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Objectives: The performance of mortality prediction models remain a challenge in

lower- and middle-income countries. We developed an artificial neural network (ANN)

model for the prediction of mortality in two tertiary pediatric intensive care units

(PICUs) in South Africa using free to download and use software and commercially

available computers. These models were compared to a logistic regression model and a

recalibrated version of the Pediatric Index of Mortality 3.

Design: This study used data from a retrospective cohort study to develop an

artificial neural model and logistic regression model for mortality prediction. The outcome

evaluated was death in PICU.

Setting: Two tertiary PICUs in South Africa.

Patients: 2,089 patients up to the age of 13 completed years were included in the study.

Interventions: None.

Measurements and Main Results: The AUROC was higher for the ANN (0.89) than

for the logistic regression model (LR) (0.87) and the recalibrated PIM3 model (0.86). The

precision recall curve however favors the ANN over logistic regression and recalibrated

PIM3 (AUPRC = 0.6 vs. 0.53 and 0.58, respectively. The slope of the calibration curve

was 1.12 for the ANN model (intercept 0.01), 1.09 for the logistic regression model

(intercept 0.05) and 1.02 (intercept 0.01) for the recalibrated version of PIM3. The

calibration curve was however closer to the diagonal for the ANN model.

Conclusions: Artificial neural network models are a feasible method for mortality

prediction in lower- and middle-income countries but significant challenges exist. There is

a need to conduct research directed toward the acquisition of large, complex data sets,

the integration of documented clinical care into clinical research and the promotion of the

development of electronic health record systems in lower and middle income settings.
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INTRODUCTION

Prediction ofmortality in the pediatric intensive care unit (PICU)
has applications in clinical care. The most prevalent application
for such predictive models in the PICU setting is standardized
evaluation of PICU services by evaluating observed mortality
against predicted mortality (1–7). Reliable prognostic estimates
may also allow providers to inform families of the likely outcome
of patients admitted to intensive care units although limitations
in the performance of current models at an individual level
hamper their use in patient care (8). Predictive models may also
be useful to evaluate usage of scarce resources by identifying
futility (9). This goal is highly relevant in resource limited
settings, where ensuring equitable and justifiable access to limited
resources in a key concern (10, 11).

Currently the Pediatric Index of Mortality 3(PIM3) is
applied in our setting to monitor unit performance (2). The
application of several existing mortality prediction scores has
been investigated in lower income countries (6, 12–15). Model
performance has been variable in these settings with calibration
and discrimination having been cited as challenges (12, 13, 16,
17). Beyond this, the clinical applications of such models in these
settings are constrained by the large numbers of variables or
the necessity for laboratory values within these models (15). It
has been proposed that miscalibration indicated by significant
Hosmer Lemeshow(HL) p-values are likely due to better or
worse standards of care in the evaluated PICU as compared to
the development study group (18). In their recent evaluation
of PIM3 in South Africa, Solomon et al. found PIM3 to be
poorly calibrated in a multicenter prospective study in South
Africa. They suggested that significant HL p-values in South
Africa may be due to case-mix differences between the studied
population and the derivation population (13). This supports the
need investigate and develop suchmodels in these settings. In this
study we investigate ANNs as a novel method for this application,
but also apply the standard method of logistic regression, both to
the development of a newmodel and a recalibration of an existing
standard model (PIM3).

Machine learning techniques for a range of biomedical
applications have become prevalent in the medical literature.
These techniques emphasize learning from available data
and exist on a spectrum defined by the degree of human
involvement and the reciprocal autonomy of computer systems
in the operations of these algorithms. This spectrum includes
conventional statistical approaches such as logistic regression
models with high levels of human input on one end, with
increasing levels of computer autonomy in classical machine
learning and high levels of computer autonomy in deep learning
models such as convolutional neural networks (19). Advanced
machine learning algorithms offer an ability to engage with
complexity and non-linearity that make them an appealing tool
for a wide range of new applications such as image recognition
with convolutional neural networks (20) and time series analysis
with recurrent neural networks (21) and existing applications
such as prediction of end-points such as mortality (22). Recently,
several studies have reported the use of machine learning
approaches with encouraging results (21, 23–25). To date, the full

extent to which machine learning approaches can be applied in
pediatric research has not been fully explored, but, as Londsdale
et al. point out, the opportunities for improving patient care are
substantial (26).

