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Spin–momentum locking, a manifestation of topological proper-
ties that governs the behavior of surface states, was studied in-
tensively in condensed-matter physics and optics, resulting in the
discovery of topological insulators and related effects and their
photonic counterparts. In addition to spin, optical waves may have
complex structure of vector fields associated with orbital angular
momentum or nonuniform intensity variations. Here, we derive a
set of spin–momentum equations which describes the relationship
between the spin and orbital properties of arbitrary complex elec-
tromagnetic guided modes. The predicted photonic spin dynamics
is experimentally verified with four kinds of nondiffracting surface
structured waves. In contrast to the one-dimensional uniform spin
of a guided plane wave, a two-dimensional chiral spin swirl is ob-
served for structured guided modes. The proposed framework opens
up opportunities for designing the spin structure and topological
properties of electromagnetic waves with practical importance in spin
optics, topological photonics, metrology and quantum technologies
and may be used to extend the spin-dynamics concepts to fluid,
acoustic, and gravitational waves.

angular momentum of light | spin–orbit coupling | transverse spin |
spin–momentum locking

Spin–momentum locking, characterized by unidirectional sur-
face spin states, has been extensively studied in topological

insulators (1), superconductors (2), magnons (3), and cold-atom
(4) and Bose–Einstein condensates (5). The photonic analogy
of unidirectional surface spin states was demonstrated with the
pseudospin by engineering an “extrinsic” spin–orbit interaction and
breaking the time-reversal symmetry in artificial photonic struc-
tures (6–8). On the other hand, due to an “intrinsic” spin–orbit
coupling governed by the Maxwell’s field theory, the spin–
momentum locking of light was reported and linked to the modes
with the evanescent field components, such as surface waves or
waveguided modes (9–11). For example, surface plasmon polar-
itons (SPPs) as surface modes propagating at an insulator–metal
interface (12) exhibit features of spin–momentum locking that are
analogous to the behavior of surface state of a topological insulator
(6–8). Although photons are bosons with integer spin and surface
and waveguided electromagnetic modes suffer from backscattering
(13), in contrast to the helical fermion behavior of surface Dirac
modes, they possess the topological Z4 invariant and hence can
transport spin unidirectionally (9). This intrinsic optical spin–
momentum locking is a basis for many intriguing phenomena such
as spin-controlled unidirectional excitation of surface and wave-
guided modes and offers potential applications in photonic inte-
grated circuits, polarization manipulation, metrology, and quantum
technologies for generating polarization entangled states (14–20).
Optical transverse spin plays a key role in the intrinsic spin–

momentum locking effect in evanescent waves (11). In contrast
to a conventional, longitudinal spin of light with the spin vector
parallel to the propagating direction, the orientation of trans-
verse spin is perpendicular to the propagating direction, enabling
many important phenomena and applications (21–28). An em-
pirical procedure to identify the optical spin direction includes

calculating the spin angular momentum (SAM) S and comparing
the spin orientation to the wave vector k. This empirical per-
spective provides an intuitive way to identify the optical trans-
verse spin in various optical configurations involving plane waves
but cannot be generalized to more complex scenarios, for ex-
ample when structured waves with an arbitrary trajectory and
orbital angular momentum need to be considered. Although one
can define a “local” wave vector, which is related to the orbital
energy flow density Po, it cannot describe quantitatively an optical
transverse spin associated with a structured vector wave for which
the spin part of the Poynting vector (Ps) is also important (29).
Here, we overcome this limitation and extend the under-

standing of the spin–momentum locking and spin dynamics from
plane evanescent waves to a two-dimensional (2D) chiral spin
swirl associated with the structured guided modes, therefore
generalizing the optical spin–momentum locking to arbitrary
guided vector fields. From the perspective of energy flow density
(P = Ps + Po), we derive four equations describing dynamic
transformations of spin and momentum of the electromagnetic
wave that are analogous to the Maxwell’s equations for elec-
tromagnetic fields. The proposed framework is verified experi-
mentally on the example of four structured surface waves and
opens up opportunities for understanding and designing the spin
dynamics and topological properties of electromagnetic waves
from the radiofrequency to ultraviolet spectral ranges and for
applications in spin optics, topological photonics, polarization
measurements, metrology, and quantum technologies. Since the
energy flow density can be represented through a current density
term in the Hertz potential (SI Appendix, section VI), the proposed
description allows also extending the concepts of the dynamics of
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transverse spin from electromagnetic waves to fluid, acoustic, and
gravitational waves (30–32).

