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Introduction
In public health research, it is acknowledged that both compo-
sitional (individual-level) and contextual (neighborhood-level) 
variables are important for explaining variation in health out-
comes.1–7 For example, the role of contextual variables con-
tinues to be a key focus of investigators studying potential 
risk factors for obesity,8–10 where neighborhood variables such 
as fast-food density and green-space presence are thought 
to be important factors that contribute to obesity status. 
Neighborhood- or area-level variables can also have an impor-
tant role in explaining variation in environmental chemical 
exposures. One example is found with modeling variation in 
polychlorinated biphenyls (PCBs) measured in carpet dust 
using percentage of developed land, population density, and 
number of industrial facilities within 2  km of residences, 
where total PCB levels are significantly associated with either 
the percentage of developed land or the population density.11

Through the use of geocoding and geographic informa-
tion systems (GIS), researchers can link an individual resi-
dential address to an external database containing numerous 
area-level or environmental variables, where the number of 
variables is denoted by p. Typically, each of the area-level 
variables is available at multiple geographic scales. Thus, the 

p number of area-level variables available to consider when 
explaining variation in a health outcome can quickly multiply. 
Many socioeconomic status (SES) variables, including race, 
education, household income, and housing tenure, are avail-
able from the U.S. Census at the census block group, census 
tract, and county level. To clarify, we use the word “level” as a 
general term for spatial unit. Level is synonymous with region 
size, which, as will be seen later in our case example, denotes 
a buffer size. In addition to geopolitical areas, researchers can 
also create a set of geographic areas of varying size to sum-
marize environmental variables using circular buffers or rings 
centered at observed data points. As an example, population 
density can be calculated at distances of 1, 2, and 3 mi from 
a residential location by intersecting spatial buffers of these 
sizes with census block group data.

With the abundance of socioeconomic and environmen-
tal data available at multiple spatial scales, a natural question 
arises for researchers who wish to investigate environmental 
effects: at what spatial scale (geographic areal unit) should each 
area-level variable be modeled in order to explain a fixed health 
outcome or environmental exposure of interest? Area-level 
covariates used as contextual variables in regression models 
are often in practice modeled at the same spatial scale, where, 
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generally, a smaller spatial unit (ie, census block group versus a 
county) is thought to better capture heterogeneity in regression 
relationships. Krieger et al.4 model area-based socioeconomic 
measures at three spatial scales (census block group, census 
tract, and ZIP Code) to study mortality outcomes and can-
cer incidence and find that the effect estimates for the smaller 
spatial units (census block group and census tract) are similar, 
while the effect estimates for the larger spatial unit (ZIP Code) 
differ and are sometimes in the opposite direction. Krieger 
et al.4 conclude that the level of geography is important and 
recommend the use of SES variables at a smaller spatial scale, 
namely census block group or census tract.

The selection of spatial scale for environmental variables 
is a problem typically encountered in modeling groundwater 
quality. A variable that is often incorporated into statistical 
models of groundwater quality is area land use, as it is known 
to be one of the factors that can affect water quality. Barringer 
et  al.12 find that the use of a circular buffer around a water 
table well is a simple and effective method for correlating 
water quality and land use. Regional and national groundwater 
studies have associated land use near a well with water quality 
using a fixed circular buffer distance, with 500 m a common 
choice and 1 km a less common choice.13–17 Some researchers 
have evaluated the univariate correlation of land use variables 
with groundwater quality. Ferrari and Ator18 find correlations 
between agricultural land use and nitrate concentrations using 
circular buffers of 400 and 800 m. Kolpin19 correlates the con-
centrations of nitrate, alachlor, and atrazine detected in wells 
with a variety of land use variables using circular buffers rang-
ing in size from 200 m to 2 km. Johnson and Belitz20 evaluate 
a range of circular buffer and wedge sizes in a univariate corre-
lation analysis of urban land use and the occurrence of volatile 
organic compounds (VOCs) in groundwater using Kendall’s 
tau (τ). They find that the values of τ are within 10% of one 
another for circles and wedges ranging in size from 500 m to 
2  km, with statistically significant correlations for all sizes, 
and conclude that the popular choice of a 500-m circular buf-
fer is adequate for assigning land use variables to a well.

Other researchers have evaluated the buffer distance to 
select each type of land use variable to be used in a regression 
model of groundwater quality. Rupert21 selects the circular 
buffer size for land use variables to explain the detection of 
elevated atrazine or desethyl-atrazine (atrazine/DEA) con-
centrations and elevated concentrations of nitrate using uni-
variate logistic regression. The optimal buffer size is 2 km for 
agricultural land use variables and 500 m for urban land use 
variables according to McFadden’s ρ2, which is a transforma-
tion of the log-likelihood statistic that is designed to imitate 
the r2 of linear regression for univariate regression models.21 
The buffer distances of 2 km for agricultural land use vari-
ables and 500 m for urban land use variables are then used in 
multiple logistic regression models of the probability of ele-
vated atrazine/DEA detection and the probability of elevated 
nitrate detection.

An important question is whether all area-level variables 
should be modeled at the same spatial scale, as recent stud-
ies have shown that different area-level covariates are asso-
ciated with health outcomes at different spatial scales.2,6,7 
Root6 finds that the relationship between area-level SES 
variables and orofacial cleft risk varies when using differ-
ent spatial scales to define neighborhoods. The study results 
indicate that poverty has a stronger association with risk for 
cleft palate at smaller geographic scales, while unemploy-
ment has a stronger association at larger scales, thus provid-
ing evidence that neighborhood effects operate at different 
spatial scales. In addition, Flowerdew et al.2 demonstrate in 
a British study of limiting long-term illness (LLTI) that the 
correlation strength between area-level variables and LLTI 
can vary depending on the spatial scale. Stronger correlations 
are present for LLTI and age group at the smaller enumera-
tion district (ED) scale, while stronger correlations exist for 
LLTI and unemployment at the larger ward scale. In another 
study, Block et  al.8 examine the relationship between fast-
food restaurant density (FFRD) and black and low-income 
neighborhoods while controlling for various neighborhood 
variables such as commercial activity and presence of high-
ways, which, in addition to FFRD, are available at two spatial  
scales (0.5- and 1-mi buffer sizes). They find that, while the 
results for both buffer analyses are similar, the 1-mi buf-
fer analysis leads to a statistically significant association for 
median household income, perhaps due to a better capturing 
of how far people are willing to travel to buy food. In light 
of these findings, it is important to consider spatial scale for 
each area-level covariate when studying relationships between 
environmental variables and a particular outcome variable.

In this paper, we present a novel approach for model-
ing area-based variables at different spatial scales using four 
model selection approaches. To demonstrate these methods, 
we use a nitrate dataset containing numerous geologic and 
land use variables at different buffer sizes to investigate poten-
tial associations with nitrate concentrations in drinking well 
water. Contamination of drinking water by nitrate is a growing 
problem in agricultural areas of the United States, as ingested 
nitrate can lead to the endogenous formation of N-nitroso 
compounds, which are potent carcinogens. Our methods are 
not limited to the case example we present, but can be applied 
to other area-based variables that are related to cancer.

Methods
Statistical methods. We review four established meth-

ods used in model selection: forward stepwise regression, 
incremental forward stagewise regression, least angle regres-
sion (LARS), and the lasso.24 Next, we introduce our modified 
versions of these algorithms to select the spatial scale. Lastly, 
we present an application of our methods to model ground
water nitrate concentrations in Iowa.