Artificial neural networks are computational structures
designed to emulate the organizational functioning of biological
neurons (27). Connected input, hidden and output layers make
up the structure of artificial neural networks. Numerical values,
called weights, determine the strength of connection between
neurons in each layer. Outputs of neurons are determined by a
mathematical function, the activation function that takes in the
inputs to input neurons, weights of connections and threshold
terms of each neuron (28). Artificial neural networks used in
supervised classification tasks such as described in this study
are referred to as perceptrons. Weights are adjusted through
stochastic gradient descent (25).

An accurate and complete assessment of the predictive
performance of developed models is a crucial step in their
development. Performance is most often reported in terms of
discrimination (the receiver operating characteristic curve -
ROC and the area under the receiver operating characteristic
curve – AUROC). These metrics provide a model-wide, visually
interpretable view of model performance. While ROC and
AUROC are the most reported metrics of model performance,
their use in isolation may lead to optimistic reports of model
performance in imbalanced data sets such as can be expected in
most mortality prediction models. For this reason, the precision-
recall plot (PRC) and area under the curve for the PRC (AUPRC)
may be more informative metrics for the evaluation of such
models. The PRC relates precision (also called positive predictive
value [True Positives/(True Positives + False Positives)] and
recall (also called sensitivity; True Positives/[True Positives +

False Negatives)]. And provides a model-wide evaluation of
performance. The AUPRC, similarly allows comparisons between
models. As opposed to the AUROC where the baseline value
for random classifiers is 0.5. The value for random classifiers in
the case of the AUPRC is not fixed, but rather corresponds to
the proportion of positive class [Positive/(Positive + Negative)].
The AUPRC of a perfect classifier is 1.0. (29). Calibration is a
frequently neglected performance metric (30–33). This metric
refers to the concordance between predicted probabilities of
models and real probabilities of the investigational event (34).
The utility of mortality prediction models for quality auditing,
counselling of family, risk stratification in research or for
evaluation of rationing of services is related to a reliable fit
between posterior probabilities and the real likelihood of the
outcome. Van Calster and Vickers demonstrated with simulation
data, that miscalibrated models degraded Net Benefit of models
and even caused harm where models underestimated risk at
a threshold below the event rate or overestimated risk at a
threshold above event rate (32). Van Calster et al. suggest that
the calibration of models can be characterized in the mean
(average probabilities vs. event rate), weak (calibration intercept
and calibration slope), moderate (the closeness of a flexible
calibration curve to the diagonal) and strong calibration (the
utopic, perfect or near perfect calibration of predictions to event
rates for all categories of prediction) (34). This study followed
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the Transparant Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) guidelines (35).

In this exploratory study, we identified prognostic factors
for mortality in the PICU and used these features to develop
ANN and LRmodels for PICUmortality prediction. The features
collected were those previously used in PIM3 and features
relevant to the data set were determined by a wrapper algorithm
in the case of the ANN and by multivariate logistic regression for
the LR model. The LR model, a recalibrated version of PIM3 the
calculated PIM3 score from the original model were compared to
the performance of the ANNmodel.

METHODS AND MATERIALS

Ethics Approval
Internal review board approval of this study was obtained from
Health Sciences Research Ethics Committee of the University of
the Free State (UFS – HSD2021/0091/2906) and the Free State
Department of Health (FS202102 019).

Objectives
The objective of this study was to explore the use of ANNs
as a machine learning method for mortality risk prediction
in PICU in a lower-middle income (LMIC) setting. This was
achieved through the following subobjectives: (1) AnANNmodel
was developed, trained, and tested without the use of advanced
computing infrastructure. (2) The performance of this model was
evaluated and compared to the performance of an LR model (as
a common, well-recognized method used for this application)
developed on the same data set as well as a version of PIM 3
recalibrated on this data set.

