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ABSTRACT: We describe a computational method, plane of best fit
(PBF), to quantify and characterize the 3D character of molecules. This
method is rapid and amenable to analysis of large diverse data sets. We
compare PBF with alternative literature methods used to assess 3D
character and apply the method to diverse data sets of fragment-like,
drug-like, and natural product compound libraries. We show that
exemplar fragment libraries underexploit the potential of 3D character
in fragment-like chemical space and that drug-like molecules in the
libraries examined are predominantly 2D in character.

■ INTRODUCTION

Analyzing and visualizing the diversity of chemical space is
increasingly important, particularly for the characterization and
design of compound libraries used for hit discovery.1 Approaches
include analyses of physicochemical properties, scaffold diversity,
and compound shape; for example, physicochemical property
descriptors (typically molecular weight, calculated logP, and
polar surface area) are often used to map chemical space with
upper and lower limits set on such parameters in compound
library design2,3 while scaffold composition has been introduced
as a tool for analyzing the diversity of compound libraries.4

Compound shape has long been recognized as an important
factor in molecular recognition between a ligand and its
biological targets, and the optimal spatial orientation of
pharmacophoric features is essential for ligand efficient binding
of small molecules.5−7 Natural products frequently incorporate
scaffolds with significant three-dimensional (3D) character8 and
recent important breakthroughs in the discovery of protein−
protein interaction inhibitors often involve scaffolds incorporat-
ing 3D character;9 for example, inhibitors of the bromodomain
BRD4/chromatin interaction,10 the LEDGF/p75 integrase
interaction,11 the Bcl2 family proteins,12 and of the MDM2/
p53 interaction (Figure 1).13 For each ligand shown in Figure 1, a
conformation with pronounced 3D shape has been captured in
the respective protein binding site by X-ray crystallography.10−13

In addition, molecules which incorporate significant 3D shape
often display desirable aqueous solubility due to increased
solvation and poorer solid state crystal lattice packing.14,15 Thus,
there is an increasing drive to design and synthesize molecules
and scaffolds with enhanced 3D shape.
A number of methods have been reported which characterize

molecular shape. Sauer and Schwarz reported principal moments

of inertia (PMI) to classify the shape of compounds with rods,
discs, and spheres as the apexes of a triangular visualization plot16

while Lovering et al. introduced the fraction of sp3 carbon atoms
(Fsp3) to describe the degree of lead-likeness.17Molecular globularity
has also been used as a descriptor of molecular shape.18 A number of
alternative descriptors of 3D shape have been published, including
volume, surface, spherosity, and ovality; these descriptors are
summarized by Todeschini and Consonni.19 The identification of
an objective and invariant method that unambiguously character-
izes the three-dimensionality of chemical structures is important in
the analysis of chemical space, and we sought a rapid and
quantitative method with which to characterize the shape diversity
of large compound libraries.
While every molecule has three dimensions in the classical

definition, namely length, width, and depth, we considered it
useful to differentiate between flat and non-flat molecules by
application of the following definitions: A molecule has zero
dimensions (0D) if it consists of only one heavy atom. Amolecule
is one-dimensional (1D) if the centers of mass of all the heavy
atoms lie in a straight line. A molecule is two-dimensional (2D) if
the centers of mass of all the heavy atoms lie in a plane.
A molecule is three-dimensional (3D) if it is not 2D.
These simple definitions result in a binary value for 3D, nonflat

versus flat, and we therefore wish to extend the definition
to give a quantitative measure of how removed any molecule is
from 2D. We introduce the plane of best fit (PBF) across all the
heavy atoms of a molecule in a given conformation. The average
distance of all heavy atoms from the PBF describes how far
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removed the molecule is from 2D shape and therefore provides a
quantitative description of 3D shape.
Here we study molecules in their CORINA-derived

conformation, a literature standard method.20,21 The “conformer
problem” is a significant challenge in molecular modeling:
namely, the identification of biologically relevant conformations
that a molecular structure may adopt. A number of methods exist
to explore conformational space using both energy-minimized

conformations in vacuo22 and those that are presumed relevant
in the biological context;23 these methods may not necessarily
concur. Here, we do not consider such conformational
exploration but take a single conformer from standard software
(CORINA) as a reference conformer.20 The method we propose
in this article is amenable to the analysis of many conformers
of a single molecule, but this approach is not applied here
consistent with other 3D descriptor methods reported in the
literature.16,18

