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Simple Summary: We have conducted a prospective study on patients with locally advanced
oropharyngeal cancer who are candidates for concomitant radio-chemotherapy; we considered
their anamnestic findings, tumor characteristics and evaluated the role of innovative radiological
features, particularly the magnetic resonance imaging (MRI) biomarkers. Our aim was to identify
those elements correlated with worse tumor control. Diffusion-weighted (DWI) imaging and dynamic
contrast–enhanced (DCE) can help identify hypoxic regions in head and neck cancer which are known
to be more resistant to the effects of radiation. A better understanding of these factors may help us
improve our knowledge on tumor behavior and thus provide a more tailored treatment in patients
that respond poorly.

Abstract: The prognosis of a subset of patients with locally advanced oropharyngeal cancer (LA-
OPC) is still poor despite improvements in patient selection and treatment. Identifying specific
patient- and tumor-related factors can help to select those patients who need intensified treatment.
We aimed to assess the role of historical risk factors and novel magnetic resonance imaging (MRI)
biomarkers in predicting outcomes in these patients. Patients diagnosed with LA-OPC were studied
with diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI at baseline and at the
10th radiotherapy (RT) fraction. Clinical information was collected as well. The endpoint of the
study was the development of disease progression, locally or distantly. Of the 97 patients enrolled,
68 were eligible for analysis. Disease progression was recorded in 21 patients (11 had loco-regional
progression, 10 developed distant metastases). We found a correlation between N diameter and
disease control (p = 0.02); features such as p16 status and extranodal extension only showed a trend
towards statistical significance. Among perfusion MRI features, higher median values of Kep both in
primary tumor (T, p = 0.016) and lymph node (N, p = 0.003) and lower median values of ve (p = 0.018
in T, p = 0.004 in N) correlated with better disease control. Kep P90 and N diameter were identified by
MRMR algorithm as the best predictors of outcome. In conclusion, the association of non-invasive
MRI biomarkers and patients and tumor characteristics may help in predicting disease behavior and
patient outcomes in order to ensure a more customized treatment.

Keywords: oropharyngeal cancer; chemoradiotherapy; DWI; DCE-MRI

1. Introduction

The initial approach in patients with locally advanced head and neck squamous cell
carcinoma (HNSCC) is a combination of radiotherapy and concomitant chemotherapy (RT-
CT) in order to avoid surgery and to preserve organ functionality. However, the outcome
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of these patients is still poor, with 40–50% experiencing disease recurrence [1,2]. Patient-
and tumor-related predictors of response to RT-CT would be helpful for a more efficient
selection of candidates to non-surgical approach and to avoid unnecessary toxicity in non-
responders. In the last decades, some major changes have occurred in the epidemiology
and management of these patients, especially those with oropharyngeal cancer (OPC), and
new prognostic factors have been identified. Currently, HPV-positive OPC is considered
a distinct entity that is usually associated with a younger age of onset, distinct clinical
features, limited tobacco exposure and a more favorable oncological outcome than HPV-
negative OPC [3,4]. Histologically, it is characterized by basaloid, lymphoepithelial and
poorly differentiated features [5], and radiologically by cystic-appearing lymph nodes on
both magnetic resonance imaging (MRI) and computed tomography (CT).

However, despite the better prognosis, a significant proportion of these patients
continues to experience distant disease progression [6,7]. Historical risk factors such as
significant smoking history and extranodal extension (ENE) in lymph nodes maintain
a significant predictive role of an increased risk of both locoregional (LRF) and distant
failure [8–11].

Response to treatment is also influenced by biological (rather than anatomical) features
such as intrinsic tumor radiosensitivity and hypoxia [12,13]. Advances in MR imaging
techniques currently allow the estimation of tissue cell density and the localization of
hypoxic regions within HNSCC using novel functional biomarkers: diffusion-weighted
(DWI) imaging quantifies the water molecule mobility in tissues which is strictly related to
cell architecture, while dynamic contrast–enhanced (DCE) MRI allows for the derivation of
semi-quantitative hemodynamic maps by the estimation of the passage of blood through
vessels [14].

The aim of this study is to prospectively assess by a machine learning (ML) approach
the role of both traditional and emerging/novel factors in predicting outcomes in patients
with OPC who underwent (chemo)radiotherapy.

