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Abstract

Cardiovascular disease is a major cause of death worldwide. New diagnostic tools are needed to 

provide early detection and intervention to reduce mortality and increase both the duration and 

quality of life for patients with heart disease. Seismocardiography (SCG) is a technique for 

noninvasive evaluation of cardiac activity. However, the complexity of SCG signals introduced 

challenges in SCG studies. Renewed interest in investigating the utility of SCG accelerated in 

recent years and benefited from new advances in low-cost lightweight sensors, and signal 

processing and machine learning methods. Recent studies demonstrated the potential clinical 

utility of SCG signals for the detection and monitoring of certain cardiovascular conditions. While 

some studies focused on investigating the genesis of SCG signals and their clinical applications, 

others focused on developing proper signal processing algorithms for noise reduction, and SCG 

signal feature extraction and classification. This paper reviews the recent advances in the field of 

SCG.
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1. Introduction

Cardiovascular disease results in one death every 40 s in the United States [1]. Improved 

diagnostic, surveillance, and intervention methods would help reduce mortality [2,3] and 

extend lives. Heart disease may be detected using many non-invasive methods including 
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manual auscultation of heart sounds, which is a common component of physical 

examinations and known to provide useful diagnostic information. However, simple 

auscultation of heart sounds is of limited utility. Detection and processing of very-low-

frequency heart sounds (“infrasounds”) below the limit of human ear detection may extend 

the diagnostic power of auscultation. New studies of cardiac-generated sounds using 

computational fluid dynamics [4,5] and advanced signal processing methods suggested 

increased potential to provide quantitative information that may be helpful for patient 

monitoring and diagnosis. Seismocardiography (SCG) is a noninvasive technique that 

measures cardiac-induced mechanical vibrations at the chest surface including those below 

the human hearing threshold. The reader is referred to previous SCG reviews [6,7] 

describing earlier studies, while this paper reviews more recent SCG studies including 

advances in instrumentation and signal processing that hold the promises of increased 

clinical utility. Since previous reviews of SCG [6,7] described early SCG studies, this article 

is more focused on the developments in the field during the last few years. Between 

September 2017 and March 2018, we conducted a search of the scientific journals and 

conferences using MEDLINE, as well as the Google Scholar search engine, for the 

following expressions: “SCG”, “seismocardiography”, and “seismocardiogram”. Reviewing 

the reference section of the initial results led to additional articles. More resources were 

added during the manuscript preparation and revision. The final sampling period includes 

studies that were published after [7] and before November 2018.

1.1. Definition of SCG Signals

The measurements of heart-induced motion, including displacement, velocity, and 

acceleration, were performed as early as the turn of the 20th century [8]. These approaches 

can be categorized into two classes [6,7]: (a) the measurement of whole-body recoil forces 

in response to cardiac ejection, usually termed ballistocardiography (BCG); and (b) the local 

chest surface measurement of cardiac-induced vibrations, typically referred to as SCG [9–

13]. These vibrations are usually measured in the form of acceleration (m/s2). This article 

focuses on the latter.

1.2. Physiological Sources of SCG Signals

SCG signals are believed to be caused by cardiac mechanical processes including cardiac 

muscle contraction, cardiac valve movement, blood flow turbulence, and momentum 

changes. The characteristics of these signals are likely to contain useful information that 

correlate with cardiovascular physiologic [14] and pathologic processes [15]. Such 

information may powerfully complement methods of detecting heart electrical activity (such 

as electrocardiography), serologic testing, and imaging modalities (e.g., echocardiography, 

cardiac magnetic resonance imaging (MRI), and catheterization).

Early BCG studies [8] suggested that heart-induced motion may be used to estimate changes 

in cardiac output, and reported certain signal patterns in patients with myocardial infarction 

[16]. These signal patterns were also found to correlate with the strength of myocardial 

contractions [17,18] and contain detectable waveform changes during heart disease 

resolution [19]. After introducing SCG in early 1990s [13], recent studies suggest possible 

SCG utility for monitoring left-ventricle function, coronary blood flow during balloon 
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angioplasty [9,10,20], heart and breathing rates [21–26], and ventricular filling, cardiac 

valve closure, and ventricular ejection preceding the onset of ischemic symptoms [10].

While the relationship between SCG waves and cardiac activity is not fully understood, 

several studies investigated this relationship. For example, SCG was reported to contain a 

low-frequency wave during atrial systole, a high-amplitude wave during ventricular systole, 

another wave during early ventricular filling, and some relatively high-frequency waves at 

the time of the first and second heart sounds [13]. Simultaneous recording of SCG and 

electrocardiogram (ECG) indicated that the peaks and valleys of the SCG correspond to 

known physiological events including mitral valve opening (MO) and closure (MC), 

isovolumetric contraction, ejection, aortic valve opening (AO) and closure (AC), and cardiac 

filling [7,27]. The utility of SCG in estimating cardiac intervals such as electromechanical 

systolic pre-ejection period (PEP) and left-ventricular ejection time (LVET) was also shown 

[28]. Multi-channel partially simultaneous SCG, ECG, and sonographic measurements were 

used to identify the feature points in a cardiac cycle corresponding to the four common 

valvular auscultation locations. Using these measurements, new feature points (including 

left-ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, 

trans-aortic valve peak flow, transpulmonary peak flow, trans-mitral ventricular relaxation 

peak flow, and trans-mitral atrial contraction peak flow) were reported.

Table 1 lists all the SCG feature points and cardiac time intervals (CTIs) that were reported 

in the literature, while Figure 1 shows a modified Wiggers diagram [29] where a sample 

SCG signal (in the dorso-ventral direction) is plotted along with aortic blood pressure, 

ventricular volume, and the electrocardiogram.

