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Detecting overlapping 
communities in complex networks 
using non‑cooperative games
Farhad Ferdowsi* & Keivan Aghababaei Samani

Detecting communities in complex networks is of paramount importance, and its wide range of real-
life applications in various areas has caused a lot of attention to be paid to it, and many efforts have 
been made to have efficient and accurate algorithms for this purpose. In this paper, we proposed a 
non-cooperative game theoretic-based algorithm that is able to detect overlapping communities. In 
this algorithm, nodes are regarded as players, and communities are assumed to be groups of players 
with similar strategies. Our two-phase algorithm detects communities and the overlapping nodes in 
separate phases that, while increasing the accuracy, especially in detecting overlapping nodes, brings 
about higher algorithm speed. Moreover, there is no need for setting parameters regarding the size 
or number of communities, and the absence of any stochastic process caused this algorithm to be 
stable. By appropriately adjusting stop criteria, our algorithm can be categorized among those with 
linear time complexity, making it highly scalable for large networks. Experiments on synthetic and 
real-world networks demonstrate our algorithm’s good performance compared to similar algorithms 
in terms of detected overlapping nodes, detected communities size distribution, modularity, and 
normalized mutual information.

Complex relationships between components existing in society, technology, biology, economy, and other various 
fields, in many cases, can be modeled as complex networks by regarding components as nodes and relationships 
as edges1. As a consequence, all of the tools available for complex networks analysis could be applied to extract 
valuable information about the under investigation system. An important consideration of network structures 
is the possibility of classifying nodes into groups or communities2. Indeed, it is observed that many  real-world 
networks have a community structure3. In a network, It is a crucial issue how to define communities, and its 
definition has to be problem-driven. Defining communities in complex networks is a multi-faceted issue that 
has been addressed and discussed in many studies4. However, according to its general definition, In a network, 
community refers to a group of nodes that are densely connected internally and have a sparser connection with 
the rest of the network3. Detecting communities is of great importance since nodes in a community usually have 
similarities in function, property, and characteristics5. For instance, community detection in the network of 
protein-protein interaction could reveal groups of closely connected proteins that possess an identical function 
in the body6. The discovery of community structure can be constructive in many fields, such as drug discovery7, 
precision marketing8, brain neural network9, online social interaction analysis10, and public opinion analysis11. 
Network communities typically can be categorized into two types. Disjoint communities with no shared members 
(also called non-overlapping communities or partitions) and overlapping communities with shared members 
(also called covers). Examples of overlapping communities are widely seen in the real world. Researchers, based 
on their various research interests or multiple affiliations, can be a member of more than one research group, 
or a gene can be involved in causing various diseases12. As a result, it is crucial to design community detec-
tion algorithms that be able to identify overlapping nodes. In recent years, a variety of approaches, including 
greedy algorithms based on modularity optimization3,13, label propagation algorithms (LPA)14, Stochastic block 
models15, and Edge betweenness algorithms, have been employed for this purpose13.

The use of game theory in this context was initialized by Athey and Jha in 2006 to model an organiza-
tion’s workers interaction16 and followed by a game theoretic-based algorithm proposed by Chen in 201017,18. A 
comprehensive discussion of game theoretic-based methods for detecting community structure in networks is 
provided in a survey done by Jonnalagadda and Kuppusamy18. However, the number of game theoretic based 
algorithms proposed in the last decay is not very large, and most of them are not scalable for large networks12. 
Community detection algorithms using the game theory are typically based on cooperative or non-cooperative 
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games. Our proposed algorithm is based on the non-cooperative game in which nodes are assumed as rational 
selfish players who decide to be part of the communities which bring them the most profit. Although our algo-
rithm is designed to detect overlapping communities, in contrast with similar algorithms, nodes are not allowed 
to be part of multiple communities before the exact boundaries of communities are determined (phase one), and 
overlapping nodes are identified in phase two. Such two phases algorithm not only increase accuracy but also, 
along with the appropriate stop criterion used in current work, speed up convergence. Moreover, in the present 
work, players have only local interactions, which leads the algorithm to be more effective than some other game 
theoretic-based algorithms in which interaction with all nodes is considered in the utility function17,19,20. The 
remainder of this paper is organized as follows. In the next section, the framework of the proposed algorithm and 
related definitions are given, and it is followed by a discussion on the time complexity of the algorithm. Afterward, 
the experimental results of our algorithm and its comparison with some other state-of-the-art algorithms are 
given. Finally, the concluding remark is stated.