2. Materials and Methods
2.1. Patient Population and Treatment Characteristics

We evaluated 97 consecutive patients treated within a non-randomized, prospective,
single-institution trial funded by the Italian Association for Cancer Research (AIRC, project
No.17028), and specific informed consent was obtained before enrollment.

Inclusion criteria to be met were: (a) age older than 18 years; (b) histologically-
confirmed squamous cell carcinoma of the oropharynx; (c) locally advanced tumor stages
III and IV according to 8th edition of the AJCC Cancer Staging Manual [15]; (d) definitive
treatment with concomitant RT-CT. Exclusion criteria considered were: any contraindica-
tion for MR examination due to previous allergic reaction to intravenous contrast material
administration or renal disease; patients previously treated with surgery, chemotherapy
or radiotherapy to the head and the neck. Disease staging required MRI examination and
CT of the neck and chest or PET-CT for distant staging. Baseline characteristics, including
smoking pack-years and alcohol consumption, were collected as well. Patients received
intensity modulated radiation therapy (IMRT) with a simultaneous integrated boost tech-
nique in 35 fractions over seven weeks. Prescribed doses were 70 Gy to macroscopic
primary (T) and lymph node disease (N), and 63 Gy and 58.1 Gy to areas at high risk and
at low risk of subclinical disease, respectively [16]. Concomitant chemotherapy consisted
of cisplatin, three times weekly (100 mg/m2 for three cycles every 21 days) or weekly
(40 mg/m2 for 6 cycles) [17].

2.2. MRI Protocols

MRIs were done on a 1.5 T scanner (Optima™ MR450w, GE Healthcare, Milwaukee,
WI, USA) with a head and neck phased-array coil. All patients underwent three serial
studies: at baseline, at the 10th fraction of RT and eight weeks after RT. MRI follow-up
examinations were performed every six months for the first two years, and once per
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year afterwards. The pretreatment MRI protocol included coronal and axial T2-weighted
images (field of view, 26–28 cm; acquisition matrix, 288 × 256; slice thickness, 4 mm), intra-
voxel incoherent motion diffusion-weighted imaging (IVIM-DWI), and dynamic-contrast
enhanced MRI (DCE-MRI) sequences. IVIM-DWI was performed using nine b values
(b = 0, 25, 50, 75, 100, 150, 300, 500, and 800 s/mm2, field of view 26 × 28 cm; acquisition
matrix, 128 × 128; slice thickness, 4 mm; scanning time, 6 min 13 s). DCE-MRI was
performed using a 3D fast-spoiled gradient echo sequence (flip angle, 30◦; field of view,
28 cm; acquisition matrix, 128 × 128; slice thickness, 4 mm; spacing between slices, 2 mm;
temporal resolution, 5 s; scanning time, 5 min). Three pre-bolus phases were acquired,
followed by contrast-arrival phases after the intravenous administration of gadolinium-
based contrast agent, at a rate of 3 mL/s (60 total dynamic phases). To reduce the use of
contrast medium, only IVIM-DWI was performed during treatment.

2.3. DCE-MRI and DWI Analysis

3D Slicer Software (version 4.6.2) was used for the lesion visualization and segmen-
tation [18]. Commercial software (GenIQ General, GE Advanced Workstation, Palo Alto,
CA, USA) was used to derive the quantitative maps from the DCE-MRI on the basis of a
two-compartment pharmacokinetic model and automatic population-based selection of
the arterial input function [19]. Three perfusion parameters were calculated at the single
voxel level: Ktrans, defined as the transfer constant between plasma and the extravascu-
lar extracellular space (EES), and Kep, defined as the transfer constant between EES and
plasma and ve, which represents the fractional EES volume. The baseline contours of the
lesions, both T and the largest N, were performed on T2-weigheted images and, after rigid
propagation, were transferred on the corresponding perfusion maps to perform quanti-
tative analyses. The medians, percentiles (P) P10, P25, P75, and P90, skewness, kurtosis,
energy, and entropy values were calculated from the voxel-based distribution of perfusion
parameters within the entire lesion. The bin size used for each patient to extract the data
was 0.2 min−1, 0.4 min−1 and 0.025 for Ktrans, Kep and ve, respectively. The lesions at
baseline and at the 10th fraction were also outlined on DWI at b = 800 s/mm2 to extract the
diffusion coefficients from the signal intensity curve at increasing b values, by means of
home-made scripts developed in MATLAB (Release 2020b, MathWorks Inc., Natick, MA,
USA). To reduce the instability of the diffusion-weighted signal within single voxels and
increase the robustness of the quantifications, the median of the signal from the entire
lesion at each b value was extracted and used for the fitting process. The conventional
ADC was derived from data at b values of 0, 500, and 800 s/mm2, while the perfusion-free
diffusion coefficient Dt was derived from data at b values of 300, 500, and 800 s/mm2,
by a mono-exponential function [20]. The Levenberg–Marquardt algorithm was used to
perform the fits. The perfusion fraction f was derived from an asymptotic estimate through
an extrapolation of the signal intensity S0extr to b = 0 s/mm2 from the above calculation of
Dt: f = [(S0meas − S0extr)/S0meas] × 100. S0meas indicates the measured signal intensity
at b value of 0 s/mm2 [21].