During the cardiac cycle of healthy individuals, the apex and base rotate in opposite 

directions, which results in a twisting motion of the left ventricle [35] known to be affected 

by different factors such as aging and diastolic dysfunction. Investigating the rotational 

vibration induced by this heart twisting motion might provide complementary information to 

the current SCG analysis of uni- and triaxial accelerations. In recent studies [31,36,37], a 

three-axis micro electromechanical systems (MEMS) gyroscope and a three-axis 

accelerometer were used simultaneously to measure the rotational and axial components of 

chest vibrations. The potential utility of the combined analysis of axial and rotational heart-

induced vibrations were suggested for the ECG-independent identification of systolic points 

(such as AO and AC) and cardiac time intervals (such as LVET and PEP) [38].

In summary, despite many studies conducted about SCG genesis, the relationship between 

SCG waves and cardiac activity is not yet fully understood. This is possibly because of the 

waveform variations in different studies and lack of understanding of the exact SCG waves 

sources. Thus, there is still a need for widely accepted universal labeling (i.e., valid for all/

majority of patients) analogous to PQRST labeling in ECG.

1.3. Measurement Methods

New advances and availability of lightweight low-noise accelerometers improved the quality 

of recorded SCG signals. Different methods were used for SCG measurement in the recent 

studies, including the following:
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• Uniaxial/triaxial piezoelectric accelerometers [39–42];

• Uniaxial/triaxial MEMS accelerometers [36,43–45];

• Smartphone accelerometers and gyroscopes [46–48];

• Triaxial gyroscopes [31,36,37,45];

• Laser Doppler vibrometers [42,49];

• Microwave Doppler radars [50–52];

• Airborne ultrasound surface motion camera (AUSMC) [53].

Depending on the sensors that are used, SCG signals might consist of one or more axial and 

rotational components. For example, a uniaxial accelerometer can be used to measure SCG 

component in the dorso-ventral direction. However, combination of a triaxial accelerometer 

and triaxial gyroscope can provide information about axial and rotational heart-induced 

motion in three different directions. This review focuses on the dorso-ventral component of 

the SCG signal, unless otherwise stated.

Sensors are most commonly placed on (or directed to) the sternum or its left lower border. 

However, in some studies, other locations were used for SCG signal acquisition, including 

over the heart apex (lateral left lower chest) and the “aortic valve listening area” at the right 

upper sternal boarder [34,43,44]. Information about sensor type, model, and placement 

location in recent studies is summarized in Table 2 and Figure 2.

In some applications, such as burn patients, highly infectious patients, and premature babies, 

attaching adhesive ECG electrodes or SCG sensors would not be feasible. Therefore, 

development of efficient contactless SCG detection techniques are under investigation. 

These techniques include laser Doppler vibrometry (LDV), microwave Doppler radar, and 

airborne ultrasound imaging [22,53,84]. A non-contact SCG measurement might also reduce 

skin coupling; artefacts that may tie present in the SCG signals acquired by the contact 

sensors attached to the skin.

The LDV approach compares the frequency shift between the outgoing and reflected laser 

beams and determines the corresponding vibration velocity of the surface that reflected the 

beam [85]. Considerations when using LDV for SCG measurements include the following: 

(1) the chest surface needs to be reasonably reflective for accurate LDV measurements, (2) 

the laser beam should be perpendicular to chest surface, and (3) chest movement due to 

respiration needs to be accounted for, since breathing causes the point of measurement to be 

displaced in the chest: plane. One solution to this issue is to develop an algorithm that can 

automatically have the beam follow a measurement point on the chest surface. Other LDV 

limitations include their cost and size.

Microwave Doppler radar is another non-contact method that can be used for SCG 

measurements. When recording the SCG signal using microwave Doppler radars, the SCG 

will exhibit in the phase variation of the microwave signal· SCG signals can then be 

extracted from this phase variation. Like LDV sensors, Doppler radar approaches have the 
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benefit of contactless signal acquisition, but suffer from the reflection of background 

microwave signals (called radar clutter) lowering the signal-to-noise ratio [51].

The utility of ultrasound imaging in estimating non-contact two-dimensional (2D) SCG 

maps of the body surface was also investigated [53]. In addition to the advantages of other 

contactless measurement methods, this technique can collect SCG data from multiple 

locations through different channels resulting in a potentially higher reliability. However, 

this method requires a planar measurement surface that is parallel to the emission panel.

Piezoelectric and MEMS sensors are smaller and lighter than contactless sensors. Therefore, 

these sensors might be used in clinical settings for everyday and continuous screening 

subjects suspected of different cardiovascular diseases.

1.4. Parameters Affecting SCG Waveform

A main challenge in SCG studies is that SCG signal morphology appears to very 

significantly, not only by cardiovascular pathology, Cut also normal inter-subject variation. 

These changes are affected by several factors including respiratory cycle phases, gender, 

age, sensor chest location, health conditions, cardiac contractility, heart rhythm, and postural 

positions [23,25,86,87]. While these changes can lead to undesirable SCG variability, deeper 

understandings of these processes will enhance our understanding oi SCG signal s, help 

aggregate SCG cycles into groupings with similar SCG events to reduce SCG signal 

variability and noise, and hopefully lead to more accurate definition of SCG features for 

diagnoses and monitoring.

A few studies addressed SCG variability, e.g., the consistent effects of respiration [11,32]. 

One recent study [66] reported that the SCG morphology appeared to mainly depend on the 

lung volume (and, hence, possibly the intrathoracic pressure), rather than dependence on 

negative or positive airflow (i.e., inspiration or expiration). This SCG morphology variation 

can also be used to automatically identify the lung volume states and respiratory phases by 

employing machine learning [56]. Another study used support vector machines to classify 

the SCG cycles occurring during the high and low lung volumes [40]. Successful grouping 

of SCG cycles into two groups, where SCG events in each group are more similar to each 

other and dissimilar to the events in the alternate group, would improve the signal-to-noise 

ratio in calculating the SCG ensemble average. This would result in more accurate 

estimation of diagnostic information from the SCG ensemble average.