Model selection approaches. Forward stepwise regression. 
Forward stepwise regression is a common approach used for 
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model selection. A description of the forward stepwise regres-
sion algorithm detailed by Berk22 and Wheeler23 is as follows:

1.	 Initialize all regression coefficients ˆ ˆ,…, 0,pβ β =1  and let 
,=r y  where r  denotes the residual vector and y  denotes 

the response vector.
2.	 Of the candidate variables, find the predictor jx  that has 

the greatest absolute correlation with the residuals ,r  
and add jx  to the working design matrix .inX

3.	 Let ˆ ( ) .T T
in in in

−=β 1X X X y
4.	 Compute the residuals = − ˆ ,r y y  where ŷ  is the vector 

of fitted values.
5.	 Iterate steps (2)–(4) until there is an inadequate improve-

ment in the performance of the model or until all predic-
tors have been added to the model.

For step (5), we consider there to be an inadequate 
improvement in the model’s performance if the difference in 
the Akaike information criterion (AIC) between the current 
model and the proposed model is less than ε, for some ε . 0.

Incremental forward stagewise regression. Incremental for-
ward stagewise regression is another common approach used 
for model selection. Hastie et al.24 and Hastie et al.25 describe 
the incremental forward stagewise regression algorithm as 
follows:

1.	 Initialize all regression coefficients ˆ ˆ, , ,pβ β =…1 0  and let 
,=r y  where r  denotes the residual vector and y  denotes 

the response vector.
2.	 Find the predictor jx  that has the greatest absolute cor-

relation with the residuals r.
3.	 Let β β δ← +ˆ ˆ ,j j j  where [ ( , )]j jsign corrδ τ= ⋅ r x  for 

some step size τ > 0.
4.	 Let .j jδ← −r r x
5.	 Iterate steps (2)–(4) until none of the predictors are cor-

related with the residuals .r

For step (5), we consider none of the predictors to be 
correlated with the residuals if max ( , )corr r X  is less than a 
specified tolerance, where the tolerance is some small, positive 
number.

Least angle regression. Following the notation of Yuan and 
Lin,26 the LARS algorithm is described as follows:

1.	 Initialize all regression coefficients [ ] [ ]ˆ ˆ, , ,pβ β… =0 0
1 0  and 

let [ ] ,=0r y  where [ ]0r  denotes the residual vector at 
index 0 and y  denotes the response vector. Set i = 1,  
where i  is the index for the current iteration count.

2.	 Find the predictor cx  among the p possible predictors 
that has the greatest absolute correlation with the residu-
als [ ].i−1r

3.	 Let the active set  be equal to the corresponding col-
umn index of X  associated with the predictor ,cx  and add 

cx  to the working design matrix 

4.	 Let γ  be a p-dimensional vector where all values are set 
equal to 0. Calculate the current least squares direction γ  
by updating

	   

5.	 For every j  in X  that is not an element of the active set 
 calculate α j , the minimum distance needed to move 

the active regression coefficient(s) in direction γ  until 
another predictor jx  has as much correlation with the 
current residuals as the variables in the active set. That is, 
find α j ∈( , )0 1  such that

	    
[ ] [ ]( ) ( ) ,T i T i

j j j jα α− −
′− = −γ γ

2 2
1 1x r X x r X

where ′j  is arbitrarily chosen from 
6.	 If  update the cur-

rent active set  where j * denotes the 
corresponding column index of X  associated with the 
predictor * ,jx  and add *jx  to the working design matrix 

 else, set α = 1.

7.	 Let α−= +[ ] [ ]ˆ ˆ .i i 1β β γ
8.	 Let = −[ ] [ ]ˆ .i ir y X β
9.	 Set i i= + 1, and iterate steps (4)–(8) until α = 1, when all 

predictors have been added to the model.

For step (5), for ease of computation, we select ′j  to always 
be the first value of the active set  Thus, for each iteration, 

j ′x  corresponds to the first column of the design matrix  
After p iterations, the ordinary least squares (OLS) solution is 
reached.25

Lasso. The lasso, which stands for least absolute shrinkage 
and selection operator,27 is a shrinkage method that is good 
for dealing with high-dimensional data and correlated covari-
ates by placing a constraint on the magnitude of the regres-
sion coefficients.23,24 Hastie et al.24 define the lasso estimate 

as follows: lassoˆ argmin ,
pn

i 0 ij j
i j

y X
β

β β β
= =

 
= − − 

 
∑ ∑

2

1 1

 such that 

β j
j

p

t
=

∑ ≤
1

,  where t  is a tuning parameter that determines 

the shrinkage extent. Efron et al.28 discover that the LARS 
algorithm can be modified to obtain the lasso solutions. As 
with LARS, the lasso adds variables to the active set. How-
ever, unlike LARS, the lasso does not permit active non-
zero coefficients to cross zero, and in cases where a nonzero 
coefficient reaches zero, that variable is dropped from the 
active set.24

Following the notation of Efron et al.28, Shi29 describes 
the lasso algorithm as follows:
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1.	 Initialize all regression coefficients [ ] [ ]ˆ ˆ, , ,pβ β =…0 0
1 0  and 

let [ ] ,=0r y  where [ ]0r  denotes the residual vector at index 
0 and y denotes the response vector. Set i = 1, where i  is 
the index for the current iteration count.

2.	 Find the predictor jx  among the p possible predic-
tors that has the greatest absolute correlation with the 
residuals [ ],i−1r  and let the active set  be equal to the 
corresponding column index of X  associated with the 
predictor .jx

3.	 Add jx  to the working design matrix such that  
 where [ ]{ ( , )} .i

j js sign corr −= = ±x r 1 1
4.	 Compute the following:

  

5.	 Find  where  

“min+” specifies that, for every j  not in the active set  
the minimum is found over only the positive elements, 
and ĵ  denotes the corresponding column index of X  
associated with the predictor ˆ .jx

6.	 Let d̂  be a p-dimensional vector where all values are set 
equal to 0. For every  update d̂  by calculating

	

7.	 Find  where j  denotes the corre

sponding column index of X  associated with the predictor 
.jx  If γ γ< ˆ , let [ ] [ ]ˆ ˆ ˆ,i i γ−= + β β 1 d  update  

and update the working design matrix  else, let 
[ ] [ ]ˆ ˆ ˆˆ ,i i γ−= +β β 1 d  update  and update 

the working design matrix 
8.	 Let = −[ ] [ ]ˆ .i ir y X β
9.	 Set i i= + 1, and iterate steps (4)–(8) until all predictors 

have been added to the model and γ γ< ˆ .

Notice that step (7) is the lasso modification to the 
LARS algorithm. At the final iteration, the OLS solution is 
reached.28

Modifications of Model Selection Approaches to 
Select Spatial Scale

Spatial scale forward stepwise regression. We propose 
a modified forward stepwise regression algorithm that selects 
each area-level variable at only one spatial scale in order to build 

regression models to explain variation in a continuous outcome 
variable. We use the basic forward stepwise algorithm with 
adjustments to select the scale for variables available at more 
than one spatial level. In the algorithm, all variables are consid-
ered at all available spatial scales as potential candidates to enter 
a model. However, due to potentially high correlations present 
across different scales for a given variable, we constrain the algo-
rithm to select each area-level variable at a single spatial scale.