■ METHODS

Plane of Best Fit. Each molecule was prepared by removing
salts, and then, the coordinates were generated using CORINA;
hydrogens were omitted from this output.20 The coordinates
were then used to calculate the plane of best fit. The plane of best
fit is solved using a least-squares method.24−26 An error function
E(A, B, C) is calculated to give the total error in the z coordinate

Figure 1. Structures of protein−protein interaction inhibitors with pronounced 3D shape in the respective protein−ligand X-ray crystal structures: (a)
(+)-JQ1, an inhibitor of bromodomain BRD4/chromatin interactions,10 (b) inhibitor of LEDGF/p75 integrase interaction,11 (c) Nutlin-3, an inhibitor
of Bcl2/BH3 domain interactions,12 and (d) ABT737, an inhibitor of MDM2/p53 interactions.13

Figure 2. Example depiction of plane of best fit (PBF) for cyclohexane in
a chair conformation.

Figure 3. PMI plot for the ICRFL data set. Four evenly distributed bins across the range of the average distance from the plane of best fit (PBF score) are
represented by the color of the points (red ≤ 0.2709, 0.2709 < blue ≤ 0.5418, 0.5418 < yellow ≤ 0.8128, black > 0.8128).
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from the plane with equation Ax + By +C = z. This error function
is given by
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where (xi,yi,zi) are the coordinates of the i
th atom. This error is

minimal at the point Grad(E(A,B,C)) = (0,0,0). Applying this
operator leads to the system of linear equations,
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∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑

∑

∑

=

= = =

= = =

= = =

=

=

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

x x y x

x y y y

x y

A
B
C

x z

yz

z1

i

n

i
i

n

i i
i

n

i

i

n

i i
i

n

i
i

n

i

i

n

i
i

n

i
i

n

i

n

i i

i

n

i i

i

n

i

1

2

1 1

1 1

2

1

1 1 1

1

1

1 (3)

This set of linear equations is solved using a QL algorithm, which
is the factorization of a matrix in the product of an orthogonal
matrix Q and a lower triangular matrix L. This solution gives the

values forA, B, andC. There is then a normalization step to give the
equation of the plane in the form Ax + By + Cz = D as required.
The equation of best fit is then used to give the distance, Δ, of

each heavy atom from the plane, where

Δ =
| + + + |

+ +

Ax By Cz D

A B C

i i i

2 2 2 (4)

and Ax + By +Cz +D = 0 is the equation of the plane. The output
of the method is given as the average of these distances in
angstroms. This output, the plane of best fit (PBF) score, has a
mathematically theoretical range of [0,∞). However, in practice,
the PBF score tends to be below two for small drug-like
molecules and below ten for proteins. The PBF program was
coded in C++ and runs on a 2.4 GHz Intel Core 2 Duo processor;
using this system specification, the program is capable of
processing on average ∼2600 drug-like molecules per second;
the rate-limiting factor is conformer generation, in common with
other methods of this type. As an illustrative example, a schematic
of the PBF for cyclohexane in its CORINA-derived chair
conformation is depicted in Figure 2.

Other Resources. A set of established methods was required
for comparison and validation purposes. The descriptors used
were normalized principal moments of inertia ratio (NPR),16

molecular globularity (MolGlob),18 and fraction of sp3 hybrid-
ized carbons (Fsp3).17 Pipeline Pilot version 8.0 was used to
preprocess the molecules, and a PilotScript script was written to
calculate the fraction of sp3 hybridized carbons.27 Other descriptors

Figure 4. Scatter graph measuring the correlation between molecular globularity (MolGlob) and PBF score for the ICR fragment library data set.
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were generated using the Molecular Operating Environment
(MOE).28 Spotfire DecisionSite was used for graphical analysis.29

For the larger data sets, an implementation of the quick sort
algorithm30 was written in Python to process data and to generate
statistics. The density plots for the larger data sets were created in a
Processing script.31