Proposed algorithm
The proposed algorithm consists of two phases. The non-cooperative game is the basis of the first phase leading to 
non-overlapping community detection, while in the second phase, the overlap of the communities is determined. 
The game-theoretic framework is based on considering each node as a selfish agent trying to maximize its payoff 
by choosing different strategies, and each agent’s choice can influence the other ones’. Strategy is a term in game 
theory that in the current context, refers to the communities in which the agent wants to participate. Based on 
this, each agent’s strategy si is actually a list of community labels it is a member of, and the strategy profile of all 
agents is defined as S = (s1, s2, . . . , sn) . As stated, each agent aims to maximize its payoff, which for the agent vi 
is represented through a utility function defined as follows.

Where aij is the adjacency matrix element; si is the strategy of agent vi , and S−i is the strategy profile of all agents 
but her; |si ∩ sj| is the number of common labels between agent vi and vj ; and |sj| is the number of communities 
agent vj belongs to. Unlike some other game-theoretic overlapping community detection algorithms, in phase 
one agents are not allowed to acquire multiple labels and consequently, expression (|si∩sj |)

(|sj |)
 can only have two 

values of 0 or 1. Also, in this phase agents are only allowed to do switch operation among different community 
labels. In utility function, simij is the similarity between agents vi and vj , which can be calculated through different 
available metrics as follows.

Where Ŵi and Ŵj denote the neighbors of agents vi and vj , respectively. The proposed algorithm results do not 
significantly depend on different similarity metrics except for a few special cases. However, represented results 
have been obtained using HP similarity, which slightly performs better than other similarity metrics. The algo-
rithm starts with an initial condition in which each agent vi is assigned to a singleton community ci . Next, in each 
iteration, all agents, by order of their degrees, update their strategy by imitating their neighbors with the aim of 
maximizing payoff. For more clarity, the phase one framework is given in Algorithm 1 in Fig. 1.

Lines 4 to 23 repeat until the stop criterion is met and finally agents with the same label belong to the same 
community. The stop criterion should be defined in a way that satisfies accuracy and efficiency at the same time. 
In the proposed algorithm, there are some cases in which some agents’ strategy fluctuates permanently, and some 
other agents need too many iterations to reach their stable one. Since a minimal number of agents often fall in 
such category, defining a stop criterion that ignores such agents’ stability could speed up the algorithm without 
significant loss of accuracy. For this reason, instead of waiting for all agents’ strategy to be fixed, the stop criterion 
is satisfied as soon as the number of agents with a fixed strategy does not increase more than a specific value. 
This value in each iteration �stop is defined as a fraction of fixed agents number nfixed in the previous iteration.

(1)U(S−i , si) =
∑

aij �=1

(1+ simij)
|si ∩ sj|
√

|sj|

(2)Jaccard coefficient(JC) : simJC
ij =

|Ŵi ∩ Ŵj|

|Ŵi ∪ Ŵj|

(3)Saltin index (SI) : simSI
ij =

|Ŵi ∩ Ŵj|
√

|Ŵi||Ŵj|

(4)Sorensen index (SO) : simSO
ij =

2|Ŵi ∩ Ŵj|

|Ŵi| + |Ŵj|

(5)Hub promoted index (HP) : simHP
ij =

|Ŵi ∩ Ŵj|

min(|Ŵi|, |Ŵj|)

(6)Hub depressed index (HD) : simHD
ij =

|Ŵi ∩ Ŵj|

max(|Ŵi|, |Ŵj|)

(7)�stop = ǫ.nfixed
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By adjusting ǫ value, a balance between accuracy and efficiency can be obtained. Variation of relative phase 
one execution time (execution time divided by longest execution time) and relative NMI (Obtained NMI divided 
by the best achievable NMI) obtained for LFR synthetic networks is represented in Fig. 2. According to the results, 
nonzero but small values of ǫ such as 0.005 and 0.01 can reduce phase one elapsed time while giving accept-
able accuracy. The effect of ǫ value on the scalability of the algorithm will be discussed more in the algorithm 
complexity section.

