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Abstract

Purpose of Review Idiopathic normal-pressure hydrocephalus (iNPH) is characterized clinically by ventriculomegaly, abnormal
gait, falls, incontinence, and cognitive decline. This article reviews recent advances in the pathophysiology of iNPH concerning
sleep-disordered breathing (SDB) and glymphatic circulation during deep sleep.

Recent Findings The authors found iNPH frequently associated with obstructive sleep apnea (OSA). A critical factor in iNPH is
intracranial venous hypertension delaying drainage of cerebrospinal fluid (CSF) into the cerebral venous sinuses. CSF-venous
blood circulates in the jugular veins and finally drains into the heart. During SDB, repeated reflex attempts to breathe induce
strong respiratory efforts against a closed glottis thereby increasing the negative intrathoracic pressure. This causes atrial
distortion and decreases venous return to the heart resulting in retrograde intracranial venous hypertension. Additionally, repeated
awakenings from OSA impede sleep-associated circulation of interstitial CSF into the glymphatic circulation contributing to

hydrocephalus.

Summary Sleep has become a critical element in the cognitive changes of aging including iNPH.

Keywords Cerebral venous circulation - Glymphatic system - Normal-pressure hydrocephalus - Obstructive sleep apnea -

Sleep-disordered breathing - Vascular risk factors

Introduction

Sleep is rapidly becoming the new frontier for the study
of cognition, particularly in neurodegenerative dementias
of aging [1+]. Normal sleep is critical for consolidation of
memory and other cognitive functions; aging is associated
with changes in sleep pattern that mediate age-related
cognitive decline [2—4]. Sleep-disordered breathing
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(SDB), caused mainly by obstructive sleep apnea (OSA),
affects daytime functioning by impairing memory, atten-
tion, and executive functions [5-7]. Numerous
population-based studies [8—11, 12°] have shown that
OSA is associated with up to 26% higher risk of cognitive
impairment [12¢], particularly in the elderly. Also, abnor-
mal sleep has been associated with increased risk of
Alzheimer disease (AD) [13—15].
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Idiopathic normal-pressure hydrocephalus (iNPH) [16°] is
a treatable form of dementia in the elderly with an average age
of onset above 70 years. Approximately 700,000 persons
might have iNPH in the USA in comparison with about
400,000 cases of multiple sclerosis. Unfortunately, although
60—-80% of iNPH patients improve with shunt surgery, only a
minority is diagnosed and treated. Patients with iNPH often
have multiple vascular risk factors [17] including hyperten-
sion, diabetes, hyperlipidemia, smoking, hyperhomocysteine-
mia, coronary disease, stroke, and excessive body weight.
Sleep studies have seldom been performed in patients affected
by iNPH; therefore, SDB and OSA are rarely mentioned
among the vascular risk factors [17]. This is due in part to
the fact that both iNPH and OSA are largely under-
diagnosed clinical conditions. However, with routine use of
sleep questionnaires and polysomnography, we were able to
demonstrate that SDB and iNPH are commonly associated,
ranging in frequency from 65 to 90% [18e¢]. The latter obser-
vation serves as the basis for the present update.

Clinical Manifestations of iNPH

The communicating hydrocephalus of iNPH is non-
obstructive and characterized by enlargement of the cere-
bral ventricles with an Evans index greater than 0.30 (i.e.,
the ratio of the widest diameter of the frontal horns divid-
ed by the widest brain diameter on the same axial slice).
Evans index values >0.33 indicate ventriculomegaly [19].
Other imaging features on magnetic resonance imaging
(MRI) are a callosal angle >40° but <90° [20] and
narrowing of the sulci and subarachnoid spaces over the
high convexity with enlarged Sylvian fissures, a feature
called “disproportionately enlarged subarachnoid space
hydrocephalus” (DESH) [21, 22]. Increased cerebrospinal
fluid (CSF) stroke volume >42 puL or pulsatile flow rates
> 18 mL/min in the aqueduct of Sylvius on MRI, synchro-
nized to the heartbeat for quantification, are considered
good prognostic indicators for CSF shunting [23].