Study Setting
Patients from two tertiary hospitals were included in this
retrospective cohort study. Patients under the age of 13
completed years were admitted to the PICU of Pelonomi
Tertiary Hospital and Universitas Tertiary Hospital from
January 2017 to January 2021. Each of these PICUs have 5 beds,
providing life supporting care including advanced monitoring,
high-flow nasal oxygen, non-invasive ventilation, conventional
ventilation, high frequency oscillatory ventilation, vasoactive
medication, renal replacement therapy and neuroprotective care
including intracranial pressure monitoring. Each of these PICUs
admit ∼250 patients per annum. Clinical staffing includes a
paediatric intensivist and paediatric critical care trainee together
with paediatric specialty trainees and paediatric hospitalists after
hours. These centralized PICUs provide paediatric critical care
services to the state sector primarily in the Free State Province
of South Africa but also advanced services on a referral basis to
patients from the Northern Cape Province and Lesotho. A wide
spectrum of patients are provided care in our setting. Pelonomi
Hospital provides predominantly care for acute illness and
trauma, including burns, but also provides perioperative care for
paediatric surgery, neurosurgery and spinal surgery. Universitas
Hospital provides predominantly peri-operative care (paediatric
surgery, neurosurgery, orthopaedic surgery, ophthalmology,
otorhinolaryngology and urology) and paediatric subspecialty

referrals (including paediatric oncology and cardiology).
Referrals include patients from within the two hospitals, either
from Emergency Department, paediatric wards or operating
theatre as well as referrals from remote facilities. Patients include
patients from urban, peri-urban and rural populations and
are generally uninsured. Emergency transport services are
limited in our setting, with one operating ambulance capable
of intensive care transportation, one helicopter ambulance
across the province. Emergency services are also limited, with
no dedicated paediatric resuscitation service or dedicated
Emergency Medicine specialty department.

Approach
The approach employed in this study is one of a wide range of
approaches to the highly complex task of mortality prediction.
In our setting, PIM3 has been employed since 2017 as part of
quality control monitoring and benchmarking. PIM3 offers the
advantage of only requiring a single data collection on admission
to the PICU. It, however, does not predict time to death or
make use of changing time series data, which are limitations.
Approaches capable of making dynamic continuous predictions
of PICU mortality using convolutional or recurrent neural
networks have been described (23, 24). In our setting, however,
we currently do not have a means of collecting continuous time
series data from patients as these recordings are still recorded
by hand at the bedside. As a result, the largest dataset is that
is available to us is from our use of PIM3. This approach
does however allow investigation of a novel method with the
same advantage of PIM3 and lay a further foundation for
developing strategies to make machine learning viable in critical
care environments in LMICs.

Study Population and Sampling
The sample included all 2,089 records in the data set. Necessary
sample size was determined both in terms of the total required
sample size and the required events per variable recommended
for logistic regression. Applying the rule of thumb of a minimal
sample size of 500 and n = 100+ 50i where i is the final number
of independent variables in the model (36), a sample size of
2,089 records could accommodate a model of up to 39 variables
from the perspective of total sample size. In terms of events per
variable (in this instance events refer to the number of deaths),
Peduzzi et al. (37) suggest that above 10 events per variable
were not associated with problems in logistic regression analysis
while Bujang et al. (36) suggest the requirement of 50 events
per variable. With 226 non-survivors after removal of duplicate
records and records withmissing data, between 4 and 22 variables
could be included in a viable model.

Data Collection
At present there are limited capabilities for the collection of
electronic health data in our setting, with only laboratory results,
radiology reports, summary clinical reports and administrative
and billing information available on the electronic health records
of the hospitals. No continuous recording of clinical care is
available on the system. An available data set existed in the form
of the data that had been collected for use in the calculation of
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TABLE 1 | Variables collected.