Phase two is responsible for finding overlapping nodes. In some non-cooperative game-theoretic algorithms, 
a loss function is used as a method for controlling multiple memberships of agents17,19–21. In such a method mul-
tiple membership criteria usually are defined in a way that is similar for all nodes in spite of different conditions 
they may have. Moreover, in some other algorithms like22,23, the manually defined threshold is responsible for 
determining multiple memberships of nodes. Nevertheless, in our algorithm, this criterion is defined uniquely 
for each agent based on payoffs it acquires from membership in different communities. Accordingly, phase two 

Figure 1.   Phase one and Phase two framework algorithms.

Figure 2.   Effect of ǫ value on algorithm accuracy and elapsed time.
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contains two stages. In the first stage in which payoff thresholds are calculated, the following operations should 
be done for each agent: 

1.	 Calculating payoffs that agent acquires by Adopting any of community label available in its neighborhood.
2.	 Normalizing all obtained payoffs with respect to maximum payoff the agent has obtained.
3.	 Finding payoff threshold for the agent by calculating root mean square of normalized payoff values obtained 

for that agent.

In the following stage, each agent adds community labels that have a payoff above her payoff threshold value to 
her strategy. The framework of phase two is given in Algorithm 2 in Fig. 1.

Finally, each agent belongs to all communities which those labels exist in its strategy list. In networks with 
a high degree of overlap, it is very probable for overlapping nodes to be connected with other overlapping nodes. 
In such cases, repetition of phase two can help discover overlapping nodes more reliably. For more illustration, a 
toy model representing community structure before and after applying each phase is shown in Fig. 3.

It should be noted that described phase two returns crisp communities with binary membership coefficient 
of nodes in different communities. Although often it is the desirable form, sometimes the fuzzy communities are 
more suitable for the intended use. In such cases, the normalized payoff values of each agent are representative 
of that agent’s fuzzy membership coefficients.

Time complexity of algorithm
The proposed algorithm consists of three parts. The first one is initialization which requires O(n), where n is 
the total number of nodes. In phase one, the outer loop continues until stop criterion satisfaction. In inner loops, 
for each agent, the payoff should be calculated for all labels in the neighborhood, which is maximally equal to 
the number of the agent’s neighbors. Therefore, phase one requires O(T.n.K) on average, where K is the aver-
age degree and T is the maximum iteration. In some other algorithms, T is defined manually. In the proposed 
algorithm, although the maximum iteration number is determined dynamically based on stop criterion satisfac-
tion, it does not depend on n or the total number of edges m if the network topology is kept the same and if the 
ǫ value is selected appropriately. For LFR synthetic networks, the variation of the maximum iteration number 
for three small values of ǫ were calculated as a function of n and m (Fig. 4a,b). As it can be seen, especially for 
small nonzero values of ǫ the maximum iteration number does not depend considerably on n or m. Phase two 
has a similar calculation structure as the inner part of the phase one algorithm. Considering the second phase 
repeats  two times, it requires O(2n). Therefore, the time complexity of the entire algorithm is O(n) in sparse 
networks and O(m) in arbitrary ones. For a naive implementation of the algorithm, Fig. 4c,d shows the execution 
time for LFR synthetic networks. As it can be seen, for ǫ value of 0.01, the execution time is just slightly slower 
than linear growth.

Experimental results and comparison
With the aim of evaluating our proposed algorithm performance, we compare it with some other algorithms 
named GAME117, GAME224, GAME325, SLPA22, OSLOM26, CPM27, GCE28 and LFM29. GAME1 is based on 
non-cooperative game theory with the time complexity of O(m2) . GAME 2 and GAME3 are based on coopera-
tive game theory with the time complexity of O(n2) and O(n.log(n))+ O(n.kmax) , respectively ( kmax is graph 
maximum degree). Our algorithm results in this section are obtained by set ǫ value to 0.01. Other algorithms’ 
results are extracted from those algorithms’ original papers or comparative study papers30. In these papers for 
algorithms with tunable parameters, it is stated that the results with the best setting are reported.