Subject motion and postural position were also shown to cause changes in SCG signals 

[7,75,88]. In an ongoing study, the effect of posture on the SCG signals was investigated for 

patients with heart failure (HF) [75]. The SCG signals were measured using a wearable unit 

in supine and seated positions. The SCG power spectral density (PSD) was estimated using 

Welch’s periodogram, and the means of PSD values were calculated in the 0–20-Hz band. 

The results showed that SCG signals contained high energy in bands greater than 8 Hz in the 

supine and seated postures. Identification of chest orientation (supine, 45°, or vertical), and, 

therefore, grouping of SCG signals according to chest orientation is possible with the use of 

certain triaxial accelerometers [88]. However, chest orientation measurement is not sufficient 

to account for all postural changes, as shown by the reported SCG differences between 
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sitting upright and standing, which have the same chest orientation. Movement of the patient 

also produces a change in the SCG signal. The ability to filter noise originating from 

speaking, walking, and indistinct motions associated with workplace tasks was demonstrated 

[43]. Understanding the effects of posture and movement on the SCG waveform is a useful 

step toward continuous collection of SCG signals from a patient from a wearable sensor. 

However, this may not be needed if intermittent testing in a more controlled environment is 

performed at a fixed subject position.

Exercise and the following period of recovery was also demonstrated to produce changes in 

SCG signals. Not surprisingly, exercise is associated with an increase in the overall 

amplitude of the SCG signal, measured as the root-mean-square (RMS) power [89,90]. This 

increase in signal amplitude was shown to correlate with increased cardiac output observed 

during exercise [89]. This cardiac output increase is a result of increased heart rate and 

stroke volume. Exercise also produces changes in the left-ventricular ejection time (LVET) 

and the pre-ejection period (PEP) [88,90]. As exercise increases the heart rate (also seen as 

the R-R interval decrease in ECG), it generally causes a decrease in other measured time 

intervals such as LVET and PEP. LVET correlates with both heart rate and contractility and, 

hence, decreases with exercise. PEP is less affected by heart rate but does decrease during 

exercise due to the increased contractility (inotropy). These changes in LVET and PEP were 

detectable by SCG [88,91], and exercise-induced decrease in PEP was found to shift the 

SCG signal power spectrum toward higher frequencies [78].

Digestive state and mood may affect cardiac function through similar physiological 

mechanisms, thereby possibly affecting SCG signal morphology. Systematic investigations 

of these effects are lacking, and future studies are needed to determine the magnitude and 

nature of these effects on the SCG signal.

The sensitivity of the SCG signal to sensor location is well known and, therefore, needs to 

be taken into account when comparing results from different studies. Historically, 

investigators placed accelerometers at different anatomical locations, including the clavicle, 

the sternum, and various intercostal spaces [34,88,89]. A recent study [34] investigated the 

differences in SCG signals morphology at the common auscultation sites of the four heart 

valves (aortic, pulmonary, tricuspid, and mitral), and found significant differences in SCG 

morphology. That study also concluded, with the aid of sonographic measurements, that 

more feature points can be defined from multi-point SCG measurements.

Due to the sensitivity of SCG signals to the measurement location, unexperienced users 

might not be able to repeatably record the SCG at ideal locations. Hence, the SCG-based 

estimations of cardiac activity might change significantly due to sensor location errors. This 

can, in turn, result in inaccurate interpretations [41]. To overcome this issue, Ashouri and 

Inan [41] proposed a method to automatically detect when the sensor is not placed in a 

desired location by comparing the regression parameters from the acquired SCG and an 

SCG measured from a reference position.

High-spatial-resolution measurement of the SCG signal was carried out in a pilot study 

Here, a laser vibrometer was used to perform non-contact uniaxial SCG measurements in the 

Taebi et al. Page 6

Vibration. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dorso-ventral direction. The laser beam was <2 mm2 and the resulting SCG amplitude 

distribution is shown in Figure 3. These data suggest that, when the sensor location changed 

by 1 cm, the SCG amplitude can vary by >30%. An accelerometer with larger contact crea 

(3.5 cm2) was also used and it was found that, for a sensor location change of 1 cm, the SCG 

amplitude changed by about 5%. Due to this smaller change, the larger contact area may be 

beneficial in reducing SCG dependence on sensor placement. The effects of sensor contact 

area and SCG spatial distributions (including axial or rotational signals) need further 

investigations.

2. Signal Processing

SCG signal processing usually consists of several steps including preprocessing (e.g., down-

sampling and denoising), signal segmentation, feature extraction, and classification (Figure 

4). There were several recent studies that focused on noise removal, segmentation, and 

feature extraction of SCG signals. These studies are reviewed in this section.

2.1. Noise Reduction

While SCG signals can contain useful diagnostic information, they are often contaminated 

by noise from different sources including sensor mechano-electronics, motion artefacts, and 

environmental vibrations. This signal contamination might result in errors in calculating 

SCG features and eventually inaccurate signal classification, especially if automated SCG 

processing is performed (i.e., without human supervision). For example, a recent study [92] 

showed that, when determining the instantaneous frequency of SCG signals using different 

time-frequency distributions, estimation accuracy differed significantly with the signal-to-

noise ratio. These results indicated that some time-frequency distributions performed poorly 

in noisy conditions and would lead to inaccurate time-frequency features. It was then 

concluded that feature extraction methods might fail or, at a minimum, perform inaccurately 

for low signal-to-noise ratio conditions.