Our modeling approach uses a 3-D or stacked matrix, 
where each stack represents a particular level of covariates, 
including spatial scale. As an example, we might have several 
individual-level covariates, an area-level covariate available at 
1, 2, and 3 mi, and another area-level covariate available at  
4 and 6  mi. In this case, the first stack would contain the 
individual-level variables; the second, third, and fourth stacks 
would contain the area-level variable at the 1-, 2-, and 3-mi 
levels; and the fifth and sixth stacks would contain the area-
level variable at the 4- and 6-mi levels, respectively. In cases 
where values are only present for a covariate at certain levels, 
that covariate is assigned missing values at all other levels. 
The spatial scale forward stepwise regression algorithm is as 
follows:

1.	 Construct an n p S× ×  stacked matrix ,X  where n = the 
number of observations, p = the number of variables, and 
S = the number of levels of covariates.

2.	 Initialize all regression coefficients ˆ ˆ, , ,pβ β… =1 0  and 
let ,=r y  where r  denotes the residual vector and y  
denotes the response vector.

3.	 For each stack s s S, , ,= 1 … : Of the candidate variables, 
find the predictor jsx  that has the greatest absolute cor-
relation with the residuals .r

4.	 Of the s correlations, select the predictor jsx  that has 
the maximum correlation, and add that predictor to the 
working design matrix .inX

5.	 Let ˆ ( ) .T T
in in in

−=β 1X X X y
6.	 Compute the residuals ˆ ,= −r y y  where ŷ is the vector of 

fitted values.
7.	 Iterate steps (3)–(6) until there is an inadequate improve-

ment in the performance of the model or until all predic-
tors have been added to the model.

For step (4), it is important to note that, once an overall 
maximum is determined, we select the corresponding vari-
able at the best spatial scale and remove all other versions (or 
spatial scales) of that variable from further consideration for 
model selection. In this way, we constrain the algorithm to 
select each area-based variable at a single spatial scale. For step 
(7), we consider there to be an inadequate improvement in the 
model’s performance if the difference in the AIC between the 
current model and the proposed model is less than ε, for some 
ε . 0.

Spatial scale incremental forward stagewise regression. 
We spatially modify the basic forward stagewise algorithm to 
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select each area-level variable at a single spatial scale. We use 
the same matrix data structure as with the spatial scale for
ward stepwise algorithm. The spatial scale incremental for-
ward stagewise regression algorithm is as follows:

1.	 Construct an n p S× ×  stacked matrix ,X  where n = the 
number of observations, p = the number of variables, and 
S = the number of levels of covariates.

2.	 Initialize all regression coefficients ˆ ˆ, , ,pβ β… =1 0  and let 
,=r y  where r denotes the residual vector and y denotes 

the response vector.
3.	 For each stack s s S, , ,= 1 … : Find the predictor jsx  that 

has the greatest absolute correlation with the residuals .r
4.	 Of the s correlations, select the predictor jsx  that has the 

maximum correlation.
5.	 Let β β δ← +ˆ ˆ ,j j j  where [ ( , )]j jssign corrδ τ= ⋅ r x  for some  

step size τ > 0.
6.	 Let .j jsδ← −r r x
7.	 Iterate steps (3)–(6) until none of the predictors are cor-

related with the residuals .r

For step (4), once an overall maximum is determined, we 
select the corresponding variable at the best spatial scale and 
remove all other versions (or spatial scales) of that variable from 
further consideration. In this way, we constrain the algorithm 
to select each area-level variable at a single spatial scale. For 
step (7), we state that none of the predictors are correlated with 
the residuals if the overall maximum is less than a specified 
tolerance, where the tolerance is some small positive number.

Spatial scale least angle regression. Our approach for 
the spatial modification of the LARS algorithm involves the 

use of a block diagonal matrix 

 
 
 =
 
  



0
,

0
cand

p

a

a

1

A  where each 

a j , for j = 1, , ,… p  is an s j × s j identity matrix such that each 
column indicates a particular level or spatial scale, where p 
is the total number of predictor variables disregarding spa-
tial scale and s j is the number of levels of covariates for the  

jth variable. candA  is a square matrix with p s j
j

p

* =
=

∑
1

 rows. 

Every time a variable enters the active set , candA  is updated 
by removing all other versions (or spatial scales) of the win-
ning variable. When X  is post-multiplied by ,candA  we get the 
candidate design matrix ,candX  which keeps track of variables 
in the active set as well as candidate variables. Through this 
updating of ,candX  we modify the basic LARS algorithm to 
select each area-level variable at a single spatial scale.

Adopting the notation of Yuan and Lin,26 the spatial 
scale LARS algorithm is as follows:

1.	 Initialize all regression coefficients [ ] [ ]
*

ˆ ˆ, , ,pβ β… =0 0
1 0  

and let [ ] ,=0r y  where [ ]0r  denotes the residual vector at 
index 0 and y denotes the response vector. Let candA  be 

a preprocessed p * × p * block diagonal matrix. Set i = 1, 
where i  is the index for the current iteration count.

2.	 Find the predictor cx  among the p * possible predictors 
that has the greatest absolute correlation with the residu-
als [ ].i−1r

3.	 Let the active set  be equal to the corresponding col-
umn index of X  associated with the predictor ,cx  and add 

cx  to the working design matrix 
4.	 Update candA  by removing all other versions of the win-

ning predictor variable ,cx  and update the candidate 
design matrix .cand cand= ⋅X X A

5.	 Let γ  be a p*-dimensional vector, where all values are set 
equal to 0. Calculate the current least squares direction 
γ  by updating

	   
6.	 For every j  in candX  that is not an element of the active set 

 calculate α j , which is the minimum distance needed 
to move the active regression coefficient(s) in direction γ  
until another predictor jx  has as much correlation with 
the current residuals as the variables in the active set. 
That is, findα j ∈( , )0 1  such that

	   

[ ]

[ ]

( ( ) )

( ( ) ) ,

T i T T
j j cand cand

T i T T
j j cand cand

α

α

−

−
′

−

= −

2
1

2
1

x r X A

x r X A

γ

γ
 

where ′j  is arbitrarily chosen from 

7.	 If  set  update the current 

active set  where j * denotes the corre-
sponding column index of X  associated with the pre-
dictor * ,jx  add *jx  to the working design matrix  
update ,candA  and update the candidate design matrix 

;cand cand= ⋅X X A  else, set α = 1.
8.	 Let [ ] [ ]ˆ ˆ .i i α−= +1β β γ
9.	 Let [ ] [ ]ˆ(( ) ) .i i T T

cand cand= −r y X Aβ
10.	 Set i i= + 1, and iterate steps (5)–(9) until α = 1, when all 

predictors have been added to the model.

For steps (4) and (7), once a predictor variable is chosen 
to enter the model, we select that variable at the best spatial 
scale and remove all other versions (or spatial scales) of that 
variable from further consideration from the candidate design 
matrix .candX  In this way, we constrain the algorithm to select 
each area-level variable at a single spatial scale. For step (6), for 
ease of computation, we select ′j  to always be the first value  
of the active set  Thus, for each iteration, j ′x  corresponds to 
the first column of the design matrix  After p iterations,  
the OLS solution is reached.25

Spatial scale lasso. As with the spatial modification of 
LARS, our modeling approach for the spatial modification of 
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the lasso algorithm involves the use of a p * × p * block diagonal 

matrix ,cand

p

a

a

 
 
 =
 
  



1 0

0

A  where each a j ,  for j = 1, , ,… p  is 

an s j  × s j  identity matrix such that each column indicates 
a particular level or spatial scale, where p is the total num-
ber of predictor variables disregarding spatial scale, s j  is the 
number of levels of covariates for the jth variable, and p *  is 
the total number of predictor variables at all available levels 

such that p s j
j

p

* .=
=

∑
1

 As with the spatially modified LARS 

method, every time a variable enters the active set , candA  is 
updated by removing all other versions (or spatial scales) of the 
winning variable. When X  is post-multiplied by ,candA  we get 
the candidate design matrix ,candX  which keeps track of vari-
ables in the active set as well as candidate variables. Through 
this updating of ,candX  we modify the basic lasso algorithm to 
select each area-level variable at a single spatial scale.