Data Sets. ICR Screening Library (ICRSL). 74 603 compounds
were from the Institute of Cancer Research (ICR) in-house
screening collection. This library includes compounds selected
from commercial vendors and compounds synthesized in-house.
ICR Fragment Library (ICRFL). The fragment library contains

2465 fragment-like molecules, either synthesized at the ICR or
purchased from vendors. Fragment definition parameters:
150 ≤ molecular weight ≤ 320 Da, AlogP ≤ 3, rotatable bonds
≤ 4, heavy atoms≥ 10, 1≤ number of rings≤ 3, 3≤ ring size≤ 7
atoms, fused rings ≤ 2, number of sulfur atoms ≤ 1, number of
halogen atoms ≤ 1 (except fluorine).4

ChEMBLdb V.11.32 The ChEMBL database contains
1 060 258 compounds from the EBI-ChEMBL. It consists of
bioactive compounds taken from the medicinal chemistry
literature and is manually curated by the EBI-ChEMBL team.
ChEMBLdb V.11 Natural Products (ChemNat).32 This is a

subset of the ChEMBLdb V.11 containing 491 compounds
marked as natural products.
DrugBank 3.0.33 The database contains 6707 drug entries

including 1436 FDA-approved small molecule drugs, 134 FDA-
approved (protein/peptide) drugs, 83 nutraceuticals, and 5086
experimental drugs.
BioFocus Kinase Focused Library (BFK).34 A library of 10 000

compounds, designed to inhibit protein kinases.
eMolecules (eMol).35 These are 5.2 million commercially

available, unique compounds from the eMolecules database.
Maybridge Rule of 3 (Ro3)36 Complete Fragment Library

(MayB).37 A library comprising 2791 Ro3 compliant fragments.

GDB-13.38 One million randomly selected molecules from
GDB-13 which enumerates small organic molecules up to 13
atoms of C, N, O, S, and Cl following simple chemical stability
and synthetic feasibility rules.39

■ RESULTS AND DISCUSSION

Application of PBF to Diverse Data Sets. Initially, we
compared PBF analysis of diverse data sets with literature shape
analysis methods. Figure 3 shows the comparison of PBF with
NPR for the ICR fragment library (ICRFL, see Methods
section). The NPR plot denoting rods, discs, and spheres is
colored by binned PBF values; a strong correlation was observed
between the two methods with low PBF scores matching
compounds with 2D rod- or disc-like character in the NPR
method and compounds with high PBF score correlating with
sphere-like 3D compounds in the PMI plot. Using the sum of
NPRs as one variable and PBF score as the other, a good cor-
relation was observed (Pearson correlation coefficient = 0.825).
Comparing the PBF score with the molecular globularity

Figure 5. Scatter graph depicting the correlation between fraction of sp3 hybridized carbons (Fsp3) and PBF score for the ICR fragment library data set.

Table 1. Comparison of Pearson Correlation Coefficients for
Fsp3, NPR, and MolGlob Methods with PBF over Nine
Diverse Compound Data Sets

data set Fsp3 NPR1 + NPR2 MolGlob

ChemNat 0.0854 0.755 0.719
MayBridge 0.451 0.780 0.711
BioFocus Kinase 0.0392 0.771 0.732
DrugBank 0.173 0.642 0.600
eMolecules 0.184 0.784 0.737
ChEMBL 0.259 0.683 0.643
GDB-13 0.500 0.872 0.826
ICRSL 0.213 0.772 0.722
ICRFL 0.360 0.826 0.786
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(MolGlob) score for the ICRFL data set showed a greater
numerical range for the PBF score and therefore greater
granularity of 3D-shape description (Figure 4). Again, correlation
between the two methods for this data set was good (Pearson
correlation coefficient = 0.786). However, the PBF score corre-
lated poorly with Fsp3 for the ICRFL data set (Pearson correlation
= 0.360) (Figure 5).
To assess the generality of these observations, comparison

of PBF with literature methods was repeated across eight other
diverse data sets representing the spectrum from large compound
collections (eMolecules and ChEMBLdb V.11) to small focused

kinase, natural product, and marketed drug libraries (see
Supporting Information Figures S1−S18). Taken together,
these analyses demonstrated that the PBF score correlates well
with the NPR and MolGlob scores across all data sets examined
but does not correlate with Fsp3 (Table 1).
One explanation for the lack of correlation between PBF and