Most research groups applied conventional band-pass filters to remove baseline wandering, 

body movements, and breathing artefacts from SCG signals [26,36,38,41,45,46,55,58–

63,67,71,75,76,78–80,82,93]. A few studies utilized or proposed more advanced noise 

removal techniques [64,76,88,94–96]. A recent study [94] proposed a filtering algorithm 

based on the ensemble empirical mode decomposition (EEMD) to remove white Gaussian 

noise from SCG signals. This algorithm provided a higher signal-to-noise ratio than other 

filters such as Wiener filters. In a different study [76], a filtering algorithm based on 

empirical mode decomposition (EMD) was suggested to filter the SCG signals recorded 

during walking from a wearable device. This EMD-based denoising approach appeared to 

result in better estimations of PEP during walking. However, the EMD method generally 

suffers from mode mixing, and the EEMD algorithm was proposed to resolve this issue [97]. 

Thus, employment of EEMD in future studies might result in a more accurate denoising of 

SCG signals during walking, and eventually better estimation of cardiac time intervals such 

as PEP. Other noise reduction methods, including wavelet transform, adaptive filters, and 

morphological techniques (e.g., using top hat transform), were also used to remove noise 

from SCG signals [95].
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Daily physical activities, such as walking, introduce noise into the recorded SCG signals and 

affect their morphology. Therefore, techniques that can remove noise from ambulatory SCG 

are essential. One study [98] used an evolving fuzzy neural network algorithm to identify the 

SCG cycles polluted by movement artefacts and remove them from the SCG signal. In 

another effort [72], a normalized least-mean-square (NLMS) adaptive filter was utilized to 

cancel the motion noise from SCG of ambulatory subjects. The results of that study showed 

that adaptive filtering was promising in denoising SCG signals captured during walking. To 

improve these results, another study [99] utilized a dual-sensor approach where the SCG 

signals from the anterior and posterior chest wall were acquired. An NLMS adaptive filter 

algorithm was then used to remove the motion artefact from SCG signal. The noise 

cancellation performance was calculated and compared for five different reference sensor 

placement spots around the chest wall. Results showed that using two SCG sensors can lead 

to a better motion noise cancellation than using a single sensor. Using multiple sensors, 

however, will increase system complexity.

Some studies pointed out the importance of assessing day-to-day variability when 

developing a robust system of SCG analysis. Pouyan et al. [100] proposed an algorithm 

based on a graph-mining technique, called graph similarity score, which was robust to noise 

and day-to-day variability and could be used to evaluate the risk of HF-related exacerbations 

for patients at home. A summary of noise removal techniques utilized for SCG denoising is 

listed in Table 3. More studies are needed that compare different filtering methods in clinical 

and ambulatory settings.

2.2. Segmentation

Signal segmentation is one of the first steps in the processing of SCG signals. Segmentation 

is the process of finding SCG events (i.e., cardiac cycles) in the SCG signal. Different 

methods and algorithms were used for SCG segmentation. For example, Jain and Tiwari [64] 

proposed a three-step algorithm where the signal was first filtered using a denoising 

algorithm based on discrete wavelet transform. The denoised signal peaks were then 

detected using an adaptive threshold based on Otsu’s method. The first and second 

components of SCG (corresponding to the first and second heart sounds, i.e., S1 and S2) 

were finally identified based on the signal energy. Other methods, such as matched filtering 

with a template consisting of previously identified SCG events, were also used for SCG 

segmentation [66,67].

2.3. Feature Extraction

Feature extraction is yet another step of SCG signal processing. Identifying the most 

significant signal features can result in efficient signal classification since these features are 

eventually the inputs to machine learning algorithms. Determining the most effective and 

accurate techniques to extract specific signal features is a necessary step that should be done 

before identification of useful features. For example, there are different methods for 

estimating the time-frequency distribution of the SCG signal. Every method has its own 

advantages and disadvantages, and might be suitable for certain types of signals or under 

certain conditions. Several studies were done to determine the most accurate methods for 

extracting time-frequency features of the SCG signals [67,104,105]. In these studies, 
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different time-frequency distribution techniques were utilized, including short-time Fourier 

transform [67,104,105], polynomial chirplet transform (PCT) [67,105], wavelet transform 

with different mother functions [67], Wigner–Ville distribution, and smoothed pseudo 

Wigner–Ville distribution (SPWVD) [105]. PCT and SPWVD were found to have the most 

accurate time–frequency distribution estimations and appeared more suited for determining 

the frequency content of SCG signals. Using these methods, SCG signals of healthy subjects 

were found to contain three main spectral peaks below 100 Hz.

Historically, feature extraction of SCG signals mostly focused on the time domain and the 

frequency domain, separately. The time domain features include statistical features, such as 

mean, median, and standard deviation, and features related to cardiac mechanics, such as 

cardiac time intervals. The frequency domain features include statistical features and 

frequency coefficients obtained from fast Fourier transform (FFT).

2.3.1. Time-Domain Features—Statistical time-domain features include those based 

on the entire signal, and those from divided segments of the signal. Features from segments 

of the SCG signal were obtained by dividing the SCG signal into a specific number of equal-

sized bins and calculating the arithmetic mean of each bin as a feature [56,106]. Similarly, 

one study divided the signal into bins; however, binning of the signal was performed 

discriminately, where the signal portions corresponding to higher variation received a higher 

concentration of bins [65]. That algorithm divided the bin corresponding the highest 

standard deviation in a recursive fashion, until some criteria, such as reaching the desired 

number of bins, was met. Other statistical time-domain features, such as mean, kurtosis, 

skewness, and standard deviation were also extracted from the SCG signal [41]. Time-

domain features also included features related to cardiac mechanics, heart rate and heart rate 

variability, and turning point ratios [47,48]. In addition, when the ECG R and Q information 

is concurrently available with the SCG fiducial points (AO, AC, MO, and MC), certain 

intuitive time-domain features can be determined. These include CTIs (e.g., PEP, isovolumic 

contraction time (IVCT), LVET, and isovolumic relaxation time (IVRT)) and other metrics 

such as PEP/LVET ratio, (IVCT+IVRT)/LVET (also called myocardial performance index), 

and the LVET/R-R-interval ratio [81,107]. Amplitudes and slopes associated with the 

fiducial points, such as MC to AO slope, were used in some studies [61,107], as well as 

features of the SCG signal that do not depend on specific fiducial points, such as maxima, 

minima, and their associated widths of specific segments of the SCG signal [82].

