gap between preclinical and clinical utility shows little sign of 
closing [4]. Similar to investigational new drug development, trans-
lating preclinical exercise oncology findings to the clinical setting pre-
sents many challenges; for example, translating exercise protocols from 
the human to the animal and vice versa [5,6]. In this mini-review, we 
aim to highlight gaps between human and animal studies in exercise 
oncology, and discuss the exercise protocol framework to improve the 
translation rate between preclinical and clinical studies. We examine 
preclinical exercise protocols, their translation to clinical studies, and 
if/how clinical studies take into account preclinical exercise training 
frameworks. Lastly, we discuss the importance of developing an 
‘optimal’ exercise training framework for preclinical exercise oncology 
in order to improve translation success into the clinical exercise 
oncology setting. 

1.2. Mechanisms in exercise adaptation: considering limitations of human 
studies in preclinical studies 

Exercise training has a myriad of pleiotropic effects on numerous 
cells, tissues, and organs of the body in both healthy as well as diseased 
states [2,7]. Exercise adaptations are underpinned by numerous 
signaling pathways as well as local and distant feedback loops that give 
rise to a new homeostatic state. The end result is an increase in cellular, 
tissue and organ fitness leading to wide-ranging disease improvements 
and decreases in health problems [8–13]. Therefore, there is consider-
able potential value in being able to appropriately apply preclinical 
exercise to disease states such as cancer. This includes developing 
relevant preclinical exercise models and protocols, including accounting 
for genetic factors [14–16], as well as mode, intensity, and duration, 
respectively. Combined, these factors will influence molecular and 
cellular adaptation [8–11,17], despite the presence of disease [10,13]. 
Despite its relatively low adoption in modern healthcare, exercise 
training ‘prescription’ offers considerable therapeutic potential [10,12, 
13] given that exercise training has direct impacts – from modifying cell 
function to inter-tissue crosstalk [12] – in chronic diseases including 
cancer [13,18]. Indeed, it is probably valuable to consider exercise 
prescription from two ‘lenses’— considering both clinical benefit as well 
as understanding prescription/adaptation at a molecular level [8,10, 
13]. 

Little data exists regarding how modifying exercise protocol pa-
rameters modifies the mechanisms that influence cancer survival, both 
preclinically and clinically. To evaluate whether the results of preclin-
ical exercise oncology findings translate to clinical exercise oncology, 
protocols in preclinical study should be designed based on the frame-
work of protocols considering the limitations of clinical studies. 

Human and animal exercise activate a myriad of cellular pathways 
which contribute to remodeling and/or adaptation [8–11,13]; however, 
the extent to which given pathways yields anticancer benefits, and 
whether this is of the similar significance in animal and humans, is 
unclear. Nevertheless there is evidence of preclinical-clinical commo-
nalit; for example, high intensity interval training appears to evoke 
similar potent benefits [19–23]. Understanding the exercise tolerance 
thresholds (especially clinically) together with exercise stimulus 
thresholds (to elicit a meaningful beneficial physiological response) will 
combine to establish suitable exercise protocols oncology studies. 
Further, expected adaptations (e.g., derived from healthy populations) 
need to be examined with actual adaptions that occur in the cancer/-
cancer therapy environment, taking into account both the altered bio-
logical (e.g., inflammatory) and physical (e.g., altered locomotor 
activity) environments. 

1.3. Cancer and treatment-related fatigue: ignored factors in preclinical 
exercise protocol design 

Fatigue is one of the main pervasive side effects of cancer [24–26]. It 
is also among the most common and challenging symptom during and 
after treatment [24,26–28]. The mechanistic pathways of 
cancer-induced fatigue in human and animals are poorly understood but 
include bio-behavioral factors (e.g. mood, depression, stress and sleep 
disturbance) [29–32], hypothalamic-pituitary-adrenal axis [29,30,32], 
neuroinflammation [33–35] and muscle wasting [30,32,36]. Several 
studies demonstrate that cancer [22,29,36] and its chemotherapy 
treatment lead to reduced voluntary wheel running activity of mice [25, 
37–41] or running speed reduced by 20% at the target intensity [42]. 
Cancer-induced skeletal muscle dysfunction [43,44] and cardiac atro-
phy [44] reduce locomotor activity and exercise capacity. Collectively, 
the debilitating complications of cancer – direct and indirect – are 
important to consider when designing preclinical exercise oncology 
studies. Results derived from preclinical studies that impose excessive 
pressure on animals to perform exercise training – often more than their 
voluntary capacity – can yield misleading interpretations and expecta-
tions of translation to the human condition [6], Whereas exercise pa-
rameters in the clinical setting are likely to be of a milder intensity and 
geared toward doing no harm (in line with patient’s 
self-selected/voluntary effort), there is growing evidence (a recent sys-
tematic review identified 12 studies [45], all within the past decade) of 
efficacy/feasibility of high intensity training [46–48]. 