Adopting the notation of Efron et al.28, the spatial scale 
lasso algorithm is as follows:

1.	 Initialize all regression coefficients [ ] [ ]
*

ˆ ˆ, , 0,pβ β… =0 0
1  and 

let [ ] ,=0r y  where [ ]0r  denotes the residual vector at index 
0 and y denotes the response vector. Let candA  be a pre-
processed p * × p * block diagonal matrix. Set i = 1, where 
i  is the index for the current iteration count.

2.	 Find the predictor jx  among the p * possible predictors 
that has the greatest absolute correlation with the residuals 

[ ],i−1r  and let the active set  be equal to the correspond-
ing column index of X  associated with the predictor .jx

3.	 Add jx  to the working design matrix  such that  
, where [ ]{ ( , )} .i

j js sign corr −= = ±1 1x r
4.	 Update candA  by removing all other versions of the win-

ning predictor variable ,jx  and update the candidate 
design matrix .cand cand= ⋅X X A

5.	 Compute the following:

 	  

6.	 Find  where  

“min+” specifies that, for every j  not in the active set 
 the minimum is found over only the positive ele-

ments, and ĵ  denotes the corresponding column index of 
X  associated with the predictor ˆ .jx

7.	 Let d̂  be a p*-dimensional vector where all values are set 
equal to 0. For every  update d̂  by calculating

	   

8.	 Find  where j  denotes the corre-

sponding column index of X  associated with the predictor 
.jx  If ˆ ,γ γ<  let [ ] [ ]ˆ ˆ ˆ,i i γ−= + β β 1 d  update  

and update the working design matrix  else, let 
[ ] [ ]ˆ ˆ ˆˆ ,i i γ−= +β β 1 d  update  update the 

working design matrix  update ,candA  and update 
the candidate design matrix .cand cand= ⋅X X A

9.	 Let = −[ ] [ ]ˆ(( ) ) .i i T T
cand candr y X Aβ

10.	 Set i i= + 1, and iterate steps (5)–(9) until all predictors 
have been added to the model and γ γ< ˆ .

Step (8) is the lasso modification. For steps (4) and (8), 
once a predictor variable is chosen to enter the model, we 
select that variable at the best spatial scale and remove all 
other versions (or spatial scales) of that variable from further 
consideration from the candidate design matrix .candX  In this 
way, we constrain the algorithm to select each area-level vari-
able at a single spatial scale. At the final iteration, the OLS 
solution is reached.28

Application to Groundwater Nitrate
Study data. To model the variation in nitrate in drink-

ing well water in Iowa, we used data for private wells sam-
pled from 1984 to 2011 by the following programs: the Iowa 
Grants to Counties Water Well Program (GTC), the Iowa 
Private Well Tracking System, the Iowa Statewide Rural Well 
Water Survey, the Iowa Community Private Well Study, and 
the U.S. Geological Survey (USGS). We used only those wells 
with the most accurate locations as determined by GPS mea-
surements, topographic quad maps, and geocoded residence 
addresses. Seventy-five percent of the well locations were 
based on geocoded residential street addresses. Nitrate data 
were reported either as nitrate or nitrite-plus-nitrate as NO3

–, 
and the latter were converted to nitrate-nitrogen (hereafter 
referred to as “nitrate”). Values below the detection limit were 
imputed from a log-normal distribution of uncensored data.30 
Same-day samples at the same well location and depth were 
excluded if their standard deviation was 5 mg/L nitrate-N or 
more; otherwise the average of such samples was used. Nitrate 
data were natural-log-transformed prior to modeling. There 
were 11,931 well measurements in the analysis dataset.

We considered a set of 115 explanatory variables in the 
statistical analysis (Table 1). Variables were available for char-
acteristics at the individual well location and for characteris-
tics of the surrounding environment over different distance 
buffers. Variables at the individual well level include longi-
tude, latitude, elevation, well depth, bedrock status, and bed-
rock depth, among others. A geographic information system 
was used to calculate the surrounding environmental vari-
ables. Most of the environmental variables were calculated 
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Table 1. Variable definitions for the variables considered in the spatial scale forward stepwise, forward stagewise, LARS, and lasso models. 
The horizontal dashed line separates the individual-level variables and the area-based variables available at more than one buffer distance. Any 
variable that falls below the dashed line has a suffix indicating the associated spatial scale.

Variable no. Name Description

1 Latitude Latitude value of well location (degrees)

2 Longitude Longitude value of well location (degrees)

3 SampleYr Well sample year

4 Well_Depth Depth of measurement well (ft)

5 Elevation Land-surface elevation at well point (ft)

6 Bdrk_Dpth Depth (ft) to bedrock at well point

7 Bdrk_Flag Flag indicating if well is within or above bedrock. 0 = Above bedrock; 1 = Within bedrock

8 NearAFO_Dist Distance to nearest AFO (Animal Feeding Operation) facility (m)

9 NearAFO_Type_1 Type of nearest AFO facility: Open Feedlot

10 NearAFO_Type_2 Type of nearest AFO facility: Confined/Open (ie, mixed)

11 NearAFO_AnimalUnits Total Animal Units at the nearest AFO facility

12 Count_10 kmConfmnts Number of confinement-only AFOs within 10 km of the well point 

13 Count_10 kmFeedlots Number of feedlot-only AFOs within 10 km of the well point 

14 Count_10 kmMixed Number of mixed-only AFOs within 10 km of the well point 

15 Count_10 kmHogs Number of hog facilities within 10 km of the well point 

16 precip Estimated mean annual precipitation at well point for the time period 1981–2010  
(millimeters times 100)

17 mintemp Estimated mean annual minimum temperature at well point for the time period 1981–2010  
(°C times 100)

18 maxtemp Estimated mean annual maximum temperature at well point for the time period 1981–2010  
(°C times 100)

19 SinkholeDist_m Distance from well point to nearest sinkhole point (m)

20 K Average horizontal hydraulic conductivity of all glacial deposits at well point (ft/day) 

21 AvgK Average horizontal hydraulic conductivity of all glacial deposits within a 4 × 4-mile square 
around the well point (ft/day)

22 Kz Average vertical hydraulic conductivity of all glacial deposits at the well point (ft/day)

23 AvgKz Average vertical hydraulic conductivity of all glacial deposits within a 4 × 4-mile square 
around the well point (ft/day) 

24 Trans Transmissivity of all glacial deposits at the well point (ft2/day) 

25 AvgTrans Average transmissivity of all glacial deposits within a 4 × 4-mile square around the well 
point (ft2/day) 

26 MaxKz Maximum kz within the 4 × 4-mile square around the well point (ft/day) 

27 KKzT_Logs Number of USGS water well logs within a 4 × 4-mile square around the well point (count) 

28–29 Sand Average percent sand within a 500-m/1-km buffer 

30–31 Silt Average percent silt within a 500-m/1-km buffer

32–33 Clay Average percent clay within a 500-m/1-km buffer 

34–35 OM Average percent organic matter within a 500-m/1-km buffer

36–37 Db033 Average bulk density at 1/3 bar within a 500-m/1-km buffer (g/cm3) 