The clinical triad of iNPH includes cognitive loss, abnor-
mal gait, and urinary incontinence. The cognitive problems
include memory deficits and executive dysfunction predomi-
nantly frontal in nature. In their original description, Hakim
and Adams [24] mentioned, “psychomotor retardation ...
lack of impulsivity, expressed as apathy, disinterest, and lack
of spontaneity.” Nevertheless, progressive gait difficulty and
frequent falls may be the only manifestation of iNPH, without
concurrent cognitive decline.

Gait imbalance resulting in frequent falls is a constant man-
ifestation of iNPH [25]. Leg involvement is probably due to
effects of ventriculomegaly on the tracts arising from the cor-
tical representation of the lower limbs in the medial aspect of
the primary motor cortex. Walking is described as wobbly,
staggering, or drunken. Patients tend to fall without any
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obstacles, stumbling on minor floor irregularities, or while
negotiating stairs and curbs. Gait initiation is slow and the feet
appear to be “glued” to the floor or “magnetized.” Patients
walk very slowly, with shuffling short steps. With the eyes
closed, both the postural instability and the unsteadiness of
gait increase markedly, indicating that both apraxia of gait
and ataxia of leg movements in the vertical direction are pres-
ent. Turning becomes precarious and is usually done by
pivoting in one leg, i.e., the so-called compass sign [25]. At
this point, patients usually require a cane or a walker to am-
bulate and are at very high risk of falls resulting in hip frac-
tures and traumatic subdural hematomas. Hydrocephalus is
often diagnosed in the emergency room during the evaluation
of an elderly patient who sustained a fall. Falls among older
adults are a major public health problem and by 2030 the
number of fatalities is projected to reach 100,000 per year with
an associated cost of $100 billion as a result of fractures, head
injury, and other traumatic lesions [26].

The incontinence of sphincters is usually a manifesta-
tion of frontal dysfunction. According to Hakim and
Adams [24¢]: “... the patient being unaware of the con-
tents of bladder and bowel is incapable of making any
arrangement for the somewhat precipitate action of these
organs.” Urinary incontinence is the second most common
symptom of iNPH after gait problems and falls but it is
often discounted as being the result of omnipresent pros-
tate problems in aged men or an exacerbation of chronic
bladder stress incontinence in elderly women. Urinary in-
continence results in recurrent urinary tract infections and
fatal septicemia. Frontal-type stool incontinence is less
common but it also occurs in iNPH [25].

Obstructive Sleep Apnea

OSA is the most prevalent form of SDB in adults [27¢] affect-
ing about 20 million Americans. SDB is an independent vas-
cular risk factor—seldom diagnosed—that increases signifi-
cantly the risk of cardiovascular complications [28, 29]. OSA
was first reported by Gastaut and collaborators [30¢] in a
Pickwickian man with hypersomnia secondary to repeated
airway obstructions by the tongue during sleep. Despite its
prevalence, OSA remains grossly underdiagnosed: A recent
systematic review of 24 population-based sleep studies using
PSG among adults in the general population [31] found a
worldwide increase in the prevalence of OSA. Severe OSA
in older age groups reached an overall prevalence of 36% [32,
33]. A major risk factor for OSA is obesity, defined as a body
mass index (BMI) > 30 kg/m* [34]. OSA is a treatable cause
of hypertension [35, 36], type 2 diabetes mellitus [37], and
cardiovascular disease [28, 29], particularly atrial fibrillation
[38—40], as well as pulmonary hypertension [41, 42], stroke,
and transient ischemic attacks [43].
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Effects of OSA in Sleep

Early recordings of intracranial pressure during sleep demon-
strated variations in CSF pressure during different sleep stages
[44-46]. Table 1 provides a chronological summary of studies
demonstrating elevation of intracranial pressure linked to the
episodes of apnea in patients with OSA and concurrent iNPH.
Several groups confirmed the presence of apnea-associated
waves of increased CSF pressure (Lundberg B-waves) during
rapid eye movement (REM) sleep [47-60].