2.4. Statistics

The endpoint of the study is the development of disease progression at the primary
site, neck or distantly, alone or in combination at a follow up time of two years. Patients
experiencing second primary tumors or death due to intercurrent disease who precluded a
two year minimum follow up time were excluded.

Since an integrated statistical approach is suggested to improve data interpretability
and prediction accuracy [22], data analyses were approached with both conventional
statistical methods (to infer the relationships between variables) and ML algorithms (to at
best design the prediction model). Regarding the former, univariate analyses on disease
progression were performed considering various patient-, tumor- and treatment-related
variables (p16 status, smoking habit, alcohol abuse, T subsite, T size, lymph node diameter,
matted lymph nodes, cystic lymph nodes, ENE). Groups were compared with the chi-
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squared test or the Mann–Whitney rank test when appropriate. Statistical significance was
claimed for p values < 0.05.

2.5. Machine Learning Analysis

Before the model building, among the above mentioned ones, the parameters with the
best classification performance were selected using the minimum redundancy maximum
relevance (MRMR) algorithm. The selection of the most informative predictors is a sepa-
rate and mandatory step of the ML analysis pipeline to avoid the model overfitting and
reduce to the minimum the subset of variables to make the best predictions, without loss of
information [23]. The MRMR algorithm ranks both categorical and continuous parameters
for classification and it finds the optimal set that was mutually and maximally dissimilar,
based on the mutual information of variables [24]. The most common ML algorithms were
quickly trained on our dataset to compare their performances and find the most appropri-
ate [23]. Details are available in the Supplementary Materials. The model classification
ability was evaluated in terms of accuracy, sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV) after a stratified five-fold cross-validation to
prevent overfitting and improve the possibility of generalizing the models. The prediction
accuracies between different models were compared using the mid-p-value McNemar test.
The ML analysis was carried out using the MATLAB environment.

3. Results
3.1. Patient Characteristics

Out of the 97 enrolled patients, 68 (70.1%) were considered eligible. Eight patients
without lymph node involvement were excluded. Twenty-one patients were not considered
evaluable for disease response due to death due to intercurrent disease (N = 17) or to disease
(N = 4) within 24 months from treatment end. There were 53 male patients (77.9%) and the
median age was 61 years (IQR: 55–69 years). Selected patient and tumor characteristics
are summarized in Table 1. Median follow-up was 33.2 months (IQR: 26.3–46.9 months).
The majority of tumors (N = 53, 77.9%) were p16 positive. The distribution of primary
subsites within the oropharynx was significantly different in p16 positive and negative
patients (Table 1, p = 0.012). Similarly, smoking status and alcohol consumption were also
distributed differently according to p16 status (p = 0.041 and p < 0.001 for smoking and
drinking, respectively).

Table 1. Patients’ characteristics.