38–39 Dbovendry Average oven dry bulk density at 1/3 bar within a 500-m/1-km buffer (g/cm3) 

40–41 Ksat Average saturated hydraulic conductivity within a 500-m/1-km buffer (µm/s) 

42–43 AWC Average available water capacity within a 500-m/1-km buffer (cm H2O/cm soil) 

44–45 H2O15 Average water content at 15 bar within a 500-m/1-km buffer (percent by weight)

46–47 AASHTOGr Average AASHTO group classification within a 500-m/1-km buffer

48–49 Kw Average K factor for whole soil within a 500-m/1-km buffer

50–51 Kf Average K factor for rock free soil within a 500-m/1-km buffer 

52–53 CaCO3 Average calcium carbonate within a 500-m/1-km buffer (percent by weight) 

54–55 CEC7 Average cation-exchange capacity within a 500-m/1-km buffer (milliequivalents per 100 g)

(Continued)
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Table 1. (Continued)

Variable no. Name Description

56–57 pHH2O Average pH (1 to 1 water) within a 500-m/1-km buffer 

58–59 Slope Average percent slope within a 500-m/1-km buffer

60–61 SlopeLength Average slope length within a 500-m/1-km buffer (ft) 

62–63 Runoff Average runoff potential within a 500-m/1-km buffer (Scale: 1–6; negligible to very high) 

64–65 T Average soil loss tolerance within a 500-m/1-km buffer (tons/acre/year) 

66–67 WEI Average wind erodibility index within a 500-m/1-km buffer 

68–69 Aspect Average aspect (direction the surface of the soil faces) within a 500-m/1-km buffer 
(degrees)

70–71 MAP Average mean annual precipitation within a 500-m/1-km buffer (mm) 

72–73 FrostFDays Average number of frost free days per year within a 500-m/1-km buffer 

74–75 FrostAction Average degree of frost action within a 500-m/1-km buffer (Scale: 0–3; none to high) 

76–77 CorrosionCon Average risk of concrete corrosion within a 500-m/1-km buffer (Scale: 1–3; low to high) 

78–79 CorrosionSt Average risk of steel corrosion within a 500-m/1-km buffer (Scale: 1–3; low to high) 

80–81 IACSR Average Iowa corn suitability rating within a 500-m/1-km buffer (Scale: 0–100) 

82–83 WaterDepth Average depth to water within a 500-m/1-km buffer (cm) 

84–85 FloodingFreq Average flooding frequency within a 500-m/1-km buffer (Scale: 0–4, none to very 
frequent)

86–87 PondingFreq Average ponding frequency within a 500-m/1-km buffer (%)

88–89 DrainClass Average drainage classification within a 500-m/1-km buffer (Scale: 1–7, very poorly 
drained to excessively drained) 

90–91 FarmClass Percent “not prime farmland” within a 500-m/1-km buffer 

92–93 HELWater Percent “not highly water erodable land” within a 500-m/1-km buffer 

94–95 HELWind Percent “not highly wind erodable land” within a 500-m/1-km buffer

96–97 Basements Percent “very limited and somewhat limited” basement limitations within a 500-m/1-km 
buffer 

98–99 SewageLag Percent “very limited and somewhat limited” sewage lagoon limitations within a  
500-m/1-km buffer 

100–101 Trails Percent “very limited and somewhat limited” path and trail limitations within a 500-m/1-km  
buffer 

102–103 HydricClas Percent “all hydric and partially hydric” hydric classifications within a 500-m/1-km buffer 

104–105 TileDrn_USGS Mean “estimated percent tile drainage on agricultural lands” within a 500-m/1-km buffer 

106–107 TileDrn_IADNR Mean “estimated percent tile drainage” within a 500-m/1-km buffer 

108–109 PopDen90 Mean population density within a 500-m/1-km buffer derived from U.S. Census 1990  
(persons per km2) 

110–111 PopDen00 Mean population density within a 500-m/1-km buffer derived from U.S. Census 2000  
(persons per km2) 

112–113 Recharge Estimated mean annual natural ground-water recharge within a 500-m/1-km buffer  
(millimeters per year)

114–115 FnGrn_Logs Number of well logs within a 4 × 4-mile/6 × 6-mile square around the well point used to 
generate an interpolated total fine-grain thickness grid 

 

using more than one distance buffer to assess the importance 
of spatial scale. An exception was for counts of animal feeding 
operations (AFOs) by type (Confined, Open Feedlot, Mixed), 
which were only calculated at 10 km. The AFO type of the 
closest AFO was also recorded, along with the number of ani-
mals at the nearest AFO (NearAFO_AnimalUnits). Most of 
the other area-based variables were calculated at distances of 
500  m and 1  km. These area-based covariates include aver-
age percent sand, average percent clay, average slope length, 
and mean population density, among others. Only fine-grain 

thickness (FnGrn_Logs) was calculated at 4- and 6-mi distances. 
Additional details on the variables are available in Wheeler 
et al.30 To account for missing data, we excluded 9.3% of the 
observations that were missing values for any of the covariates 
and used 10,824 nitrate measurements in our analysis.

Statistical analysis. We modeled the natural log of 
nitrate concentrations in well water using our four spatial scale 
selection algorithms. We built spatial scale forward stepwise 
regression, spatial scale incremental forward stagewise regres-
sion, spatial scale LARS, and spatial scale lasso models to 
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explain variation in log nitrate concentration while allowing 
any individual-level variable to enter the model and any 
area-based variable to enter the model at a single spatial scale, 
considering all available spatial scales. For spatial scale for-
ward stepwise and spatial scale stagewise, we used a stacked 
data matrix where the first stack contained individual-level 
variables or area-level variables available at only one spatial 
scale, the second and third stacks contained area-level vari-
ables at the 500-m and 1-km levels, and the fourth and fifth 
stacks contained area-level variables at the 4- and 6-mi levels, 
respectively. Given that variables available at multiple spatial 
scales were limited to enter a model at a single spatial scale, 
the total number of variables possible for model inclusion was 
71 instead of 115. More specifically, the total number of indi-
vidual-level variables and area-level variables available at one 
spatial scale possible for model inclusion was 27, and the total 
number of area-level variables possible was 44.