Fsp3 is that while a high Fsp3 value indicates a high ratio of sp3

carbons to all carbons, a high Fsp3 score does not characterize
whether these sp3 carbon atoms are connected to extended
vectors out of the plane of the dominant ring system; i.e.
significant 3D shape. In addition, molecules with Fsp3 = 0 have no
sp3 carbon atoms but may not be planar; for example, (1) and (2)
have structures where all carbon atoms are aromatic (Fsp3 = 0);
however, theCORINA-derived conformations indicate that (1) is
planar whereas (2) is puckered out of plane due to the presence
of a pyramidal, pseudo-sp3 hybridized nitrogen atom in the
conformation adopted in the small molecule X-ray crystal
structure (CSD CBMZPN01)40 (Figure 6). This difference is
not considered in the Fsp3 score but is reflected in the PBF, NPR,
and MolGlob scores (Table 2).
Two compounds with near identical Fsp3 scores, namely,

NADPH (3) (Fsp3 = 0.476) and the fused tricyclic compound
(4) (Fsp3 = 0.474), show differing NPR1, MolGlob, and PBF
scores which clearly differentiate their 3D character (Figure 7 and
Table 3). Thus, while Fsp3, a 2D descriptor, usefully indicates the
ratio of sp3 carbons to all carbons in amolecule, it does not always
differentiate their 3D character.
To further illustrate the utility and quantitative value of the

PBFmethod, a small number of molecules from the same data set
(ICRFL) with PBF scores covering the dynamic range of PBF
score were selected and compared (Figure 8). As expected, for
p-bromobenzamidine (5), a planar monocyclic aromatic frag-
ment, PBF = 0. Progression up the PBF scale is consistent with
increased 3D shape in the CORINA-derived conformations of
molecules (6−11). For example, the pyridyl-triazole linkage in
compound (6) is essentially planar while the presence of a
flanking methyl substituent in the aryl−aryl fused compound (8)
drives increased rotation and deviation from planarity consistent
with an increased PBF score. Compounds (9) and (10) have a
high PBF score due to the presence of a quaternary carbon center
with substituents extending along each of the four vectors.
2-Methoxy-5-methylsulfonyl-p-fluoroaniline (11) has the highest

Figure 6. Chemical structures and CORINA-derived conformation
comparison for molecules (1) and (2) for which Fsp3 = 0.

Table 2. Descriptor Values and Percentage Difference in
Values between Molecules (1) and (2) Depicted in Figure 6a

method (1) (2) percentage difference

NPR1 0.0899 0.446 133%
NPR2 0.910 0.817 10.8%
Fsp3 0 0 0%
MolGlob 0.000000852 0.188 200%
PBF Score 0.00313 0.768 198%

aPercentage difference is defined as the modulus of the difference
divided by the average of two values.

Figure 7. Chemical structures and CORINA-derived conformation comparison for molecules (3) (Fsp3 = 0.476) and (4) (Fsp3 = 0.474).
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score (PBF = 1.06) consistent with the increased 3D character
imparted by the sulfonamide linker in the CORINA-derived
conformation.
Pairwise comparison of molecules with similar scores using

literature methods revealed some interesting differences. For
example, p-isobutylphenol (12) and the oligonucleotide (13)

share similar NPR, MolGlob, and Fsp3 scores; however, they are
clearly differentiated by PBF score (Figure 9; Table 4). A probable
reason for the similarity in NPR scores is the normalization step
applied in their calculation such that the scale of the object is not
fully represented by NPR1 and NPR2. With drug-like small
molecules this is not an issue; however, the shape characteristics
for larger molecules are lost: for example, the extended scaffold
in (13) overwhelms the smaller extended vectors from the
scaffold chain such that (13) lies proximal to (12) on a PMI plot.
The PBF score for (13) indicates that, even though (13) is a
significantly larger molecule than (12) (315 versus 11 heavy
atoms respectively), the average distance of all heavy atoms from
the PBF is higher for (13) consistent with greater 3D character.
We next applied the PBF method to the selection of com-

pounds for a 3D-focused compound library from the eMolecules

Table 3. Descriptor Values and Percentage Difference in
Values between Molecules (3) and (4) Depicted in Figure 7

method (3) (4) percentage difference

NPR1 0.233 0.0545 124%
NPR2 0.926 0.946 2.14%
Fsp3 0.476 0.474 0.528%
MolGlob 0.0882 0.00000138 200%
PBF Score 1.53 0.00475 199%