Characteristic p16-Pos
(#/%)

p16-Neg
(#/%)

Overall
(#/%)

cN1 33 (62.3%) 2 (13.3%) 35 (51.5%)
cN2 17 (32%) 5 (33.3%) 22 (32.3%)
cN2a - 1
cN2b - 4
cN2c - 0
cN3 3 (5.7%) 8 (53.4%) 11 (16.2%)
cN3a - 0
cN3b - 8

Unilateral N 38 (71.6%) 11 (73.3%) 49 (72%)
Bilateral N 15 (28.4%) 4 (26.7%) 19 (28%)

ENE present 35 (66%) 6 (40%) 41 (60.3%)
ENE not present 18 (34%) 9 (60%) 27 (39.7%)

Cystic N on MR yes 23 (43.4%) 5 (33.3%) 28 (41.2%)
Cystic N on MR no 30 (56.6%) 10 (66.4%) 40 (58.8%)

Cystic N on CT yes 21 (39.6%) 4 (26.7%) 25 (37.8%)
Cystic N on CT no 32 (60.4%) 11 (73.3%) 43 (63.2%)
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Table 1. Cont.

Characteristic p16-Pos
(#/%)

p16-Neg
(#/%)

Overall
(#/%)

Matted nodes present 12 (22.6%) 2 (13.3%) 14 (20.6%)
Matted nodes not present 41 (77.4%) 13 (86.7%) 54 (79.4%)

Subsite
Tonsil 30 (56.6%) 3 (20%) 33 (48.5%)

Base of tongue 23 (43.4%) 12 (80%) 35 (51.5%)

Smoking status
none 10 (18.9%) 0 10 (14.7%)

0–5 pack/year 18 (33.9%) 3 (20%) 21 (30.9%)
6–24 pack/year 7 (13.3%) 1 (6.7%) 8 (11.8%)
>24 pack/year 18 (33.9%) 11 (73.3%) 29 (42.6%)

Alcohol
None 40 (75.5%) 5 (33.3%) 45 (66.2%)
Social 12 (22.6%) 2 (13.3%) 14 (20.6%)

Alcoholic 1 (1.9%) 8 (53.4%) 9 (13.2%)

Overall 53 (77.9%) 15 (22.1%) 68 (100%)
#: number.

P16 negative disease presented with a slightly smaller lymph node disease (median
2.5 cm vs. 1.6 in p16 negative patients, p = 0.06). Five patients refused chemotherapy and
were treated with RT alone. At a median follow up of 9.7 months (IQR: 8.5–15.5 moths),
disease progression was observed in 21 patients (30.8%). Interestingly, all the failures had
been observed within two years from treatment end, and none afterwards. Regarding
the pattern of disease progression, 10 patients (47.6%) developed distant metastases (lung
metastasis in eight patients, bone in two patients); 11 patients (52.4%) had loco-regional
disease progression (eight patients in lymph nodes, one in primary disease, three patients
in both). Predictors for disease control following univariate analysis are shown in Table 2.
Among all covariates, a significant correlation with disease control was found only for N
diameter (p = 0.02). P16 status and ENE had a marginal impact on disease control (p = 0.134
and 0.073, respectively).

Table 2. Univariate analysis.

Variable Disease Progression

No Yes p value
P16
Yes 39 14

0.134No 8 7
T subsite

Tonsil 22 138
0.253Base of tongue 25

Smoking habit
No 9 1

0.122
0–5 pack/year 15 6

6–24 pack/year 5 3
>24 pack/year 18 11

Alcohol
None 34 11

0.253Social 7 7
alcoholic 6 3

T size * (cm) 3.4 (2.6–4.2) * 3.4 (1.5–3.4) * 0.942
N diameter * (cm) 1.8 (1.6–2.5) * 2.8 (2.1–4.2) * 0.022
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Table 2. Cont.

Variable Disease Progression

ENE present
Yes 25 16

0.073No 22 5
Matted lymph nodes

Yes 8 6
0.276No 39 15

Cystic lymph nodes on MR
Yes 22 6

0.158No 25 15
Cystic lymph nodes on CT

Yes 19 6
0.349No 28 15

* Median (95% confidence interval).

3.2. MRI Analysis and Prediction Models Driven by Machine Learning

The summary statistics of DCE-MRI and DWI parameters are reported in Tables 3–5.

Table 3. Summary statistics of DCE-MRI parameters in the primary tumor (T) for patients with and
without disease control.