Apneas were preceded by a decrease in both arterial pres-
sure and intracranial pressure and by increasing central venous
pressure; this was reversed during the apnea along with low-
ering arterial SaO, and increase SaCO,. At the termination of
the apnea, a steep increase in arterial and intracranial pressures
occurred. Intermittent CSF pressure values as high as 750 mm
H,O were measured [54], well above the normal CSF pressure
range (100-180 mm H,O or §—15 mmHg), causing stress on

Table 1

the ventricular ependymal lining, the walls of the ventricles,
and the surrounding brain structures.

It should be remembered that the CSF circulation is called
“the third circulation” [61] because CSF production is linked
to systemic arterial pressure and CSF reabsorption to the cen-
tral venous pressure. This explains the interaction described
above between respiration and intracranial pressure. CSF is
produced by the choroid plexus inside the cerebral ventricles
from arterial blood at rates dependent on systolic blood
pressure.

After circulating in the ventricles and around the cerebral
and spinal subarachnoid space, CSF is reabsorbed into the in-
tracranial venous circulation at the level of the Pacchionian
granulations that protrude into the lumen of the cerebral venous
sinuses, particularly into the superior longitudinal sinus. The
CSF-venous blood admixture drains into the internal jugular
veins, then the brachiocephalic or innominate veins, the supe-
rior vena cava, and finally into the right atrium and the heart.

Early studies on the effects of obstructive sleep apnea on intracranial pressure, Sa0,, and PaCO,

Author/year Findings

Meyer et al., 1961 [47]

Pickwickian patient with papilledema, excessive sleepiness, hypoxemia, and hypercapnia;

lumbar puncture showed elevation of CSF pressure to 480 mm H,O.

Lugaresi et al.,

1978 [48]

lijima et al., 1979 [49]

Kaneda et al., 1983 [50];
Kuchiwaki et al.,

1983 [51]

Kuchiwaki et al.,

1984 [52]; 1988 [53]

45 OSA subjects: Arterial hypertension in 1/3 cases; all had transient hypoxemia and elevated PaCO, with sleep
apnea episodes; values worsened during REM sleep.

OSA: Arterial blood gases showed transient hypoxemia and hypercapnia with apnea episodes.

First described the association of OSA and NPH. ICP recording in patients with NPH showed increased ICP with
presence of Lundberg B-waves with each apnea episode.

17 patients with NPH and OSA showed elevation of CSF pressure during sleep apnea events.
CSF shunting in 13 cases failed to improve the hypoxemia and hypercapnia observed with OSA.

Authors suggested that OSA contributes to progression and worsening of hydrocephalus.

Sugita et al., 1985 [54]

3 patients with OSA: Marked increase of CSF pressure (50-750 mm H,0) measured at lumbar level following each

episode of OSA/hypopnea. Longer apneas during REM sleep resulted in worse SaO, decreases and higher

increases of CSF pressure.

Jennum and Bergesen, 1989 [55] 6 OSA patients (none with NPH): Each apnea event increased ICP. ICP at rest was high (> 15 mmHg) and also in the
morning (20-7 mmHg). While asleep, all patients developed apnea-associated elevated ICP.

Pasterkamp et al., 1989 [56]

1 patient with hydrocephalus treated with CSF shunt developed OSA years later: Rising intraventricular ICP up to

50 ecm H,O occurred with each episode of apnea probably contributing to worsening syringomyelia.

McNamara et al., 1992 [57]

NPH symptoms worsened with nasal CPAP in 1 patient with NPH; treatment of NPH with VPS allowed use of CPAP

with clinical improvement. CPAP and PEEP increase central venous pressure decreasing venous and CSF outflow,

causing increased ICP.
Krauss et al., 1995 [58]

In 13 NPH patients, sleep apneas caused elevation of intraventricular ICP with Lundberg B-waves.

Frequency of B-waves was higher during REM sleep and sleep stage 2.

Kristensen et al., 1998 [59]

Sleep-disordered breathing is very common in NPH: OSA was documented in 65% or 11/17 NPH patients.

VPS failed to ameliorate sleep-disordered breathing in patients with NPH.
OSA causes additional cognitive dysfunction in NPH patients.