Figure 3.   The toy example to illustrate the performance of each phase.
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Evaluation criteria.  There are various metrics in order to evaluate obtained results of algorithms, and it is 
often challenging since no canonical solutions are available31. A comprehensive discussion about the relation-
ship between the topological properties of the community structure and the alternative evaluation measures and 
reliability of different evaluation criteria has been addressed in many studies32. In the first place, choosing appro-
priate evaluation criteria depends on whether there is known ground truth for the examined network. In the 
cases with known ground truth, different evaluation measures, including Average F1 score (AvgF1)33, Adjusted 
Rand Index (ARI), which ensures that the value of random clustering is close to zero, Omega Index34, which is 
the overlapping version of ARI30 and adopts the number of clusters that each pair of nodes shares, to compare the 
detected communities versus ground truth communities, and Normalized Mutual Information (NMI)35, derived 
from information theory, are widely used. In the current work, we used AvgF1 and an extended version of NMI, 
which is appropriate for comparison of two overlapping community structures29. The closer value of NMI or 
AvgF1 to 1, the more similar the detected community structure to ground truth; and the 0 value indicates the 
least similarity.

When it comes to testing the performance of overlapping community detection algorithms, especially when 
the ground truth of communities is unknown, the Qov is a well-known and frequently used metric36. It is an 
extension of the classical modularity, and the higher value of this means the better-detected communities. For 
directed networks this metric is defined as follows:

By applying minor changes as follows, it can be used for undirected networks:

The components of this equation is given by:

(8)Qov =
1

m

∑

c∈C

∑

i,j∈V

[

βl(i,j),cAj,j −
βout
l(i,j)k

out
i β in

l(i,j)k
in
j

m

]

(9)Qov =
1

2m

∑

c∈C

∑

i,j∈V

[

βl(i,j),cAj,j −
β

′

l(i,j)kiβ
′

l(i,j)kj

2m

]

Figure 4.   (a, b) Phase one average max iteration as a function of n and m. (c, d) Entire relative algorithm 
execution time as a function of n and m. Results of a and c is obtained for LFR networks with k = 10 . Results of 
b and d is obtained for LFR networks with n = 5000.
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where α(i,c) is the belonging coefficient of node i to community c and p in f(x) is an arbitrary value that in the 
current study is set to 30.

Synthetic networks.  One of the most famous benchmark networks is synthetic networks called LFR which 
can be generated by the method proposed by Lancichinetti and Fortunato37. While in real-world networks, 
degree correlation among nodes is clearly nonzero, and the transitivity is relatively high, networks generated by 
LFR method have near-zero degree correlation and low transitivity38–40. Despite this drawback and some other 
limitations of LFR method, these networks still exhibit relatively very high realistic properties, and considering a 
large amount of experimental data available from the test of other algorithms on them, LFR networks are among 
the most proper choices for community detection algorithms performance test. In the networks made by this 
method 10 parameters are adjustable. By setting these parameters, we generated 6 groups of LFR networks for 
the performance tests, as shown in Fig. 5. The mixing parameter µ refers to the fraction of links through which a 
node connects to other nodes in other communities; kini = (1− µ)ki . τ1 and τ2 are exponents of power-law dis-
tribution of node degrees and community sizes, respectively. Furthermore, overlapping features of LFR network 
are controlled by Om (the number of communities to which each overlapping node belongs) and On (the frac-
tion of nodes that belongs to more than one community). It should be noted that for our algorithm performance 
test on LFR networks, we have reported averaged results of runs over at least 10 instantiations of these networks 
for each parameter set.

The NMI values for results obtained using our proposed and other algorithms are represented in Fig. 6. As 
expected, by increasing Om, the NMI values gradually decrease. However, it is observed that in most cases, 
our algorithm outperforms others, especially in synthetic networks with smaller community sizes and more 
overlapping nodes.

When it comes to networks with overlapping communities, evaluation of a community detection algorithm 
performance must include checking the number of identified overlapping nodes, which is one of the important 
parameters determining the algorithm’s accuracy. Overlapping nodes play a crucial role in real-world social 
networks considering the fact they usually act as bridges or messengers between communities30. Identified On 
detected by proposed and other algorithms for two groups of LFRs with ground truth On of 0.1 and 0.5 are shown 
in Fig. 7. Overlapping nodes identified by our algorithm increase gradually by the increase of Om. This trend is 
in contrast with other algorithms except SLPA in LFR3 network.