Results and Discussion
For an arbitrary electromagnetic wave propagating in a homo-
geneous medium, the curl of the energy flow density can be
presented as (SI Appendix, section I)

∇ × Ρ = v2∇ × p = ω2S − 1
4
Re{−(∇⊗Ep) ·H − (∇⊗E)Τ ·Hp

+(∇⊗Hp) ·E + (∇⊗H)Τ ·Ep },
[1]

where p is the kinetic momentum density of the field, which is
linearly related to the Poynting vector in a homogeneous me-
dium p = P/v2, v is the speed of light in the medium, ω represents
the angular frequency of the electromagnetic field, and E and H
indicate the electric and magnetic field, respectively. Here, the
symbol ⊗ indicates a dyad vector and p denotes the complex
conjugate. The second part on the right-hand side of Eq. 1 has
the same structure as the quantum 2-form (33) that generates the
Berry phase associated with a circuit, which indicates a spin–
orbit interaction in the optical system (SI Appendix, section II).
In particular, for electromagnetic waves with an evanescent field,
such as surface or guided waves, an intrinsic spin–momentum
relationship can be derived from the Maxwell’s theory:

S = 1
2ω2∇ × P = 1

2k2
∇ × p, [2]

where k = ω/v is the wave number of the electromagnetic wave in
the medium. Since curl of a vector field can be regarded as its
current vortices, Eq. 2 reveals that the optical spin of an evanes-
cent field is associated with the local vorticity of the electromag-
netic energy flow density and is source-less (∇·S = 0). The SAM
in this case is related to the transverse gradient of the energy
flow density. At the same time, the longitudinal optical spin does
not fulfill the above spin–momentum relationship. For example,
a monochromatic circularly polarized plane wave bears the SAM
aligned parallel to the wave vector, while the curl of the Poynting
vector vanishes because of the uniformity of the energy flow
density over the space. Therefore, the spin–momentum law in
Eq. 2 only describes the dynamics of optical transverse spin pre-
sent in the evanescent waves. It also reveals that, in addition to

the optical spin oriented along the surface (in-plane transverse
SAM), which has been recently studied intensively, there exists
another category of the transverse spin of an evanescent field
oriented out of the surface plane. This SAM can be induced by
the in-plane energy flow density of the structured guided or sur-
face wave, while the in-plane transverse spin is due to the gradient
of energy flow density normal to the interface. The appearance of
a transverse spin indicates to the rotation of polarization and
hence the phase difference between all the field components of
the wave.
The spin–momentum locking in an evanescent plane wave

(Fig. 1A) as demonstrated in previous work (9) is a special, one-
dimensional (1D) case of spin–momentum locking with the SAM
vector aligned along the interface. Assuming the guided mode
propagating along the y direction and evanescently decaying
along the z direction, one can deduce the Poynting vector P =
ŷω«/(2β)exp(−2kzz) and the SAM S = x̂«kz/(2ωβ)exp(−2kzz),
where « denotes the permittivity of the medium and β and ikz
stand for the in-plane and out-of-plane wave vector components,
respectively. The energy flow density and SAM of the evanescent
plane wave are connected through the generalized spin–
momentum relation: S = ∇ × P/(2ω2) = ‒x̂(∂Py/∂z)/(2ω2). For
structured evanescent modes with spatially varying intensity dis-
tribution, the inhomogeneity of energy flow density can induce
several SAM components in different directions. The variation of
the energy flow density in the z direction induces an in-plane
component of the SAM, while its in-plane variations induce a z
component. Both are perpendicular to the local energy propaga-
tion direction. The relationship between the two components
leads to a chiral spin texture with spin vectors swirling around the
energy flow (Fig. 1B). More importantly, its tendency of direc-
tional variation (i.e., the chirality) is locked to the momentum
direction. This is a manifestation of the generalized optical spin–
momentum locking associated with an electromagnetic evanescent
wave.
It should be noted that the transverse spin discussed here is

different from the “spins” in conventional topological photonics,
typically called a “pseudospin.” For a pseudospin, the spin–
momentum locking is achieved by engineering the spin–orbit
interaction in artificial photonic structures in order to break the
time-reversal symmetry (8). In the case of the optical transverse
spin of an evanescent wave, the generalized spin–momentum