Tsunoda et al., 2002 [60]

Using MRI, ventricular volume and intracranial CSF volume were increased in 17 patients with NPH;

compared with controls, brain atrophy was also present in NPH patients.

Abbreviations: CPAP, continuous positive airway pressure; CSF, cerebrospinal fluid; /CP, intracranial pressure; MR/, magnetic resonance imaging; NPH,
normal-pressure hydrocephalus; OSA, obstructive sleep apneas; PaCQO,, arterial partial pressure of carbon dioxide; PEEP, positive end-expiratory
pressure; REM, rapid eye movement; SaO,, arterial oxygen saturation; VPS, ventriculoperitoneal shunt
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SDB-Induced Intracranial Venous Hypertension

Figure 1 summarizes the main pathophysiological cardiovas-
cular mechanisms linking sleep apneas and hydrocephalus.
Fragmentation of the sleep architecture induced by apneas
reduces glymphatic circulation and further contributes to
iNPH.

Cardiovascular Mechanisms

In 2008, Williams [62] proposed that the main pathogenic
mechanism in hydrocephalus is intracranial venous
hypertension whereby the increased intracranial venous pres-
sure hinders CSF absorption through the arachnoid villae in
the dural sinuses resulting in excessive accumulation of intra-
cranial CSF. A number of studies have confirmed the postu-
lated venous hypertension hypothesis [63—66]. The cardiovas-
cular and metabolic mechanisms resulting from OSA capable
of inducing intracranial venous hypertension are summarized
in Table 2.

Obstructed breathing during sleep causes marked increase
of the negative intrathoracic pressure and hypoxemia. The
interruption of ventilation in OSA is usually due to relaxation
of pharyngeal and tongue muscles causing airway obstruction
at the pharynx [67—69]. This occurs most often during the
global loss of muscle tone and relaxation of muscles typical
of slow-wave NREM and REM sleep. The extrinsic muscles
of the tongue (genioglossus, geniohyoid) insert on the mandi-
ble’s inner surface. Slow-wave and REM sleep cause the jaw
to drop and the tongue to fall back blocking the airway.
Concurrent contracture of pharyngeal constrictor muscles fur-
ther closes the airway. Supine and open-mouth sleepers from
chronic obstruction of nasal passages tend to have more ap-
neas than those who sleep with a closed mouth or in lateral
decubitus.

Hypoxemia occurs as a result of the interruption of respi-
ration (apnea or hypopnea), lowering of PaO, with concomi-
tant hypercapnia from CO, retention, elevation of PaCO,, and
respiratory acidosis [69, 70]. Patients with severe OSA
(Apnea-Hypopnea Index, AHI >30/h) may exhibit > 60 ap-
neas per hour of sleep (i.e., > | apnea/min) with severe meta-
bolic consequences [66—71].

The main stimulus for respiratory inspiration is the activa-
tion by the low PaO, of carotid and aortic body chemorecep-
tors and brainstem respiratory chemoreceptors responding to
increased PaCO, and lower blood pH as a result of respiratory
acidosis. The net result of the stimulation of chemoreceptors is
the activation of rostral pontine respiratory neurons that in turn
stimulate firing of neurons in the solitary tract nucleus and the
dorsal medullary respiratory group and ventral group in the
nucleus ambiguus [72, 73].

Inspiratory impulses are carried by the phrenic and inter-
costal nerves, stimulating motor activity of the diaphragm,
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respiratory inspiratory muscles, and pharyngeal dilator mus-
cles. The contraction of diaphragm and intercostal muscles
results in expansion of the thoracic cavity. The inspiratory
effort concludes when pulmonary stretch afferences stimulate
the pontine apneustic center that in turn inhibits medullary
inspiratory neurons [72, 73].

These reflex attempts to breathe cause intermittent, often
violent, and strenuous respiratory efforts that involve chest
and abdominal musculature trying to overcome the obstruc-
tion of the airway to restore airflow. This is the Mueller ma-
neuver (the opposite of Valsalva’s) that generates severely
negative intrathoracic pressure (— 60 to —80 mmHg)
[68—71]. The resulting atrial distortion is a major risk factor
for atrial fibrillation [67-69, 74].