Disease Control Disease Progression

DCE-MRI Parameter Median IQR Median IQR p Value

Ktrans

Median 0.80 0.39 0.63 0.47 0.158
IQR 0.50 0.43 0.44 0.39 0.204
P10 0.42 0.15 0.36 0.33 0.496
P25 0.61 0.24 0.46 0.44 0.246
P75 1.06 0.68 0.92 0.71 0.204
P90 1.45 1.24 1.25 1.48 0.260

Skewness 1.77 1.44 1.88 1.10 0.900
Kurtosis 6.95 9.09 10.82 11.37 0.271

Mean 0.92 0.60 0.81 0.66 0.294
Std 0.62 0.52 0.48 0.46 0.223

Energy 0.15 0.10 0.18 0.13 0.160
Entropy 3.16 1.02 2.84 1.04 0.193

Kep

Median 2.24 0.96 1.80 0.64 0.016
IQR 1.60 1.48 1.20 1.04 0.151
P10 1.04 0.40 0.84 0.72 0.035
P25 1.52 0.56 1.24 0.80 0.008
P75 3.16 1.76 2.36 1.28 0.034
P90 4.80 3.12 3.28 3.04 0.137

Skewness 5.02 4.97 8.05 10.95 0.120
Kurtosis 56.18 107.39 112.25 404.49 0.120

Mean 2.91 1.44 1.99 1.35 0.033
Std 2.47 2.68 1.93 1.50 0.193

Energy 0.21 0.20 0.36 0.22 0.063

ve

Entropy 2.62 1.16 1.99 1.29 0.094
Median 0.38 0.12 0.43 0.12 0.018

IQR 0.14 0.06 0.16 0.10 0.257
P10 0.23 0.10 0.28 0.15 0.364
P25 0.30 0.10 0.35 0.09 0.051
P75 0.45 0.15 0.51 0.17 0.018
P90 0.52 0.16 0.59 0.33 0.014

Skewness 0.18 0.96 0.28 0.96 0.573
Kurtosis 4.57 2.03 3.83 2.98 0.434

Mean 0.38 0.13 0.43 0.13 0.016
Std 0.12 0.05 0.13 0.09 0.507

Energy 0.07 0.03 0.06 0.03 0.405
Entropy 4.18 0.57 4.36 0.79 0.415

Statistically significant p-values are bold. p values refer to Mann-Whitney test. Abbreviations: Ktrans (min−1),
transfer constant between plasma and EES (extravascular extracellular space); Kep (min−1), transfer constant
between EES and plasma; ve, fractional volume of EES.



Cancers 2022, 14, 2477 7 of 13

Table 4. Summary statistics of DCE-MRI parameters in the lymph node (N) for patients with and
without disease control.

Disease Control Disease Progression

DCE-MRI Parameter Median IQR Median IQR p Value

Ktrans

Median 0.55 0.38 0.45 0.37 0.189
IQR 0.42 0.31 0.30 0.35 0.069
P10 0.24 0.30 0.21 0.19 0.582
P25 0.38 0.32 0.32 0.24 0.536
P75 0.80 0.50 0.66 0.60 0.069
P90 1.14 0.81 0.83 0.76 0.036

Skewness 2.16 1.81 2.02 1.98 0.393
Kurtosis 10.00 14.24 10.87 13.27 0.951

Mean 0.66 0.44 0.51 0.39 0.065
Std 0.44 0.25 0.37 0.24 0.036

Energy 0.19 0.08 0.25 0.23 0.109
Entropy 2.80 0.78 2.36 1.28 0.077

Kep

Median 1.84 1.12 1.28 0.96 0.003
IQR 1.28 0.96 0.80 0.60 0.000
P10 0.80 1.16 0.64 0.44 0.446
P25 1.20 0.80 0.96 0.84 0.044
P75 2.48 1.56 1.76 1.20 0.000
P90 3.52 2.66 2.24 1.64 0.000

Skewness 3.97 4.82 4.12 2.45 0.604
Kurtosis 28.81 79.47 42.11 46.95 0.795

Mean 2.22 1.30 1.39 1.26 0.000
Std 1.86 2.05 0.81 1.07 0.001

Energy 0.28 0.14 0.42 0.19 0.002

ve

Entropy 2.16 0.84 1.53 0.96 0.001
Median 0.27 0.20 0.40 0.24 0.004

IQR 0.16 0.05 0.16 0.13 0.272
P10 0.13 0.21 0.22 0.13 0.140
P25 0.20 0.20 0.31 0.15 0.007
P75 0.36 0.22 0.49 0.31 0.004
P90 0.45 0.22 0.62 0.38 0.008

Skewness 0.58 0.78 0.08 0.93 0.018
Kurtosis 4.26 2.82 3.84 1.59 0.328

Mean 0.28 0.20 0.42 0.23 0.003
Std 0.12 0.05 0.14 0.08 0.036

Energy 0.07 0.03 0.06 0.05 0.228
Entropy 4.12 0.46 4.35 0.73 0.069

Statistically significant p-values are bold. p values refer to Mann-Whitney test. Abbreviations: Ktrans (min−1),
transfer constant between plasma and EES (extravascular extracellular space); Kep (min−1), transfer constant
between EES and plasma; ve, fractional volume of EES.