1.4. Exercise intensity in preclinical exercise oncology studies 

VO2peak measurement not only is reported as the gold standard 
assessment of exercise capacity in patients, but is a strong independent 
predictor of the cancer patients mortality [49]. In a preclinical setting, 
serial measurements of VO2max are suggested to regulate running spee-
d/exercise intensity [43]. Whereas running pace can be used as an in-
direct measure of oxidative capacity measuring VO2peak in rodents 
provides a more informative/standardizable readout of exercise in-
tensity for exercise interventions as well as cancer-induced changes in 
locomotor activity in rodents. Indeed, a remarkable decline in indirect 
VO2max, running speed [42], and endurance exercise capacity [50] of 
rats with cancer throughout the study period revealed that 
cancer-bearing animals do not reach maximal VO2max compared to 
healthy controls. Based on these results [42,43,50], applying valid and 
reliable experimental models is essential to examine – and standardize 
across labs – the impact on cellular and molecular mechanism of exercise 
training for prevention, treatment and rehabilitation of chronic diseases 
[43]. 

In addition to improving understanding of mechanisms, the ability to 
standardize exercise protocols (e.g., based on VO2) will advance our 
understanding of the impact of cancer-, chemo- and hormone-therapy on 
function and fatigue. Although exercise training is a safe therapy to 
mitigate cancer-related fatigue and improve exercise tolerance in cancer 
survivors [51,52], and in mice [53,54], it is essential to consider the 
capacity of exercise tolerance and locomotor activity. Increased running 
speed/intensity during a preclinical exercise oncology study without 
considering exercise capacity may overlook cancer effects and 
treatment-induced side effects such as fatigue and reduced locomotor 
activity. 

A method to assess fatigue in the rodent is locomotor activity 
reduction [29]. Recently, Dougherty JP et al. used a treadmill test to 
determine fatigue-like behavior in mice undergoing chemotherapy [55]. 
Although this method needs to be verified by future studies, it may be a 
good method to determine the side effect of cancer-, chemo- or hormone 
therapy in preclinical exercise intervention studies. Additionally, we 
have used [19] a method to design a suitable preclinical exercise pro-
tocol based on Leandro CG et al. [56] and Hoydal MA et al. [43]. We 
measured VO2peak of breast cancer-bearing mice indirectly prior to 
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starting the study. To assess the indirect VO2peak, mice started running 
on the motorized treadmill at a speed of 6 m min− 1. The speed was 
increased by 2 m min− 1 every 3 min until the mice were unable to run 
and to maintain running speed on the treadmill. We kept this method 
weekly for 5 weeks (once every 6 days), and then every other week for 5 
weeks (once every twelve days) by the end of the study. Indirect VO2peak 
measurement was performed in interventional groups, followed by 2 
days rest to monitor any potential changes in mice running ability 
resulting from cancer (and/or adaptation to exercise), and also to select 
exercise intensity for the subsequent week. During our study [19], we 
observed that running ability and exercise tolerance of breast cancer 
bearing mice were significantly reduced after the second week of tumor 
palpation. Further, we found that running capacity of cancer bearing 
mice was progressively reduced, week by week, to the end of the study 
[19]. 

This Other preclinical studies have used a similar VO2-based 
frameworks [20–23]. Similar protocols were also used in diabetic [57, 
58] and also fatty liver animals [12], aiming to generate information 
with a higher probability of translation to clinical studies. Using a pro-
gressive exercise protocol, or a protocol with a stable intensity during 
preclinical exercise oncology studies without estimating exercise ca-
pacity before and throughout the study may lower the translation rate, 
and widen and deepen the gap with clinical practice. Increasing running 
speed progressively [59,60] or stabilizing speed and intensity during the 
study [61–68] may not take into account cancer-related complications 
and/or cancer therapeutic treatment-induced fatigue, potential cardiac 
atrophy and skeletal muscle dysfunction. Hence, preclinical exercise 
oncology studies should consider the intervention framework ap-
proaches based on the feasibility and suitability in clinical exercise 
oncology studies. Taken together, preclinical studies that have voluntary 
wheel running or exercise protocols designed based on VO2peak) may 
have a better chance of successfully translated to clinical studies. Kumar 
2011 has said “preclinical information is used to estimate an initial safe 
starting dose and dosing regimen for human trials” [1]. Thus, the 
analogue for exercise oncology, the exercise protocol, requires similar 
careful monitoring and ‘dosing’ in order to better translate preclinical 
findings. 

1.5. Summary and future directions 

Preclinical exercise oncology studies provide essential supporting 
scientific insight for clinical oncology trials. Nevertheless, a large 
number of preclinical exercise protocols have not been translated in 
clinical practice due to poor methodology and lack of the framework 
validation of protocols. Accordingly, we recommend, as a direction for 
future study, to researchers use a well-defined exercise protocol 
(including reporting speed, slope and VO2peak) prior to and during the 
study, such as those described by Hoydal et al. [43], Dougherty JP et al. 
[55] and Delphan et al. [19]. However, future research is needed to 
measure VO2peak directly in cancer bearing animal (e.g. mice and rats). 
Voluntary wheel running protocols are also viable exercise framework 
that may better account for the fatiguing aspects of cancer/therapy [22]. 
In this way, the effects of cancer/therapy on exercise tolerance and lo-
comotor activity in cancer bearing animals can be standardized and the 
impact on mechanistic pathways quantified more reproducibly toward 
the ultimate goal of clinical translation. Researchers who have a good 
understanding of exercise protocol development in healthy and disease 
states, and in preclinical and clinical settings, will be best positioned to 
translate the potentially beneficial preclinical exercise-based effects to 
the clinical setting and, ultimately, cancer patient populations more 
broadly. 
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