For spatial scale forward stagewise, spatial scale LARS, 
and spatial scale lasso, we fitted OLS regression models with 
the selected covariates to obtain approximate p-values and 
AIC measures. For ease of computation, approximate sig-
nificance levels were determined when the covariates selected 
from the spatial scale stagewise, LARS, and lasso algorithms 
were plugged into OLS regression models to obtain standard 
error estimates. Because LARS and lasso yield a sequence of 
solutions, for each algorithm we selected as the final model 
the one that had the minimum OLS-based AIC. The outcome 
and predictor variables were standardized to have a mean of 0 
and a standard deviation of 1. We used a significance level of 
α = 0 05. .  For the spatial scale forward stepwise algorithm, we 
set ε = 1 because the rule of thumb for a meaningful difference 

in AIC is 2 to 3.31 Decreasing the value of ε leads to larger 
models and better goodness of fit. For the spatial scale forward 
stagewise algorithm, we used a commonly accepted increment 
or step size of 0.00122 and set the tolerance = 0.01. Increas-
ing the step size leads to larger coefficient estimates and a 
decreased number of algorithm iterations, and increasing the 
tolerance leads to models with fewer selected covariates and 
decreased goodness of fit. All analyses were performed using 
R version 3.1.0.32

Evaluation metrics. To evaluate the success of our spa-
tial scale algorithms, we examined our methods using three 
criteria. First, for each of the four algorithms, we checked to 
see whether different spatial scales were selected and enumer-
ated the number of selected variables that fell into each spatial 
scale category. Second, we looked at the agreement in sign 
and spatial scale for significant variables that were selected 
across various groupings of the algorithms. Third, in order to 
evaluate the rationale of including different variables at differ-
ent spatial scales within the same model, for each algorithm 
we compared AIC measures across three different scenarios: 
1) when limiting all selected area-based variables to be at the 
smallest available spatial scale, 2) when limiting all selected 
area-based variables to be at the largest available spatial scale, 
and 3) when using all selected area-based variables at the spa-
tial scales originally selected by the model.

Results
Different variables were selected at different spatial scales using 
the spatial scale forward stepwise, spatial scale incremental 
forward stagewise, spatial scale LARS, and spatial scale lasso 
algorithms (Figs. 1–4). In each coefficient path plot, iterations 
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Figure 1. Coefficient paths for spatial scale forward stepwise regression to explain log nitrate concentration in drinking wells in Iowa. The scale the 
variable entered the model is indicated by the legend.
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of the respective algorithm are shown as the model-building 
progresses, where the coefficient estimates at each iteration 
change as variables enter or leave a model. Black lines rep-
resent individual-level variables, red lines indicate area-based 
variables at the 500-m level, green lines denote area-based 
variables at the 1-km level, and purple lines represent area-
based variables at the 6-mi level. The forward stepwise algo-
rithm converged after 26 iterations (Fig. 1), and the forward 

stagewise algorithm converged after 1,747 iterations (Fig. 2). 
Not surprisingly, it took a large number of iterations before 
the stagewise algorithm converged because of the incremental 
updating of the beta coefficient estimates. The LARS algo-
rithm converged to the OLS estimates after 71 iterations 
(Fig. 3). The dotted vertical line in Figure 3 indicates the cho-
sen model that had the minimum OLS-based AIC. The lasso 
algorithm converged to the OLS estimates after 85 iterations 
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Figure 2. Coefficient paths for spatial scale incremental forward stagewise regression to explain log nitrate concentration in drinking wells in Iowa.  
The scale the variable entered the model is indicated by the legend.
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Figure 3. Coefficient paths for spatial scale LARS to explain log nitrate concentration in drinking wells in Iowa. The scale the variable entered the model is 
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Figure 4. Coefficient paths for spatial scale lasso to explain log nitrate concentration in drinking wells in Iowa. The scale the variable entered the model is 
indicated by the legend. The dotted vertical line indicates the chosen model that had the minimum OLS-based AIC.

(Fig. 4). It took more iterations for the lasso algorithm to con-
verge than for the LARS due to lasso’s ability to add and drop 
variables. The dotted vertical line in Figure  4  indicates the 
chosen model that had the minimum OLS-based AIC.

The coefficient estimates for each of the covariates selected 
in each of the algorithms are shown in Table  2, where the 
horizontal dashed line separates the individual-level variables 
and the area-based variables that have multiple spatial scales. 
Across all four algorithms, there were significant positive asso-
ciations between log nitrate concentration and the following 
covariates: elevation, number of mixed-only AFOs within a 
10-km buffer (Count_10 kmMixed), number of hog facilities 
within a 10-km buffer (Count_10  kmHogs), distance from 
well point to nearest sinkhole point (SinkholeDist_m), aver-
age transmissivity (AvgTrans), average wind erodibility index 
within a 500-m buffer (WEI_500  m), and estimated mean 
annual natural ground-water recharge within a 500-m buf-
fer (Recharge_500 m). There were significant negative asso-
ciations between log nitrate concentration and the following 
covariates: latitude, well depth, bedrock depth, bedrock status, 
average horizontal hydraulic conductivity (AvgK), average soil 
loss tolerance within a 1-km buffer (T_1  km), percent “not 
prime farmland” within a 500-m buffer (FarmClass_500 m), 
mean population density within a 1-km buffer from the U.S. 
Census 2000 (PopDen00_1 km), and fine-grain thickness at 
the 6-mi distance (FnGrn_Logs_6 mi).

Multiple spatial scales of 500 m and 1 km were selected 
for variables by each of the algorithms (Table 3). All four mod-
els selected fine-grain thickness (FnGrn_Logs) to enter at the 
6-mi level. For the spatial scale forward stepwise model, 26 
of the 71 individual- and area-level covariates were selected. 

With seven variables selected at the 500-m level and seven 
variables selected at the 1-km level, there was an even split 
between the number of variables selected at the 500-m level 
versus the 1-km level. For the spatial scale forward stagewise 
model, 39 of the 71 individual- and area-level covariates were 
selected. Again, there was a fairly even split with 11 vari-
ables selected at the 500-m level and 12 variables selected at 
the 1-km level. For the spatial scale LARS model, 46 of the 
71  individual- and area-level covariates were selected. More 
variables were chosen to enter at the 1-km level than the 
500-m level, with 14 variables selected for the latter and 17 
variables for the former. For the spatial scale lasso model, 42 
of the 71 individual- and area-level covariates were selected. 
There was a fairly even split, with 14 variables selected at the 
500-m level and 13 variables selected at the 1-km level.

Overall, there was consistency across the spatial scale algo-
rithms in terms of the coefficient signs and spatial scale for the 
significant selected variables (Table 4). For various groupings 
of the algorithms, it is evident that, of the commonly selected 
covariates, the majority of them were significant. There were no 
instances of significant variables having different signs across 
algorithms, and only two instances of significant variables being 
selected at different spatial scales across algorithms. Average 
calcium carbonate (CaCO3) and average risk of concrete corro-
sion (CorrosionCon) were selected at the 500-m level by spatial 
scale stepwise and at the 1-km level by spatial scale stagewise, 
spatial scale LARS, and spatial scale lasso.

For spatial scale stepwise, spatial scale stagewise, spatial 
scale LARS, and spatial scale lasso, we fitted OLS regression 
models based upon the selected covariates to obtain AIC mea-
sures for the three different scenarios mentioned previously. 
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Table 2. Estimated coefficients from spatial scale (SS) forward stepwise, forward stagewise, LARS, and lasso models. The blank cells indicate 
variables not selected for a particular model. The horizontal dashed line separates the individual-level variables and the area-based variables 
considered at multiple spatial scales.