Among radiological features, higher median values of Kep and lower median values
of ve at both the primary tumor (p = 0.016 and p = 0.018 for Kep and ve, respectively) and
the lymph nodes (p = 0.003 and p = 0.004 for Kep and ve, respectively) were associated
with better disease control. Diffusion parameters did not correlate with clinical outcome,
with the exception of ∆ADC (%), which showed a trend towards significance (p = 0.073).
The MRMR algorithm identified Kep P90 and the diameter of N as best predictors among
all the categorical and continuous parameters included in the analyses (Figure S1). The
performance of different families of ML algorithms is reported in Figure S2, showing
the superiority of the Decision Tree classification learner on our dataset with respect to the
other tested algorithms. The model accuracy of the Decision Tree classifier was 83.8% (95%CI:
72.9–91.6%), with Sensitivity, Specificity, PPV and NPV values of 61.9% (95%CI: 38.4–81.9%),
93.6% (95%CI: 82.5–98.7%), 81.3% (95%CI: 58.0–93.2%) and 84.6% (95%CI: 76.0–90.5%),
respectively. To better infer the role of DCE-MRI, we explored the predictive performances
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obtained with different combinations of the most relevant parameters for comparison with
the best model (Tables S1 and S2). As illustrated in Figure S3, the best model is the one
which incorporates nodal Kep P90 along with baseline N diameter. All other models lacking
DCE-parameters were statistically inferior to the one including Kep P90 in terms of accuracy
and/or specificity and/or sensitivity (Figure S3).

Table 5. Summary statistics of the diffusion parameters and their variations at the 10th fraction in
primary tumor (T) and lymph node (N), for patients with and without disease control.

Diffusion Parameter Disease Control Disease Progression

T Median IQR Median IQR p Value

ADC 1.34 0.47 1.31 0.50 0.480
Dt 1.00 0.31 1.00 0.35 0.882

f (%) 15.60 7.53 14.80 10.48 0.462
ADC10fr 1.74 0.34 1.75 0.42 0.968

Dt,10fr 1.38 0.32 1.39 0.33 0.377
f10fr (%) 18.14 9.67 16.12 6.27 0.345

∆ADC (%) 33.20 46.40 33.20 27.65 0.503
∆Dt (%) 32.30 48.68 28.00 24.40 0.558
∆f (%) 13.65 74.15 31.00 84.75 0.382

N Median IQR Median IQR p value

ADC 1.09 0.37 1.19 0.39 0.640
Dt 0.96 0.38 0.93 0.41 0.700

f (%) 9.75 6.00 8.80 5.23 0.895
ADC10fr 1.50 0.43 1.43 0.44 0.447

Dt,10fr 1.24 0.49 1.24 0.28 0.938
f10fr (%) 12.47 6.72 9.87 3.80 0.228

∆ADC (%) 32.80 31.00 20.95 32.05 0.073
∆Dt (%) 33.40 36.48 23.75 34.80 0.268
∆f (%) 25.55 80.20 2.60 75.00 0.211

p values refer to Mann-Whitney test. Abbreviations: ADC (×10 − 3 mm2/s), apparent diffusion coefficient;
Dt(×10 − 3 mm2/s), tissue diffusion coefficient; f (%). ∆ADC, ADC variation (%) relative to the pretreatment
value (analogously for the other parameters), ∆: delta.