2.3.2. Frequency-Domain Features—Statistical frequency-domain features include 

those obtained from various frequency bands, and across the entire available frequency 

spectrum. Features from the frequency bands of an averaged triaxial SCG signal were 

obtained by calculating the median of each band [78]. One study calculated the approximate 

and spectral entropy of the 0–11-Hz frequency band [47]. The average power of various 

frequency bands (0–3 Hz, 3–6 Hz, …, 15–18 Hz) was also utilized [41]. Various statistical 

metrics, such as arithmetic mean, median, standard deviation, skewness, kurtosis, mode, 

average power, sample entropy, spectral entropy, and the Kolmogorov complexity, were also 

calculated across the entire available frequency band [40,41].
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Other frequency-domain features include frequency coefficients such as amplitudes and 

frequencies. Features were either obtained by taking the frequency amplitudes across a range 

of the frequency spectrum (0–512 Hz) [56], or by taking the frequencies and amplitudes at 

specific peaks of the spectrum, such as the first, second, and third peaks [41].

In summary, successful feature extraction from SCG signals results in a more efficient 

classification of these signals. Different studies that investigated the utility of various feature 

extraction methods/algorithms in both time and frequency domains were described in this 

section. However, more studies can possibly lead to improve the available methods and 

define more effective features. In addition, the features currently extracted from SCG signals 

can be categorized into intuitive (e.g., LVET) and non-intuitive (e.g., skewness) features. 

Future studies can also address the question of which intuitive or non-intuitive features can 

be more useful in classification of SCG signals. A summary of these features are listed in 

Table 4.

2.4. Machine Learning

Applications of predictive methods such as machine learning are increasingly being used in 

biomedical signal processing, including for SCG analysis. Much inter- and intra-subject 

variability exists in SCG signals and machine learning can be used to automatically 

recognize the underlying patterns. Some of the applications of machine learning techniques 

include detection of cardiovascular disease, cardiac mechanics, and parameters affecting 

SCG waveform such as respiration cycles.

Some studies sought to use classification tools such as support vector machines (SVM) and 

neural networks (NN) to automatically detect cardiovascular disease. An early study using 

NNs [107] classified patients based on their SCG as either having coronary artery disease 

(CAD) or as low risk/normal. They predicted CAD with a sensitivity of 80% and a 

specificity of 80%. Recent studies [47,48] sought to classify cardiovascular conditions with 

SCG signals obtained via a smartphone’s inertial measurement unit (IMU). A multi-class 

classifier was used [48] to classify subjects as either having ST-elevation myocardial 

infarction, having atrial fibrillation, being preferred for percutaneous coronary intervention 

procedure, or normal. The proposed classifier achieved classification accuracies between 70 

and 79%. However, the same study [48] created a binary classifier (normal vs. atrial 

fibrillation) and achieved an accuracy of 98.7% using an SVM.

Classification was also used to detect the respiration cycles (inspiration and expiration) 

[56,106] and lung volume (high and low lung volume) [40,65]. In one study [56] classifying 

respiration cycles, two different training scenarios were implemented. The first was a leave-

one-subject-out (LOSO) approach, which trained the SVM on all but one subject, and tested 

on the subject who was left out. The second was a subject-specific (SS) approach, which 

trained and tested on each subject individually. The average accuracies for LOSO and SS 

were 88.1% and 95.4% respectively. Other studies [40,65] sought to classify SCG signals 

according to the lung volume phases as opposed to inspiration/expiration.

Classification methods were also utilized to help identify fiducial points on the SCG signals 

[61], artefact presence in the SCG [98], and identification of the sensor location [41,82].
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Other machine learning methods were used on SCG signals such as hidden Markov models 

(HMM) and graph similarity analysis. An HMM-based method was used in one study [108] 

to estimate the heart rate, heart rate variability, and CTIs from an SCG signal. A graph 

similarity analysis [78] was used in another study through the use of k-nearest neighbor 

graphs on SCG signals from HF patients to identify them as compensated (outpatient) or 

decompensated (hospitalized).

In summary, machine learning algorithms were used for different purposes in SCG studies, 

including SCG classification into different phases of respiratory cycle (e.g., high vs. low 

lung volume), determining fiducial points (e.g., IM and AO) and cardiac time intervals (e.g., 

PEP), and classification of subjects into patients and low risk/normal. A summary of the 

machine learning algorithms used for SCG analysis is listed in Table 5.

3. Recent Human Studies Suggesting Clinical Utilities

Early use of SCG for cardiac diagnosis faced obstacles such as the large instrumentation size 

and unclear understanding of the signal characteristics and inter- and intra-subject 

variabilities. However, recent advances in sensor technologies and signal processing 

methods led, at least in part, to new numerous studies that provided better insight into these 

issues. The high morbidity and mortality associated with cardiovascular disease and the high 

cost of care may have provided motivation to more studies that re-evaluated the feasibility 

and utility of seismocardiography for diagnosis and monitoring of cardiac function 

[77,111,112]. Some of the studies reviewed here focused on telemonitoring of cardiac time 

intervals and heart rates.

3.1. Portable Detection of SCG

Wearable technologies can continuously monitor cardiac activity outside clinics and 

hospitals. This continuous monitoring might help in early detection of serious cardiac 

conditions, which can enable timely intervention and potentially reduce healthcare costs. 

Most current wearable cardiac activity monitoring techniques are based on ECG 

measurements. However, recent studies proposed wearable SCG systems for the assessment 

of the mechanical aspects of cardiovascular function, including relative changes in cardiac 

output, contractility, and blood pressure [113]. SCG wearable monitors might be used to 

assess myocardial contractility via pre-ejection period (PEP) [81]. Another wearable system 

utilized triaxial accelerometers and gyroscopes to record all six axial and rotational 

components of the SCG signals [36]. The rotational vibration about the longitudinal (head-

to-foot) axis showed a lower sensitivity to walking noise than other components, which 

might be useful for annotation of SCG signals in ambulant subjects [36].