Variable no. Explanatory Variable SS-Stepwise SS-Stagewise SS-LARS SS-Lasso

1 Latitude −0.069 (*) −0.015 (*) −0.027 (*) −0.026 (*)

4 Well_Depth −0.243 (*) −0.242 (*) −0.240 (*) −0.241 (*)

5 Elevation 0.107 (*) 0.055 (*) 0.075 (*) 0.074 (*)

6 Bdrk_Dpth −0.129 (*) −0.093 (*) −0.109 (*) −0.108 (*)

7 Bdrk_Flag −0.080 (*) −0.065 (*) −0.072 (*) −0.072 (*)

11 NearAFO_AnimalUnits 0.003 0.006 0.006

12 Count_10 kmConfmnts 0.001

13 Count_10 kmFeedlots 0.013 0.008 0.007

14 Count_10 kmMixed 0.026 (*) 0.020 (*) 0.024 (*) 0.024 (*)

15 Count_10 kmHogs 0.026 (*) 0.006 (*) 0.014 (*) 0.016 (*)

19 SinkholeDist_m 0.244 (*) 0.214 (*) 0.260 (*) 0.259 (*)

21 AvgK −0.091 (*) −0.021 (*) −0.056 (*) −0.056 (*)

22 Kz 0.067 (*) 0.008 0.032 0.032

23 AvgKz 0.017 (+) 0.016 (*) 0.015 (*)

25 AvgTrans 0.084 (*) 0.055 (*) 0.069 (*) 0.070 (*)

31 Silt_1 km 0.050 (*) 0.038 (+)

32 Clay_500 m 0.013 (+) 0.012 (+)

35 OM_1 km −0.079 (*) −0.023 (+) −0.057 (*) −0.047 (*)

39 Dbovendry_1 km 0.024 (*) 0.025 (*) 0.028 (*)

41 Ksat_1 km 0.020 (*) 0.046 (*) 0.041 (*)

42 AWC_500 m 0.019 (*) 0.018 (*)

46 AASHTOGr_500 m 0.032 0.020 0.020

47 AASHTOGr_1 km 0.012

49 Kw_1 km −0.004

52 CaCO3_500 m −0.141 (*)

53 CaCO3_1 km −0.099 (*) −0.108 (*) −0.110 (*)

55 CEC7_1 km −0.017 (*) −0.047 (*) −0.053 (*)

56 pHH2O_500 m −0.002 −0.030 (*) −0.026 (*)

58 Slope_500 m −0.019 (*) −0.007 (+) −0.009 (+)

60 SlopeLength_500 m 0.009 −0.004

63 Runoff_1 km 0.021 0.011

65 T_1 km −0.126 (*) −0.100 (*) −0.112 (*) −0.110 (*)

66 WEI_500 m 0.100 (*) 0.042 (*) 0.076 (*) 0.077 (*)

71 MAP_1 km –0.009 –0.009 (+)

74 FrostAction_500 m 0.052 (*) 0.027 (*) 0.020 0.025

76 CorrosionCon_500 m 0.066 (*)

77 CorrosionCon_1 km 0.050 (*) 0.064 (*) 0.058 (*)

78 CorrosionSt_500 m 0.007

81 IACSR_1 km −0.003

82 WaterDepth_500 m 0.005 −0.003

83 WaterDepth_1 km −0.013

85 FloodingFreq_1 km 0.013

86 PondingFreq_500 m 0.029 (*) 0.005 (+) 0.011 0.009

89 DrainClass_1 km 0.078 (*) 0.098 (*) 0.066 (+) 0.041

90 FarmClass_500 m −0.073 (*) −0.048 (*) −0.065 (*) −0.061 (*)

(Continued)
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The table of AIC measures is shown in Table 5. For all methods, 
the model using the model-selected spatial scales (Model 3)  
resulted in the smallest AIC, indicating a better goodness of 
fit. Thus, we saw a significant improvement in goodness of 
fit with the spatial scale models in which we used the area-
based variables at the spatial scales originally selected by each 
model. Across all scenarios, the spatial scale lasso had the best 
goodness of fit.

Using the final model provided by the spatial scale lasso, 
26 of the 42 selected variables were significant (Table 2). Of the 
significant variables, several variables had larger magnitudes 
and stood out as being important for explaining the variation 
in nitrate. There were significant positive associations between 
log nitrate concentration and the following covariates: distance 
from well point to nearest sinkhole point (SinkholeDist_m) and 
estimated mean annual natural ground-water recharge within a 
500-m buffer (Recharge_500 m). In addition, there were sig-
nificant negative associations between log nitrate concentration 
and the following covariates: bedrock depth, well depth, aver-
age calcium carbonate within a 1-km buffer (CaCO3_1 km), 
and average soil loss tolerance within a 1-km buffer (T_1 km).

Discussion and Conclusions
To consider the problem of spatial scale selection for area-
based variables available at more than one spatial scale in a 

regression model, we modified the forward stepwise, forward 
stagewise, LARS, and lasso algorithms to select the best 
spatial scale for each area-level covariate. Our algorithms 
allow for any number of spatial scales of covariates to be 
considered and also enable the inclusion of individual-level 
covariates or covariates with only one possible spatial scale. 
We constrained the four algorithms to select each area-based 
variable to enter the model at a single spatial scale to avoid 
collinearity effects. When applying the algorithms to model 
groundwater nitrate exposure in Iowa, we found that not all 
environmental variables were selected at the same spatial 
scale. For all four spatial scale algorithms, the regression 
model that used the model-selected spatial scales had the best 
model fit. Furthermore, there was an overall agreement in 
coefficient sign and spatial scale for significant variables that 
were selected across the algorithms. The selection of area-
level variables at different spatial units gives evidence for the 
environmental effects operating at different spatial scales and 
demonstrates the importance of considering the spatial scale 
when modeling environmental exposures.

Other researchers have developed approaches to address 
the problem of spatial scale selection in regression model-
ing. For example, rather than choosing the best available 
scale for each area-level covariate, Root et al.7 use the vari-
ance of the outcome variable (eg, disease rates) to select a 

Table 2. (Continued)

Variable no. Explanatory Variable SS-Stepwise SS-Stagewise SS-LARS SS-Lasso

94 HELWind_500 m −0.001 −0.010 −0.009 (+)

97 Basements_1 km 0.003

99 SewageLag_1 km 0.012 0.007 (+) 0.005

100 Trails_500 m −0.017

101 Trails_1 km −0.024

107 TileDrn_IADNR_1 km −0.059 0.049 (+)

108 PopDen90_500 m 0.033 (*) 0.029 (*)

111 PopDen00_1 km −0.026 (*) −0.020 (*) −0.051 (*) −0.047 (*)

112 Recharge_500 m 0.219 (*) 0.158 (*) 0.186 (*) 0.189 (*)

115 FnGrn_Logs_6 mi −0.055 (*) −0.043 (*) −0.047 (*) −0.046 (*)

Notes: Values marked with (*) have a P-value ,0.05, and values marked with (+) have an associated P-value ,0.1 (when covariates selected from the 
SS-Stagewise, SS-LARS, and SS-Lasso algorithms are plugged into OLS regression models).

Table 3. Number of variables selected at each spatial scale for spatial scale (SS) forward stepwise, forward stagewise, LARS, and lasso models.
The last row gives the total number of possible variables at each spatial scale.