Fig. 1. Generalization of spin–momentum locking for structured guided modes. (A) In unstructured, plane guided wave, optical spin–momentum locking
results in the transverse spin (S) uniformly distributed and parallel to the interface. The spin vector direction is perpendicular to the wave vector k and flips if
the propagation direction flipped from +k to −k. (B) In an arbitrary structured guided wave, the optical spin is related to the vorticity of the energy flow
density P. The transverse spin vector varies from the “up” state to the “down” state around the energy flow density, remaining perpendicular to the local
wave vector. This forms a chiral swirl of the 2D transverse spin which is locked to the energy propagating direction and fulfills a right-handed rule. The
direction of the local transverse spin vector flips if the energy flow density flipped from forward (+P) to backward (−P).
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locking is an “intrinsic” feature of the spin–orbit interaction gov-
erned solely by the Maxwell’s theory. The nonzero spin Chern
number for the structured waves (SI Appendix, section IV) implies
the existence of nontrivial helical states of electromagnetic waves
which are strictly locked to the energy propagation direction.
However, since the topological Z2 invariant of these states vanishes
owing to the time-reversal symmetry of the Maxwell’s equations,
there is no protection against (back)scattering. Although the
transformation of the two helical states of evanescent waves is not
topologically protected against scattering, the spin–momentum
locking and the induced unidirectional excitation and propagation
are the intrinsic feature of the Maxwell’s theory and are topolog-
ically nontrivial, possessing the Z4 topological invariant.
To demonstrate the spin–momentum locking features described

by Eq. 2, four types of the electromagnetic modes exhibiting ev-
anescent field with inhomogeneous spatial energy distribution
were investigated, including the solutions of a wave equation in
Cartesian coordinates (Cosine beam) (34), in cylindrical coordi-
nates (Bessel beam) (35), in parabolic coordinates (Weber beam)
(36), and in Cartesian coordinates but with a parabolic path (Airy
beam) (37) (SI Appendix, section V). The spatial distributions of
their energy flow densities are shown in Fig. 2 A–D, while the
beams’ propagation directions can either be forward (+P) or
backward (–P). The corresponding cross-sections along the dashed
lines are shown in Fig. 2 E–H and I–L for the beams with opposite

propagation directions, respectively, together with the SAM dis-
tributions and the spin vector variations. For all four different
types of the beams, the spin orientation varies progressively from
the “up” state to the “down” state when the energy propagates
along the forward direction (Fig. 2 E–H). The intrinsic spin–
momentum locking present in evanescent waves ensures the to-
pological protection in terms of spin vector swirl being completely
determined by the energy flow density. Thus, to observe the re-
versal of the spin swirling from the “down” state to the “up” state,
the propagation direction must be reversed (Fig. 2 I–L). This
spin–momentum locking is preserved even for surface modes
suffering from the ohmic losses (12), which influence only the
intensity of the wave but not the orientation of photonic spin
vector. Note that the spin vector has orientation along the inter-
face at the maxima of the energy flow density and is normal to it at
the nodes. Therefore, a period of spin variation can be defined
between the two adjacent nodes of energy flow density which
exhibits a similar feature to a topological soliton (38–42).
In order to experimentally observe the spin–momentum

locking features associated with the structured surface waves and
out-of-plane transverse SAM, the experiments were performed
on the example of SPPs (SI Appendix, section VII). SPPs were
excited under the condition of a total internal reflection using a
microscope objective with high numerical aperture (NA) = 1.49.
Spatial light modulator and amplitude masks were employed to