Two representative clinical cases are shown in Figure 1.
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Figure 1. A case of a 69-year-old male patient affected by a carcinoma of the base of the tongue, with 
disease control. T2-weighted image (a) and the corresponding Kep map (b) show a solid and well-
perfused pathologic lymph node in the right cervical region (indicated by the arrow); at the bottom, 
a case a 60-year-old male patient affected by a carcinoma of the base of the tongue, without disease 
control. T2-weighted image (c) and the corresponding Kep map (d) show a large and necrotic lymph 
node. The comparison of the Kep distribution in the entire N volume for the patients with and with-
out disease control is depicted (e). 

4. Discussion 
In the present study, we found that baseline (perfusion) MRI features have an inde-

pendent predictive role of disease outcome at two years at conventional statistics. More-
over, with a ML approach, the model incorporating selected DCE-MRI parameters along 
with clinical ones was the best predictor of outcome in terms of accuracy, specificity or 
sensitivity. Therefore, perfusion MRI features add to the clinical ones in predicting onco-
logic outcome after (chemo)radiotherapy for OPC. Recently, there has been an increasing 
interest in baseline or pre-treatment quantitative imaging features [25,26] with the pur-
pose of customizing and further refining treatment strategies [27]. Similarly, to other re-
cent investigations [28–30], we found several DCE-based parameters at both the primary 
tumor and the nodes to be correlated with outcome. In particular, higher median values 
of Kep and lower median values of ve were found to be associated with better tumor control 
rates. This is consistent with the fact that hypoxic tumors usually need more aggressive 
treatments [31] and are at higher risk of treatment failure [28]. In our dataset, the Decision 
Tree classification learner provided the best accuracies with respect to the other common 
ML algorithms. The histogram analysis of perfusion maps and the calculation of percen-
tiles seemed to improve the capability to identify relationships between DCE-MRI param-
eters and outcome. Indeed, the model incorporating the parameter Kep P90, along with the 
nodal diameter, was the best predictor for disease progression among those tested (Figure 
S3), providing a good accuracy, a high specificity and a fair sensitivity. These results are 
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Figure 1. A case of a 69-year-old male patient affected by a carcinoma of the base of the tongue, with
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disease control. T2-weighted image (a) and the corresponding Kep map (b) show a solid and well-
perfused pathologic lymph node in the right cervical region (indicated by the arrow); at the bottom, a
case a 60-year-old male patient affected by a carcinoma of the base of the tongue, without disease
control. T2-weighted image (c) and the corresponding Kep map (d) show a large and necrotic lymph
node. The comparison of the Kep distribution in the entire N volume for the patients with and without
disease control is depicted (e).