Individual-level Area-level Number of variables selected

500 m 1 km 4 mi 6 mi

SS-Stepwise 11 7 7 0 1 26

SS-Stagewise 15 11 12 0 1 39

SS-LARS 14 14 17 0 1 46

SS-Lasso 14 14 13 0 1 42

Number of available variables 27 43 1 71
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buffer distance at which to conduct the regression analysis 
and then use the area-level variables at the selected buffer 
distance. They propose the Brown–Forsythe (FBF) test of 
homogeneity of variance to select the optimal neighborhood 
or buffer size for modeling disease rates. In their approach, 
Root et  al.7 use circular buffers to create a collection of 
“neighborhoods” of different sizes around each subject and 
then use the FBF statistical test to select the ideal buffer 
distance. This approach assumes that small neighborhoods 
will have high variances (reflective of an individualistic data 
structure) and large neighborhoods will have low variances 
(reflective of a global data structure). The goal is to select an 
“optimal” neighborhood that adequately captures the global 
characteristics of the neighborhood environment in which a 
person lives without being so large as to lose applicability to 
the individual.7

Using the FBF test as a method to choose the optimal 
neighborhood has its merits. First, it is robust to devia-
tions from the normal distribution in the outcome variables, 

which can occur when disease rates are modeled as normally 
distributed outcomes.7 Second, it allows researchers to more 
specifically define geographic areas that may be more relevant 
for a particular health outcome, as opposed to using predefined 
geopolitical spatial scales such as census block groups or coun-
ties, which may not adequately capture the proximal envi-
ronment of an individual.7,33 The FBF approach for selecting 
spatial scale also has its limitations. First, it may not be suit-
able for researchers who wish to select neighborhoods other 
than those defined by using buffers.7 Second, the buffer-based 
estimates of neighborhood SES variables have measurement 
error (in addition to the measurement error present in the 
census data) by assuming that people are equally distributed 
within a census block group, but this is generally common to 
buffering approaches. Third, and most importantly, area-level 
variables are not involved in the selection of the optimal buffer 
size for calculating disease rates. The buffer distance is selected 
based on finding a spatial scale with a moderate variance for 
disease rates, and then the SES variables are modeled at the 

Table 4. Number of shared significant variables with the same sign and spatial scale and total number of shared variables for spatial scale (SS) 
forward stepwise, forward stagewise, LARS, and lasso models. The frequency of shared significant variables with the same sign and spatial 
scale is given along with the total number of shared variables in parentheses.

Individual-level Area-level

500 m 1 km 4 mi 6 mi

SS-Stepwise, SS-Stagewise, SS-LARS, SS-Lasso 10 3 2 0 1

No. of shared variables (11) (5) (4) (0) (1)

SS-Stepwise, SS-Stagewise, SS-LARS 10 3 2 0 1

No. of shared variables (11) (5) (4) (0) (1)

SS-Stepwise, SS-Stagewise, SS-Lasso 10 3 2 0 1

No. of shared variables (11) (5) (4) (0) (1)

SS-Stepwise, SS-LARS, SS-Lasso 10 3 3 0 1

No. of shared variables (11) (5) (5) (0) (1)

SS-Stagewise, SS-LARS, SS-Lasso 10 3 7 0 1

No. of shared variables (14) (9) (9) (0) (1)

SS-Stepwise, SS-Stagewise 10 4 3 0 1

No. of shared variables (11) (5) (4) (0) (1)

SS-Stepwise, SS-LARS 10 3 3 0 1

No. of shared variables (11) (5) (5) (0) (1)

SS-Stepwise, SS-Lasso 10 3 3 0 1

No. of shared variables (11) (5) (5) (0) (1)

SS-Stagewise, SS-LARS 10 3 7 0 1

No. of shared variables (14) (10) (10) (0) (1)

SS-Stagewise, SS-Lasso 10 3 7 0 1

No. of shared variables (14) (9) (9) (0) (1)

SS-LARS, SS-Lasso 11 6 8 0 1

No. of shared variables (14) (13) (13) (0) (1)

Significant but with different signs 0 0 0 0 0

Significant but with different SS* – 2 0 0 0

Notes: Variables with a P-value ,0.05 are considered significant (when covariates selected from the SS-Stagewise, SS-LARS, and SS-Lasso algorithms are 
plugged into OLS regression models). *In comparing SS-Stepwise with SS-Stagewise, SS-LARS, and SS-Lasso.
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selected buffer size. Thus, the FBF test does not directly select 
the spatial scale for area-level covariates.

The strategies for the selection of spatial scale of envi-
ronmental variables have been primarily univariate, at 
least in the context of the analysis of groundwater quality. 
Buffer shape sizes for land use variables have typically been 
selected independently from one another, as well as from 
variables measured at the well level.20,21 However, the mag-
nitude of the effect measure and the significance of rela-
tionships between area-level variables and the outcome 
could change when other important variables are considered 
simultaneously.

Our methods provide a novel approach to the problem 
of spatial scale selection and have several strengths. First, 
rather than making an assumption about the appropriate spa-
tial scale at which to model area-based variables, our spatial 
scale algorithms directly allow the data to drive the selection 
of spatial scale and permit different spatial scales to be present 
within a model. Second, our approach to spatial scale selection 
is multivariate and permits the simultaneous consideration of 
individual-level variables and area-level variables available at 
multiple spatial scales to be included in a model. Third, due to 
the potentially high correlations present across different spa-
tial scales for a given variable, our algorithms constrain each 
variable to enter the model at a single spatial scale. That is, if a 
variable is available at two spatial scales, it can enter the model 
only at one of the two scales. Crowder and South34 permit a 
variable to enter a regression model at both available spatial 
scales, and their results show that these variables have oppo-
site signs, suggesting the possibility of collinearity effects. 
Fourth, to address correlations present across variables, one 
of our algorithms constrains the regression coefficients in the 
presence of correlated covariates. Fifth, our methods are scal-
able and can be extended to accommodate high-dimensional 
datasets with a large number of covariates at a variety of dif-
ferent spatial scales.

While our initial results when applying our algorithms 
are encouraging, our analysis of groundwater nitrate has limi-
tations. First, because of limited resources we were unable to 
consider more buffer distances in our analysis. Second, our 
analysis of nitrate used fixed buffer sizes for area-level vari-
ables across the study area, but adaptive buffer sizes based 
on population density may be more appropriate. Third, we 
excluded some observations due to missing values for some 
of the covariates. Regarding limitations of the algorithms, in 

the case of the spatial scale lasso, the spatial scale of a variable 
is fixed once it enters the model. That is, even if a variable is 
dropped, we constrain that variable to reenter the model at the 
same spatial scale as was originally selected. This is done to 
ensure that the correlation between the current residuals and 
the candidate variables does not exceed the maximum correla-
tion achieved between the current residuals and the variables 
in the active set. Another limitation is the lack of standard 
errors for the algorithms, which necessitated our use of OLS 
models to obtain the P-values. The algorithms we present are 
for modeling a continuous outcome variable. We are currently 
working on developing versions of our spatial scale algorithms 
to model a binary outcome variable. In addition, we plan to 
run a simulation study to compare model performance across 
our four algorithms and also aim to evaluate a random effect 
at different spatial scales.

In the case study of groundwater nitrate exposure, we 
used our spatial scale algorithms to select area-based variables 
available at multiple buffer distances in order to explain varia-
tion in groundwater nitrate, a known risk factor for cancer. 
Our methods can be applied to other research problems, where 
it is of interest to select environmental or area-based risk fac-
tors available at multiple spatial scales that are associated with 
a health outcome of interest such as cancer.
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Table 5. OLS-based Akaike information criterion (AIC) comparisons across spatial scale (SS) forward stepwise, forward stagewise, LARS, and 
lasso models.

SS-Stepwise SS-Stagewise SS-LARS SS-Lasso

Model 1: Smallest SS available 28,193.57 28,196.73 28,183.15 28,178.17

Model 2: Largest SS available 28,144.05 28,143.04 28,133.79 28,131.90

Model 3: Model-selected SS 28,130.90 28,135.15 28,100.19 28,096.65
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