Aiming to find more comprehensive insight into algorithms performance, it would be beneficial to investigate 
the distribution of detected community sizes (CS). For this purpose, we used algorithms results on LFR3 averag-
ing on all values Om and 10 instantiations of these networks. In the histogram of community sizes which is shown 
in Fig. 8, small fluctuations were omitted by representing fitted curves instead of raw data. For comparison, the 
ground truth power law distribution is visible in each histogram. Except for ours and SLPA algorithms, other 
algorithms have remarkable weaknesses in detecting larger size communities. Besides, some algorithms tend to 
break communities into smaller parts that cause distribution concentration in the range of small communities 
which do not exist in real distribution. Although such miss clustering occurs to some extent by our algorithm, it 
is not as much as some other algorithms such as GAME1, LFM, and especially CPM and OSLOM. Particularly, 
results demonstrate the relatively better performance of our algorithm in detecting larger communities.

(10)β
′

l(i,j) = βout
l(i,j) =β in

l(i,j) =

∑

i∈V F(αi,c ,αj,c)

|V |

(11)βl(i,j) =F(αi,c ,αj,c)

(12)kouti = kini =ki

(13)F(αi,c ,αj,c) =
1

(1+ ef (αi,c))(1+ ef (αj,c))

(14)f (x) = 2px − p, p ∈ R

Figure 5.   LFR synthetic networks used for performance tests.
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Real networks.  In order to further evaluation of the proposed algorithm, we tested its performance on 
some real-world networks. Eight real networks have been chosen for this test, and  their description can be 
observed in Fig. 9 (Data for the last three larger networks are available at http://​snap.​stanf​ord.​edu). As an evalu-
ation measure, for the first six networks and for the last two ones, the overlapping modularity and AvgF1 score 
were used, respectively.

Stack bar chart of Qov for obtained community structure of first six networks by ours and other algorithms 
are shown in Fig. 10. Such illustration makes us able to compare the overall performance of algorithms on all six 
networks. Our algorithm gets Qov value for Dolphins, Football, Polbooks, and PGP, which is slightly higher than 
other algorithms. Moreover, the sum of Qov obtained by our algorithm is higher than the others. As an example, 
the community structure of the karate network, which is obtained by our algorithm, is shown in Fig. 10. This net-
work is of traditional importance and was studied by Wayne W. Zachary for three years, from 1970 to 197241. The 
ground truth of this network that was observed by Zachary contains two communities represented in Fig. 10. As 
it can be seen, the detected community structure is exactly fitted to ground truth if excluding node 10. However, 
locating node 10 in the overlapping of two communities is sensible, considering its equal connection with both.

Figure 6.   Comparative NMI value for proposed and other algorithms on LFR synthetic networks listed in 
Fig. 5.

Figure 7.   Overlapping nodes fraction detected by proposed and other algorithms in LFR3 and LFR4.

http://snap.stanford.edu
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Figure 8.   Histogram of detected community sizes for LFR3 (averaged on all Om). In each plot, the height of 
peaks is written next to them if they locate out of the frame.

Figure 9.   Real networks in test.

Figure 10.   (a) Ground truth and detected community structure of karate network. (b) The Qov value obtained 
by proposed and other algorithms on first six real-world networks.
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For the last two larger networks, which have know community structure, the bar chart of AvgF1 scores for 
obtained community structure by ours and other algorithms are shown in Fig. 11. For these networks, in addition 
to previously used algorithms, the result of BigClam33 and GLEAM5 algorithms are represented for comparison. 
Data related to other algorithms’ performance on these two networks are extracted from GLEAM algorithm’s 
original paper5. Based on the results represented in 11, it can be seen that the proposed algorithm, along with 
the GLEMAo algorithm, has the best performance in the detecting community structure of these two networks.

Conclusion
In this paper, we proposed a novel game theoretic-based algorithm for community detection in networks. The 
algorithm performance test on synthetic and real-world networks indicates our algorithm has a relatively better 
performance compared with similar algorithms presented in the literature. Our proposed algorithm has a time 
complexity of O(m), making it a good choice for applying on ultra-large networks. Besides, no stochastic fac-
tors are influencing the process of community detection, which eliminates the need for multiple executions and 
averaging of results and causes our algorithm to be categorized among stable ones. In addition, this framework 
can be straightforwardly applied to weighted networks by making minor changes.

Data availability
All data generated or analyzed during this study are included in this published article. The proposed algorithm 
python code is available in the Supplementary Material.
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