Suffocation is the end result of these unsuccessful respira-
tory efforts to improve oxygenation producing an acute stress
reaction with microarousals, awakening and disruption of
sleep due to the sympathetic (adrenergic) outburst resulting,
among other effects, in arterial hypertension, peripheral vaso-
constriction, hyperglycemia, and hypercoagulability [75-77].
OSA is the commonest cause of drug-resistant secondary hy-
pertension [78].

Subsequent reoxygenation and recirculation of hypoxic
and acidotic blood worsens hypoxemia and results in gen-
eration of reactive oxygen species (ROS), C-reactive pro-
tein (CRP), homocysteine (Hcy), and other inflammatory
factors [79, 80]. The recirculation of anoxic and acidotic
blood has major inflammatory effects and explains the
increased risk of coronary artery disease, stroke, and
small-vessel cerebrovascular disease found in patients
with OSA [66, 81].

The apnea-induced negative intrathoracic pressure opposes
the venous return to the heart resulting in elevation of venous
pressure in the superior vena cava and internal jugular vein
system. The authors propose that the end result of untreated
SDB is intracranial venous hypertension. This leads to reduc-
tion of the normal drainage of CSF into the superior sagittal
sinus and other dural sinuses eventually causing progressive
accumulation of CSF inside the ventricles, ventriculomegaly,
and symptomatic NPH.

The statistically significant association of OSA with NPH
is relatively novel [18] but the physiopathological vascular
and metabolic mechanisms have been amply supported in the
literature [66—71, 74-80]. For instance, pulmonary hyperten-
sion is a well-known effect of OSA [82] and positive end-
expiratory pressure (PEEP) [83—85] can increase central ve-
nous pressure, decreasing outflow and elevating intracranial
CSF pressure. Frydrychowski et al. [86] showed that acute
increases in jugular vein pressure induce elevation of intracra-
nial CSF pressure. Lee et al. [87] postulated a similar mecha-
nism to explain the induction of papilledema in obese subjects
with pseudotumor cerebri [87] particularly in the presence of
OSA [88].



Curr Neurol Neurosci Rep (2019) 19: 39

Page50f9 39

Awakenings
r— Arousals «
Absence of REM sleep Apnea
During REM-delta sleep the
jaw drops and the tongue
' blocks the airway

Reduced Glymphatic
circulation

A

* HYDROCEPHALUS

No CSF drainage
Elevated CSF pressure
(50-750 mmH20)
Intracranial Venous
hypertension
Decrease venous return
to the heart

A

Severe increase of negative
intrathoracic pressure -60 to
-80 mm Hg

Hypoxemia
Hypercapnia

Acidosis

v

Chemoreceptors activated
by low PaO, - high PaCO,

¢‘

Sympathetic activation:
Hypertension Tachycardia

Coagulation Inflammation

§ ¥
|

Brainstem orders to breathe

Increased risk of cardiac

arrhythmia, sudden death
and stroke

Repeated inspiratory
effort against tongue-
blocked airway

Fig. 1 In subjects with SDB, sleep apneas occur more frequently during
deep sleep stages, i.e., REM sleep and delta sleep. Muscle paralyses
typical of deep sleep stages lead to opening of the mouth and relaxation
of tongue muscles (top central image). The resulting apnea (right arrow)
causes hypoxemia, hypercapnia, and acidosis that activate arterial
chemoreceptors. In turn, this activation is answered by respiratory
brainstem nuclei, which order the inspiratory muscles to inhale
(downward green arrow). Repeated inspiratory movements against the
closed airway cause severe increase of negative intrathoracic pressure
(=60 to —80 mmHg), decrease of venous return to the heart,
intracranial venous hypertension, absence of CSF drainage into the