Fig. 2. Spin–momentum locking in various surface structured waves. (A–D) The spatial distributions of the energy flow density for different structured
surface waves: (A) surface Cosine beam, (B) surface Bessel beam with topological charge l = ±1, (C) surface Weber beam, and (D) surface Airy beam. These
beams can either propagate in the forward (labeled +P) or backward (labeled –P) directions. (E–H) Transverse SAM components Sz and Sx and the cross-
sections of the energy flow density distributions along the green dashed lines in A–D for the beams propagating in the direction indicated with the arrow
labeled +P. (I–L) The same as E–H for the beams propagating in the opposite direction indicated with the arrow labeled –P in A–D. The inserts at the top of E–L
show the local transverse spin vector orientations (cf. Fig. 1). The spin vectors are swirling around the energy flow density and their local orientations vary
from the “up” to the “down” states, fulfilling the right-handed rule. These orientations are seen inverted for the waves with the opposite direction of the
energy propagation. Note that for the beams with curved trajectory, the spin variation is considered in the plane perpendicular to the local tangential di-
rection of the energy flow density. The distance unit is the wavelength of light in vacuum.
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modulate the phase and wavevector of the excited SPPs to gen-
erate the desired plasmonic modes. A scanning near-field optical
microscope, which employs a dielectric nanosphere to scatter the
SPPs to the far field, and a combination of a quarter waveplate
and a polarizer to extract the two circular polarization components
(IRCP and ILCP) of the far-field signal, were used to measure the
out-of-plane SAM component Sz = «β2/[4ωkz

2(IRCP ‒ ILCP)]. The
corresponding in-plane spin components were also reconstructed
from the measurements (SI Appendix, section VIII). The measured
distributions of the SAM components are shown in Fig. 3 and SI
Appendix, Figs. S16–S19 for the four types of structured SPP waves
propagating in the forward and backward directions. All the pre-
dicted SAM and spin–momentum locking features are observed ex-
perimentally: 1) the variation of SAM from the positive/negative state
to the negative/positive across the beam profile and 2) the reversal of
spin variation when inversing the beam propagation direction.
Since the kinetic momentum density can be divided into the

spin (ps) and orbital (po) parts, p = ps + po, where ps = ∇ × S/2,
and obeys the spin–momentum relationship (Eq. 2), we can
formulate a set of the Maxwell-like equations linking the trans-
verse spin and the momentum density (and the Poynting vector)
of evanescent electromagnetic fields (Table 1). This formulation
provides comprehensive and intuitive understanding of the
boundary conditions and the dynamical properties of the spin,
momentum, and energy flow in guided waves (SI Appendix,
section III). For example, the flip of the out-of-plane spin and
the in-plane Poynting vector of a SPP wave across the metal/
dielectric interface immediately follows from the boundary
conditions due to the opposite sign of the permittivities on the
different sides of the guiding interface. The same as variations of
E field induces H field in the Maxwell’s equations, equation ∇ ×

p = 2k2S indicates that the spatial variations of the momentum/
energy flow density induce the transverse SAM. In the same
manner, equation ∇ × S = 2ps = 2(p − po) tells us that the spin
variation in turn contributes to the momentum/energy flow
density, with the remainder provided from the orbital part (po).
Consolidating spin–momentum equations results in an analog of
a Helmholtz equation ∇2S + 4k2S = 2∇ × po, which describes
spin–orbit interaction in evanescent waves, linking transverse
spin and orbital part momentum density. In both the Helmholtz
equation and the last Maxwell’s equation in Table 1, current J is
an external source of magnetic field; similarly, in the corre-
sponding spin–momentum equations, po, which determines the
orbital angular momentum, influences the spin. Since an elec-
tromagnetic wave in a source-free and homogenous medium can
be described with Hertz potential (Ψ) satisfying the Helmholtz
equation, and the Poynting vector can be calculated from the Hertz
potential as P ∝ (Ψ*∇Ψ−Ψ∇Ψ*) (43), one can obtain the spin and
orbital properties of the electromagnetic guided waves directly
from the spin–momentum equations without any knowledge on the
electric and magnetic fields (SI Appendix, section VI).