Today, smartphones and smartwatches are common and can be used as part of telemedicine 

for real-time patient monitoring at a relatively low cost. Smartphones used SCG for 

continuous monitoring of heart rate variability [114], and cardiac activity of patients 

suffering from heart disease [115]. In a recent study, the feasibility and accuracy of 

measuring heart rate using a smartphone accelerometer was assessed in different postural 

positions [46] and suggested utility of SCG for heart rate estimation.
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Wearable SCGs might be contaminated with different type of noise. Therefore, investigating 

the effective noise removal techniques for ambulatory subjects is needed. A few ongoing 

studies are addressing this question. These studies were described in Section 2.1.

3.2. Heart Rate Monitoring

Heart rate (HR) monitoring is a common way to monitor cardiovascular function, and can 

identify some abnormalities such as arrhythmia. Traditional HR estimation methods are 

mostly based on ECG signal processing. SCG signals can also be used for HR estimation. 

SCG-based HR estimation algorithms are not usually developed to replace the current HR 

monitoring methods. Instead, SCG-based HR estimations can be used as a feature in other 

studies that focus on the clinical utility of SCG, since recent studies revealed that SCG can 

reliably detect HR in the absence of other modalities such as ECG. For example, Cosoli et 

al. [26] suggested a general algorithm that can estimate HR from various signals, including 

SCG, ECG, phonocardiogram (PCG), and PPG. Considering the ECG signal as a gold 

standard, the SCG HR estimation was more accurate than the estimations from the PCG and 

PPG signals. Wahlstrom et al. [108] used an HMM to determine different stages of a cardiac 

cycle, which were used for estimating beat-to-beat intervals. The beat-to-beat intervals of the 

SCG signal were then utilized for HR and HR variability estimations. Mafi [116] suggested 

an algorithm based on empirical mode decomposition and empirical wavelet transform that 

can extract HR from SCG signals. Tadi et al. [25] used a Hilbert adaptive beat identification 

technique to determine the heartbeat timings and inter-beat time intervals from SCG signals. 

An android application was implemented based on this algorithm that could monitor the 

subject heart rate in real time using a smartphone accelerometer. Tadi et al. [69] proposed an 

algorithm based on S-transform, Shannon energy, and successive mean quantization 

transform to identify heartbeat and beat-to-beat interval from SCGs. The algorithms 

proposed in the latter two studies had a high agreement with the ECG HR. Taebi et al. [39] 

used SCG signals in the dorso-ventral direction to estimate the HR during different phases of 

respiration in real time. Their results showed that normal subjects have a different HR during 

high and low lung volumes. In a recent study [46], the heart rate was derived from a 

smartphone SCG signal, and compared to that extracted from ECG. Results showed that the 

HR provided by SCG, particularly in the dorso-ventral direction of the supine position, was 

equivalent to that provided by conventional ECG.

3.3. Pulse Transit Time

SCG is used to estimate different cardiovascular parameters such as cardiac time intervals, 

pulse transit time, and blood pressure. For example, non-contact SCG was used at different 

body locations for estimating central arterial pressure and carotid arterial pressure 

waveforms [49,117,118]. Pulse transit time might be estimated from the time difference 

between AO point on the xiphoid SCG and AO point on the carotid SCG [119]. Blood 

pressure changes can be monitored using pulse transit time. For this purpose, the pulse 

transit time, which was defined as the time required for the blood pressure wave to travel 

from one location to another [120], was first measured from the SCG signals [121]. The 

measured pulse transit time was then used to estimate the patient blood pressure [79]. Based 

on similar techniques, a wrist-watch, consisting of an accelerometer and an optical sensor, 

was developed to monitor blood pressure [122]. In this “SeismoWatch”, the blood pressure 
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was estimated from the travel time of the micro-vibrations propagating from the heart to the 

wrist when the watch was held against the subject’s sternum. In a different study, Di Rienzo 

et al. [73] developed a system that measures SCG and PPG at multiple locations alongside 

the ECG signal. The pulse transit time may then be derived from the PPG.

3.4. Cardiac Time Intervals

Cardiac time intervals were used for a long time for cardiovascular disease diagnosis 

[123,124]. There are various SCG-based algorithms with different levels of accuracy that 

were proposed for estimating cardiac time intervals such as PEP, LVET, ICT, systolic time, 

and diastolic time in healthy subjects and patients with previous heart conditions [61,108]. 

For example, LVET might be estimated from SCG signals that are acquired using LDV and 

microwave Doppler radar [51,117]. The LVET value from non-contact SCG was similar to 

the value derived from a photoplethysmogram (PPG) [117]. Rivero et al. [125] proposed a 

new algorithm that uses continuous wavelet transform as a base to determine the aortic valve 

opening and isovolumic moment points on the SCG signal. The electro-mechanical window 

(EMw) is defined as the duration between the electrical and mechanical systole. EMw is a 

potential biomarker that can be utilized for diagnosing several cardiovascular diseases. ECG 

and PCG signals are conventionally used to determine EMw. However, Jain et al. [57] 

showed that SCG is a suitable alternative to PCG for estimating the EMw.

Analysis of SCG data recorded from the sleep patterns of a subject aboard the International 

Space Station (in microgravity) resulted in accurate identification of cardiac time intervals 

and SCG fiducial points (such as AO, AC, MO, MC, LVET, and PEP) with implications for 

future clinical application [81]. As described earlier, SCG morphology is affected by 

different factors such as the sensor location and respiration. Investigating the effect of these 

factors on the estimation of cardiac time intervals from SCG signals can possibly reveal 

clinically useful information.