4. Discussion

In the present study, we found that baseline (perfusion) MRI features have an indepen-
dent predictive role of disease outcome at two years at conventional statistics. Moreover,
with a ML approach, the model incorporating selected DCE-MRI parameters along with
clinical ones was the best predictor of outcome in terms of accuracy, specificity or sensitivity.
Therefore, perfusion MRI features add to the clinical ones in predicting oncologic outcome
after (chemo)radiotherapy for OPC. Recently, there has been an increasing interest in base-
line or pre-treatment quantitative imaging features [25,26] with the purpose of customizing
and further refining treatment strategies [27]. Similarly, to other recent investigations [28–30],
we found several DCE-based parameters at both the primary tumor and the nodes to be
correlated with outcome. In particular, higher median values of Kep and lower median
values of ve were found to be associated with better tumor control rates. This is consistent
with the fact that hypoxic tumors usually need more aggressive treatments [31] and are
at higher risk of treatment failure [28]. In our dataset, the Decision Tree classification
learner provided the best accuracies with respect to the other common ML algorithms. The
histogram analysis of perfusion maps and the calculation of percentiles seemed to improve
the capability to identify relationships between DCE-MRI parameters and outcome. Indeed,
the model incorporating the parameter Kep P90, along with the nodal diameter, was the
best predictor for disease progression among those tested (Figure S3), providing a good
accuracy, a high specificity and a fair sensitivity. These results are consistent with the
current literature investigating prognostic functional imaging in patients with squamous
cell carcinoma of the head and neck. In the review of Bos et al. [30], higher Kep values
were associated to a higher probability of both overall survival and loco-regional control.
Moreover, Kep was also identified as an independent predictor of disease free survival.
Based on the pharmacokinetic model [19], the parameter Kep is positively associated to
Ktrans but compared to Ktrans, it should be less influenced by blood volume/flow and
more influenced by vessel permeability and the characteristics of the extravascular and
extracellular compartments [32]. In our study, patients with disease control showed only a
trend towards higher Ktrans (median) values while ve values were significantly lower in
both primary tumors and lymph nodes. Being derived from the ratio Ktrans/ ve, Kep was
able to amplify these differences, showing a superiority compared to the other DCE-derived
parameters. Concerning DWI features, we assumed that the perfusion-free diffusion coeffi-
cient Dt could be more appropriate to quantify the thermal diffusivity of water molecules
in tissue and, consequently, to better indirectly evaluate the tissue cellular density and its
early radiation-induced modifications compared to ADC. However, neither ADC nor Dt
were significantly different between patients with disease control and progression, except
for the nodal percentage variation of ADC during treatment. This parameter showed a
trend towards significance, suggesting that a smaller increase in ADC was indicative of a
higher risk of progression in accordance with previous investigations [33,34]. With regard
to patient and tumor characteristics, it is a matter of fact that survival in patients with
HNSCC is influenced by the presence of nodal metastases [35–37]. In HPV-related disease,
there is a proven association between the infection and neck lymph-node disease [38].
Our finding is in line with the well-known clinical evidence; advanced N-disease staging
is a well-established risk factor for disease progression [9]. Patients with high burden
neck disease, particularly the presence of a matted node, have a higher risk of develop-
ing distant metastasis [39,40]. Lymph node size is also tightly correlated with regional
recurrence [41]. Among morphological characteristics, we found a significant association
between the nodal diameter and disease control, with a higher risk of progression for
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patients with larger pathologic lymph nodes. Concerning HPV status and ENE, we found a
trend towards worse disease control in patients with a higher proportion of HPV-negative
OPC and with ENE, though the difference was not statistically significant. Both HPV
negative status and ENE are well-established factors of poor prognosis [42,43]. In the
retrospective analysis of Ang et al. [3], patients with HPV-related disease showed a better
three-year overall survival compared to HPV-negative patients, though factors such as
heavy smoking history and advanced T and N stage had an independent detrimental effect
on outcome. Despite a large number of HPV-positive patients, the vast majority of patients
were smokers, thus limiting the benefits of HPV status. Similarly, even if the presence
of ENE has been acknowledged as a poor predictor of outcome after radiotherapy for
head and neck squamous cell carcinomas [10] and along with positive surgical margin, it
represents an indication for chemo-radiotherapy in the post-operative setting [44]; its role
in patients with HPV-positive disease is less clear. In the systematic review by Benchetrit
et al. [45], radiological and pathological ENE in HPV-positive OPC leads to higher distant
recurrence and worse overall survival but had a limited impact on locoregional recurrence.
The present study has some limitations. In order to limit the impact of confounding factors
on outcome (i.e., death from intercurrent causes), we selected only patients with a 2-yr
minimum follow up. This strengthened the potential relationships between the various co-
variates and the oncologic outcome, though it reduced the sample size and thus the power
of the study. Moreover, we focused only on a particular subset of head and neck cancer,
oropharynx, mostly of which were actually virus-related. Therefore, generalization of the
present findings to other head and neck subsites may not be appropriate. The accuracy of
ve and Kep estimations may have been affected by the scan time of the DCE-MRI sequence.
Indeed, a scan duration ≥10 min is recommended to allow the contrast agent to reach the
equilibrium after leaking into the EES and leaking back to the vascular space [46]. However,
such a long scan time is difficult to be used in clinical practice, particularly in head and
neck cancer patients, due to their limited tolerance; moreover, the variability in DCE-MRI
acquisition protocols and image post-processing in the literature has prevented, up to now,
a harmonization between results from different institutions, limiting the replicability of our
data. Furthermore, we did not include analyses on ADC/Dt maps to reduce the instability
of the diffusion-weighted signal within single voxels; in future investigations we could
explore the potential of a histogram-based approach to diffusion maps for enhancing the
performance of the classification model.

5. Conclusions

Perfusional features at baseline MRI such as Kep and ve are predictive of tumor
response at two years in patients affected by locally advanced oropharynx cancer and,
when incorporated in a model along with clinical factors, help to build the predictive model
with the highest performance in predicting clinical outcome. Therefore, DCE-MRI findings
can potentially provide additional and unique information to offer more personalized
treatment. Further studies on a larger population are needed to confirm our observations.
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