Figure 8. Example molecules selected from the ICRFL data set (5−11) and their respective PBF scores depicted on a linear scale.
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data set. Applying drug-like physicochemical property filters to
the eMolecules data set (Lipinski Ro5 compliance41 and number
of rings > 0) generated a data set of ∼4 million compounds for
selection based upon their 3D-shape. Using the sum of NPRs
as a metric and setting NPR1 + NPR2≥ 1.07 to select out flat, or
nearly flat molecules removed 58.8% of the data set. However,
when applying a PBF selection filter (PBF ≥ 0.6) to the same

∼4 million set, we “rescued” 13.4% of molecules that were selected
out by the NPR method (molecules contained in the bottom right
quadrant of Figure 10). Due to the nature of the population density
distribution, this rescue effect occurs irrespective of the NPR cutoff
applied; thus, the greater granularity of PBF score, in comparison
with NPR assessment, facilitates the analysis and differentiation of
compounds in highly populated regions of 3D space (for example
the exemplified compounds in Figure 10). The top right and bottom
left quadrants of Figure 10 contain molecules where the NPR and
PBF methods concur. The top left quadrant contains molecules
characterized as more 3D by the NPR than by the PBF method
using the cutoffs defined here. This top left quadrant is sparsely
populated (4%of the filteredmolecules) and is generallymade up of
smaller molecules with a mean weight of 307.3 Da (Figure 10).
We also used our PBF method to interrogate the 3D character

of all nine data sets, both with and without application of a

Figure 9. Shape comparison of molecules (12) and (13) which score similarly according to literature methods.

Table 4. Difference in Values between Molecules (12) and
(13) Depicted in Figure 9

method (12) (13) percentage difference

NPR1 0.152 0.152 0.167%
NPR2 0.972 0.970 0.148%
Fsp3 0.4 0.546 13.6%
MolGlob 0.0733 0.0701 4.48%
PBF Score 0.398 4.21 166%

Figure 10.Density plot of PBF score versus the sum of normalized principal moments of inertia (NPR) for the eMolecules data set with acyclic and Ro5
noncompliant compounds removed. The horizontal black line represents a cutoff for 3D molecules for NPR1 + NPR2, and the vertical line, a
corresponding cutoff for PBF.
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Lipinski Ro5 filter41 to the nonfragment data sets in order to
assess the observed upper limit of PBF score for both Ro5-
compliant and noncompliant molecules (Figure 11). The
Lipinski filter constrained the upper quartile of PBF score for
the data sets to which it was applied, notably the ChEMBL and
eMolecules data sets, indicating that many molecules in these

data sets with high 3D character (PBF > 1) are nondrug-like as
determined by the Lipinski Ro5 analysis. Similarly, the ChEMBL
natural product library has a wide PBF score distribution which
is significantly eroded with the Lipinski Ro5 filter applied. The
BioFocus kinase-focused library has lower 3D character as
measured by the PBF method; its distribution in PBF-space is

Figure 11.Range of PBF scores depicted as box and whisker plots across all nine data sets. Yellow plots include all members of the data sets, red plots are
after a Lipinski Ro5 filter has been applied.

Figure 12. Histogram of PBF scores of ICR and Maybridge fragment libraries, the GDB-13 data set, DrugBank, and ChEMBL libraries subject to
RECAP algorithm, and application of fragment-like filters.
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unchanged by application of Lipinski filters, consistent with the
trend for kinase-targeted inhibitors to be comparatively flat Ro5-
compliant small molecules compatible with the ATP binding site
of the kinase gene family. Comparison of the two fragment-like
libraries is informative: ICRFL has a wider range of PBF scores
in comparison with the Maybridge fragment library; however,
for both sets, the distribution of PBF scores is skewed toward
lower PBF values, indicating wider coverage of flat or nearly flat
chemical space. By contrast, GDB-13 exhibits an almost normal
distribution of PBF score. This latter data set contains 1 million
randomly selected molecules taken from all theoretical combina-
torial linkages for 12 or 13 heavy atoms and illustrates the virtual
shape space possible within fragment-like compounds.
To further examine the 3D character of fragment-like chemical