Conclusion
We have demonstrated an intrinsic spin–momentum law which
governs the transverse spin dynamics of guided electromagnetic
waves. It was shown that the 1D uniform spin of surface plane
wave evolves in a 2D chiral spin swirl for structured guided
modes, providing a manifestation of the generalized photonic
spin–momentum locking. Four types of structured surface waves,
including the Cosine beam, Bessel beam, Weber beam, and Airy
beam, have been investigated both theoretically and experimentally
to demonstrate the concept of the generalized spin–momentum
locking. Applying this spin-momentum locking, we obtained a set

Fig. 3. Experimental validation of the spin–momentum locking. The measured out-of-plane SAM components (Sz) for (A, E, and I) surface Cosine beam, (B, F,
and J) surface Bessel beam, (C, G, and K) surface Weber beam and (D, H, and L) surface Airy beam: the spatial distributions of Sz spin components for the
beams with (A–D) forward (+P) and (E–H) opposite (−P) energy propagating direction, (I–L) the cross-sections of A–H. The direction of the out-of-plane
transverse SAM is seen inverted for the waves propagating in opposite directions. The distance unit is the wavelength of light in vacuum.
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of spin–momentum equations that are analogous to the Maxwell’s
equations and the boundary conditions. This optical spin frame-
work can be used to evaluate the spin–orbit coupling in the elec-
tromagnetic guided waves and for designing specific transverse spin
structures, without a priori information on the electric and magnetic
fields. The generalized intrinsic spin–momentum features could also
appear in other types of waves with evanescent field, such as fluid,
surface elastic, acoustic, and gravitational waves. The effect could
be of importance to the development of spin optics for quantum
technologies and topological photonics.

Materials and Methods
Experimental Setup. The experimental setup for studies of the optical spin–
momentum locking is shown in SI Appendix, Fig. S9. The experiment was
performed on the example of SPPs, which are TM-mode evanescent waves
supported on a metal–dielectric interface. An He–Ne laser beam with a
wavelength of 632.8 nm was used as a light source. After a telescope system
to expand the beam, a combination of linear polarizer, half-wave plates,
quarter-wave plates, and vortex wave plates was employed to modulate the

polarization of the laser beam. A spatial light modulator was then utilized to
modulate the phase of the beam. The structured beam was then tightly
focused by an oil-immersion objective (Olympus, NA = 1.49, 100×) onto the
sample consisting of a thin silver film (45-nm thickness) deposited on a
coverslip, to form the desired SPP beams at the air/silver interface.

A polystyrene nanosphere was immobilized on the silver film surface, as a
near-field probe to scatter the SPPs to the far field. The sample was fixed on
a piezo scanning stage (P-545; Physik Instrumente) providing resolution
down to 1 nm. A low-NA objective (Olympus, NA = 0.7, 60×) was employed
to collect the scattering radiation from the nanosphere. A combination of
quarter-wave plate and linear polarizer was used to extract the right-handed
(RCP) and left-handed (LCP) circular polarization components of the collected
signals. Finally, the intensities of RCP and LCP components are measured by a
photomultiplier tube (R12829; Hamamatsu). As the piezo scanning stage raster
scanned the near-field region, the distributions of RCP and LCP components
can be mapped and used to reconstruct the longitudinal SAM component.

Numerical Simulation. The numerical simulations were performed with a custom
program inMATLAB. Thedetails canbe found in SIAppendix, sectionsV,VII, andVIII.

Data Availability.All study data are included in the article and/or SI Appendix.
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Table 1. Spin–momentum equations and the analogy to the
Maxwell’s equations

Maxwell’s equations Spin–momentum equations

∇ · E ¼ 0 ∇ ·p ¼ 0
∇ ·H ¼ 0 ∇ · S ¼ 0
∇3E ¼ iωμH ∇3p ¼ 2k2S
∇3H ¼ J� iω«E ∇3S ¼ 2ðp� poÞ

Helmholtz equation
∇2Hþ k2H ¼ �∇3J ∇2Sþ 4k2S ¼ 2∇3po
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