3.5. SCG in Patients with Cardiac Conditions

In addition to human studies on healthy populations, there were several studies that focused 

on the application of SCG in patients with cardiovascular disease. SCG signals were used 

for diagnosis and monitoring of different clinical conditions such as atrial fibrillation 

[47,48,68,70], atrial flutter [55], heart valve disease [37,44,80], coronary artery disease and 

ischemia [9,10,48], myocardial infarction [126], heart failure [75,78,82,100,119], structural 

heart disease [80], and heart stress testing [58].

According to a 2017 report, the prevalence of any heart valve disease is 2.5% of the United 

States population [127]. Heart sounds that are believed to be generated by opening and 

closure of heart valves can be used as a diagnostic marker of these diseases. Stethoscope and 

PCG are the common conventional methods for heart sound monitoring. SCG signals were 

reported as a potential efficient alternative for PCG signals for monitoring of heart sound 

signals [44].

ECG is currently the main diagnostic method of atrial fibrillation (AF). A preclinical study 

[68] investigated the usefulness of SCG for AF detection. Results suggested that the 

amplitude of the SCG signal correlates to beat interval and significantly varies from beat to 
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beat during AF. This study also suggested that the combination of SCG and ECG may reveal 

certain behavior in the electromechanical delay characteristic of AF, which may lead to extra 

indicators for early detection of AF.

Paukkunen et al. [55] showed that three-dimensional (3D) vector trajectory of SCG might be 

useful in diagnosing atrial flutter. The results of this study suggested that the intra-subject 

correlation of 3D SCGs was strong. However, the signals had a very weak inter-subject 

correlation. Future studies might prove the utility of SCG 3D vector trajectory for diagnosis 

of different cardiovascular disease and abnormalities.

4. Conclusions, Limitations, and Future Directions

Growth in the field of seismocardiography accelerated during the last decade. However, 

open issues and limitations hamper its clinical application. Reviewed here are some of the 

current limitations along with potential future work.

• SCG variability: SCG morphology is affected by different factors such as 

respiration, sensor location, subject posture, the amount of chest surface soft 

tissue, and different heart diseases. Although studies investigated some of these 

factors, further research is needed to adequately account for SCG variations. The 

results of such investigations might improve utility for cardiac disease diagnosis 

and monitoring.

• Lack of accepted standard for the cardio-mechanical SCG fiducial points: A 

small number of recent studies focused on robust documentation of the 

relationship between fiducial points and their physiological sources. In addition, 

SCG morphology changes with different factors (e.g., sensor location, patient 

posture, etc.). It would be useful to investigate the effect of these factors on the 

SCG signal fiducial points.

• SCG genesis: Although several studies aimed to elucidate the physiological 

source(s) of the SCG signals, much work remains to be done. SCG signals are 

likely affected by extra-cardiac factors including respiration and intrathoracic 

pressure. Therefore, considering these parameters may further help elucidate 

SCG sources.

• Computational models: Realistic computational simulations utilizing finite 

element and other modeling methodologies with realistic geometries and 

material properties might be helpful in predicting the effects of varied cardiac 

conditions on SCG features.

• Library of SCG signals: A common comprehensive database would provide a 

basis for researchers interested in analyzing SCG and other biomedical signals. 

The MIT-BIH arrhythmia database is a good example of a biomedical signals 

database. This database plays an important role in stimulating both basic 

research and medical device development. A similar SCG database would attract 

more researchers to investigate and compare the performance of different 

algorithms and approaches.
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• Correlation between SCG and other electro-mechanical signals: Combining 

information from ECG, PCG, and BCG with that of SCG may lead to a hybrid 

modality with increased diagnostic utility of cardiac disease. This may result in 

more complex features that require increase use of machine learning approaches.

In conclusion, signal processing techniques and physiologic understandings rigorously 

applied may transform SCG signal analysis from a research interest to a powerful bedside or 

home monitoring tool.
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Figure 1. 
Modified Wiggers diagram. A sample axial seismocardiography (SCG) signal (acceleration 

in the dorso-ventral direction) is shown alongside other cardiovascular signals such as the 

aortic pressure, atrial pressure, ventricular volume, electrocardiograme and 

phonocardiogram. The mitral valve closure (MC) and opening (MO), and aortic valve 

closure (AC) and opening (AO) are labeled based on the pressure signals.
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Figure 2. 
Sensor location distribution in recent SCG studies.
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Figure 3. 
Map of root-mean-square (RMS) amplitude of SCG waves at the chest surface using 

scanning laser vibrometry. There were local amplitude maxima that coincided with the 

aortic, pulmonary, tricuspid, and mitral auscultation areas. These data suggest that sensor 

location and size need to be chosen with care and that the effects of sensor misplacement 

need to be quantified.
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Figure 4. 
SCG signal processing steps.
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Table 1.

Seismocardiography (SCG) feature points pointed out in the literature.

Feature Point Reference

Peak of atrial systole (AS) [10,14,30]

Mitral valve closure (MC) [10,14,28,30,31]

Peak of rapid systolic ejection (RE) [10,14,30,32]

Peak of rapid diastolic filling (RF) [10,14,30]

Isovolumic contraction (IC) [10]

Mitral valve opening (MO) [14,28,30,31]

Aortic valve closure (AC) [14,28,30–32]

Aortic valve opening (AO) [14,28,30–33]

Isovolumic movement (IM) [14]

Rapid diastolic filling time [14]

Isotonic contraction (IC) [14]

Isovolumic relaxation time (IVRT) [14,28,31]

Left ventricular ejection time (LVET) [14,28,31,32]

Maximum acceleration in aorta (MA) [28,32]

Pre-ejection period (PEP) [28,31,32]

Total electromechanical systole period (QS2) [28,31,32]

Maximum blood injection (MI) [28]

Isovolumic contraction time (IVCT) [28,31]

Left ventricular lateral wall contraction peak velocity (LCV) [34]

Septal wall contraction peak velocity (SCV) [34]

Trans-aortic peak flow (AF) [34]

Trans-pulmonary peak flow (PF) [34]

Trans-mitral ventricular relaxation flow (MFE) [34]

Atrial contraction flow (MFA) [34]
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Table 2.