Alterations of Glymphatic Circulation in iNPH

The glymphatic (glial-lymphatic) pathway of the brain
[89¢e, 90°¢] directs the flow of CSF along arterial
perivascular spaces into the brain interstitial spaces, facili-
tated by aquaporin 4 (AQP4) water channels [91, 92]. CSF
circulation in the glymphatic system in rodents increases
twofold during deep delta sleep and correlates with increase
in AQP4 [90¢]. The flow of CSF reaches the venous
perivascular and perineuronal spaces, ultimately draining
into meningeal and cervical lymphatic vessels. The overall
function of the glymphatic system is the clearance of the
brain parenchyma from metabolic leftovers and interstitial
solutes including beta amyloid. Decreased brain clearance

venous sinuses, and hydrocephalus. Sleep apneas also cause
fragmentation of the sleep architecture (top central image, left arrow)
with arousals and awakening, as well as lack of REM sleep. Absence of
REM sleep is accompanied by decreased glymphatic circulation of CSF,
which contributes to hydrocephalus. The metabolic consequences of the
sleep apnea syndrome are illustrated on the right side of the diagram and
result from sympathetic activation, with tachycardia, hypertension,
activation of coagulation mechanisms, and systemic inflammatory
responses that increase the risk of cardiac arrhythmias, sudden death,
and stroke

may contribute to the development of neurodegenerative
diseases [91].

In patients with iNPH, Hasan-Olive et al. [93] performed
electron microscopy studies in cortical brain biopsies and
demonstrated reduced density of AQP4 water channels in as-
trocytic end-foot membranes along cortical microvessels.
Ringstad et al. [94e¢] utilized intrathecal gadobutrol MRI in
subjects with iNPH and observed delayed clearance of the
CSF tracer due to resistance to glymphatic flow.
Parenchymal glymphatic enhancement peaked overnight as
an effect of sleep but glymphatic clearance was clearly de-
creased in iNPH patients. According to Ringstad et al.
[94+¢], the decreased glymphatic clearance explains the de-
layed periarterial enhancement of glymphatic flow and the

@ Springer



39 Page 6 of 9

Curr Neurol Neurosci Rep (2019) 19: 39

Table 2 Pathophysiological mechanisms relevant to iNPH induced by
apneas during sleep

* Recurrent hypoxemia (low PaO,) hypercapnia (elevated PaCO,) and
respiratory acidosis (low blood pH)
* Activation of carotid and aortic chemoreceptors

» Stimulation of rostral pontine respiratory neurons

» Firing of solitary tract nucleus neurons, dorsal medullary respiratory
group, and ventral group nucleus ambiguus
* Repeated reflex contractions of respiratory chest and abdominal muscles

* Thoracoabdominal excursions greatly increase negative intrathoracic
pressure

* Superior vena cava and intracranial venous hypertension in the dural
sinuses

Decreased CSF absorption through Pacchionian granulations
(arachnoid villae)

Tachycardia from atrial Bainbridge reflex
* Sympathetic (adrenergic) outburst
Arterial hypertension
Baroreceptor reflex activation
Peripheral vasoconstriction
Hyperglycemia
Hypercoagulability
* Inflammation from recirculation of hypoxic-acidotic blood
C-reactive protein (CRP)
Nuclear factor-kB (NF-«B)
Hyperhomocysteinemia
Interleukin-6 (IL-6)
Tumor necrosis factor alpha (TNF-«)

reflux of gadobutrol into the lateral ventricles typical of iNPH.
Reduced glymphatic function probably related to abnormal
sleep resulting from SDB may be instrumental in the patho-
genesis of iNPH.

Conclusions

The pathogenesis of iNPH has remained enigmatic during the
half century since its description. However, the association of
SDB and iNPH was well documented and studied in the years
that followed the first accounts of these two conditions in
1965 [24e, 30+]. The pathophysiological interactions between
respiration and CSF circulation have been solidly established
since then [66]. However, those earlier observations were es-
sentially forgotten until we rediscovered the interaction by the
systematic assessment of sleep in all patients evaluated at our
Memory Disorders and Dementia Clinic [18+¢]. Recent and
future discoveries of sleep physiology relevant to cognitive
disorders of aging should continue to increase our understand-
ing of iNPH perhaps opening new venues for treatment and
prevention.
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