space, we next analyzed medicinal chemistry relevant frag-
ments by applying the Retrosynthetic Combinatorial Analysis
Procedure42 (RECAP) algorithm to both the DrugBank and
ChEMBL data sets. Filters were then applied to these results,
first a Python script using RDKit was written to remove dummy
atoms representing substituent vectors from the fragments;
second, application of fragment-like filters [number of atoms > 10,
molecular weight < 320 Da, number of rings > 0] for each data set
gave a set of fragments derived from known drugs (DrugBank)
and medicinal chemistry literature (ChEMBL); third, all acyclic
compounds were removed from the GDB-13 data set. The
distribution of PBF score across the fragment libraries (ICRFL
and Maybridge), two RECAP-generated libraries (from Drug-
Bank and ChEMBL), and GDB-13 subset is shown in Figure 12.
The Maybridge, ICR fragment libraries, and DrugBank-RECAP
sets all have a significant proportion of flat and near flat molecules
where PBF < 0.035 (30%, 14%, and 21%, respectively), while for
the GDB13 and ChEMBL-RECAP sets, the proportion of
molecules with PBF < 0.035 is lower (<5%). In addition, the peak
of PBF score for the GDB13 and ChEMBL-RECAP sets is shifted
to the right (0.56 for both sets). Taken together, these analyses
suggest that the ICRFL and Maybridge fragment libraries under-
exploit the potential of 3D character in fragment-like chemical
space and that the enrichment of fragment libraries for 3D character
would complement existing fragment screening collections.

■ CONCLUSION
We introduce a new method, plane of best fit (PBF), for
quantitative analysis of molecular 3D character using CORINA-
derived conformations. PBF quantifies the average distance in
angstroms of all heavy atoms away from the plane of best fit
through all heavy atoms. The PBF score has a mathematically
theoretical range of zero to infinity; however in practice, we
observe that the PBF score tends to be less than two for drug-like
small molecules and tends to be less than ten for proteins. We
propose the PBF method as a useful addition to the computa-
tional tools available to medicinal chemistry for the following
reasons: (1) the method is high throughput and quantitative on a
linear scale with values derived from molecular dimensions, i.e.
the average distance of all heavy atoms from the plane of best fit;
(2) the method is applicable irrespective of molecular size since
the PBF score is normalized according to the number of heavy
atoms; and (3) the PBF score separates molecules closely
clustered inNPR space, thereby allowing greater granularity of 3D
shape characterization in molecular design and compound
selection. We propose that a main use of PBF is for quantitative
characterization of 3D shape which is becoming a more important
tool as synthetic and medicinal chemists become increasingly
interested in out-of-plane molecules.43 We also envisage that PBF

may be used in conjunction with NPR for detailed analysis of
molecular shape across compound libraries, for example by
principal component analysis.
Application of the PBFmethod to nine diverse compound data

sets ranging from fragment-like libraries (ICRFL and May-
bridge) to large diverse compound collections (eMolecules and
ChEMBL) showed a good correlation with two literature methods
used to characterize 3D shape (NPR and MolGlob). We observe
a poor correlation with Fsp3; however, it is important to note that
Fsp3 was first introduced as a measure of molecular complexity
which, along with the number of chiral centers, was found to
correlate with higher clinical success rates and higher aqueous
solubility.17 Analysis of the range of PBF score for the nine
diverse data sets studied shows the following: (1) molecules
which populate the upper ranges of 3D character in ChEMBL
and eMolecules data sets, as measured by PBF score, have a
propensity to be non-Ro5 compliant (Figure 11); (2) a
propensity for 2D character in the fragment-like compound
libraries studied here when compared with the possible range of
synthesized or virtual fragment space (as defined by the GDB13
data set and by application of RECAP fragmentation to the
ChEMBL and DrugBank data sets) (Figure 12); and (3) the
ICRFL and Maybridge fragment libraries underexploit the
potential of 3D character in fragment-like chemical space and
that the enrichment of fragment libraries for 3D character would
complement existing fragment screening collections.
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