Summary of acceleration sensors used for SCG data acquisition. Abbreviations used in the table: Acc—

accelerometer; Gyr—gyroscope; ARS—angular rate sensor; 1—uniaxial; 2—biaxial; 3—triaxial; MEMS—

micro electromechanical systems; SP—smart phone.

Reference Sensor Type Sensor Model Sensor Location

[54–56] 3-Acc SCA610-C21H1A, Murata Electronic 1 cm above xiphoid

[43,44] 3-MEMS-Acc MMA 7361, Freescale Semiconductor Heart apex

[57] 3-MEMS-Acc MMA 7361, Freescale Semiconductor Above xiphoid

[58] 3-MEMS-Acc Analog Devices 2 cm above xiphoid

[36,38,45] 3-MEMS-Acc
3-MEMS-Gyr

KXRB5-2042, Kionix
MPU9150, Invensense

Left sternal border along the 3rd rib

[59] 3-Acc ViSi Mobile, Sotera Wireless Chest wall

[60,61] 1-Acc
1-Acc

4381, Brüel & Kjær
393C, PCB Piezotronics

Above xiphoid

[62,63] 1-Acc DS1104, DSPACE Xiphoid process

[64] 3-Acc ADXL 335, Analog Devices Chest wall

[46] 3-SP-Acc iPhone6, Apple Midclavicular line and 4th intercostal space
Belly above navel

[65,66] 3-Acc 356A32, PCB Piezotronics Left sternal border along the 4th intercostal space

[67] 3-Acc X6-2mini, GCDC Left sternal border along the 4th intercostal space

[68] 1-MEMS-Acc SCA620, Murata
Electronic

Sternum—anterior chest

[25,69,70] 3-MEMS-Acc MMA8451Q, Freescale Semiconductor Sternum

[34,71] 1-Acc LIS331DLH, STMicroelectronics Mitral valve, tricuspid valve, aortic valve, pulmonary 
valve

[72] 3-MEMS-Acc MMA 7361, Freescale Semiconductor Left sternal border along the 3rd rib

[73] 3-MEMS-Acc MMA8451Q, Freescale Semiconductor Sternum, aortic valve, heart apex

[74] 3-Acc
1-Acc

CXL01LF3, Crossbow Technology
7290-A, Endevco Microtron

Manubrium
Xiphoid

[75–78] 3-Acc BMA280, Bosch Sensortec GmbH Mid-sternum

[79] 3-MEMS-Acc TSD109C, Biopac Systems Left sternal border along the 3rd rib

[41] 3-Acc 356A32, PCB Piezotronics Sternum, upper and lower sternum

[80] 1-Acc N/A Sternum

[81] 3-MEMS-Acc
3-Gyr

MMA8451Q, Freescale Semiconductor
L3GD20, STMicroelectronics

N/A

[82] 3-Acc ADXL 335, Analog Devices Mid-sternum, upper sternum, lower sternum
Point of max impulse, below left clavicle, below right 
clavicle

[83] 3-MEMS-Acc
3-MEMS-Gyr

SparkFun, Intel Edison Sensor clipped on subjects clothes

[50,51] Microwave Doppler radar

[47,48] 3-SP-Acc Xperia Z-series, Sony Chest

[49] Laser Doppler vibrometer PDV-100, Polytec
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Reference Sensor Type Sensor Model Sensor Location

[37] 3-MEMS-Acc
2-MEMS-Gyr

LIS344ALH, STMicroelectronics
LPY403AL, STMicroelectronics

Heart apex
Lower back of subject between 2nd and 3rd lumbar 
vertebrae

[31] 3-MEMS-Acc
3-MEMS-ARS

MMA8451Q, Freescale Semiconductor
MAX21000, Maxim Integrated

Sternum

[53] AUSMC Composed of the following sensors:
- MA40S4S, Murata Electronics
- FG-23629 Knowles microphone

∼30 × 40 cm2 thoracic and abdominal surface
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Table 3.

Summary of the noise removal methods used for SCG filtration.

Method Application Reference

low-, band-, high-pass, notch filtering Baseline wandering, breathing and body movement 
artefact removal

[26,36,38,41,45,46,55,58–
63,67,71,75,76,78–80,82,93]

Adaptive filtering Motion artefact removal [88,95]

Averaging theory Motion artefact removal [101]

Comb filtering Removing respiration noise from radar signal [50]

Empirical mode decomposition Baseline wandering, breathing and body movement 
artefact removal [76,94,95]

Independent component analysis Motion artefact removal [102]

Median filtering [96]

Morphological filtering [95]

Polynomial smoothing Motion artefact removal [103]

Savitzky–Golay filtering Motion artefact removal [83,103]

Wavelet denoising Segmentation of HSs and SCG [64,95,96]

Wiener filtering [94]
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Table 4.

Summary of the features used in machine learning algorithms for SCG signal analysis.

SCG Features Reference

Simple time domain [47,61,81,82,107]

Statistical time domain [41,56,65,106]

Simple frequency domain [41,56]

Statistical frequency domain [40,41,47,78]
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Table 5.

Summary of the machine learning algorithms used for SCG signal analysis. NN—neural network; SVM—

support vector machine; HMM—hidden Markov model; k-NN—k-nearest neighbors; EFuNN—Evolving 

Fuzzy Neural Network.

Reference

Classification

NN [107,109]

EFuNN [98,110]

SVM [40,47,56,65,106,109]

Random forest [47,109]

Logistic regression [61]

J48 decision tree [41]

Clustering k-means [109]

Regression Xgboost [82]

Graph-Similarity k-NN graph [78]

HMM Viterbi sequence [108]
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