Variable Data type

Age Continuous

Systolic blood pressure (mmHg) Continuous

Pupil reactions to bright light (>3mm and fixed, unresponsive) Binary

Absolute base excess in arterial blood Continuous

Partial pressure of oxygen in arterial blood (PaO2 ) (mmHg) Continuous

Fraction of inspired oxygen(FiO2) (decimal) Continuous

([FiO2 x 100]/PaO2) Continuous

Recovery from non-cardiac procedure Binary

Recovery from non-bypass cardiac procedure Binary

Recovery from bypass cardiac procedure Binary

Low risk diagnosis*:

Asthma

Bronchiolitis

Croup

Obstructive sleep apnoea

Diabetic ketoacidosis

Seizure disorder

Binary

High risk diagnosis*

Spontaneous cerebral

haemorrhage

Cardiomyopathy or myocarditis

Hypoplastic left heart syndrome

Neurodegenerative

disorder

Necrotising enterocolitis

Binary

Very high risk diagnosis*

Cardiac arrest preceding ICU

admission

Severe combined

immunodeficiency

Leukaemia or lymphoma after first

induction

Bone marrow transplant

recipient

Liver failure is the main

reason for ICU admission

Binary

*Diagnostic risk categories from PIM3 (2).

PIM3 scores as part of bench-marking and quality controlled.
This data was collected during the first hour of admission to the
PICU by clinicians working in the PICU, directly into a password
protected spreadsheet during clinical care. The variables available
in this data set are presented in Table 1. Low-risk, high-risk
and very-high-risk diagnostic categories are those identified and
validated in the original PIM3 model (2). No further data was
collected. Data was anonymised by deletion of all identifying data
and directly imported to a secure REDCap R© database (38).

For descriptive analysis, a Student’s t-test was used to compare
the means between survivors and non-survivors for numerical
variables, and Chi-Square test for categorical variables.

Logistic Regression Model and
Recalibration of PIM3
Multivariate Logistic regression was used to determine factors
associated mortality in the pediatric intensive care units.
Variables which are known confounders and those that were
statistically significant relationship in the bivariate analysis were
included. Results were summarized into adjusted Odds Ratio
(Adj. OR), 95% Confidence and Interval (95% CI). A statistically
significant relationship was one with a P < 0.05. For model
calibration purposes, we split the dataset into two, i.e., 70% for
training and 30% for and testing, and, in each case, estimated
the AUROC and calculated the Hosmer-Lemshow test for the

final multivariate logistic regression model. Statistical analysis
was performed using R, version 4.0.2 (39).

Artificial Neural Network Model
A commercially available desktop computer was used in the
development of the ANN model. The artificial neural network
model was developed using Python 3 (40) within the Jupyter
Notebooks environment (41). NumPy (42), Pandas (43), Scikit-
learn (44), Tensorflow (45), Keras and SciPy libraries were used
in the development of the artificial neural network model.

The data was further preprocessed for the development of the
artificial neural network model. We removed duplicated records
and those with impossible or missing values as there were only 70
such records.

Systolic blood pressure was categorised using the age-related
threshold values according to the Pediatric Logistic Organ
Dysfunction scoring system in the 10- and 20-point variable
categories (46). The data was randomly split into a training set
and test set in an 70/30 split. A wrapper algorithm was employed
to select features from the training data, associated with the target
with a p <0.05. The following features were included: pupils
unresponsive to light, elective admission, mechanical ventilation
in the first hour of admission, categorised blood pressure below
the 10-point category, absolute value of base excess (ABE),
fraction of inspired oxygen (FiO2), the ratio of partial pressure of
oxygen in arterial blood to fraction of inspired oxygen (PF), very-
high-risk diagnosis (from PIM3 model), high-risk diagnosis and
low-risk diagnosis. Features were scaled using MinMax scaling.

ANN Development, Training, and Testing
Due to the small size of the data, a third validation set for model
tuning was thought unfeasible and thus, K-fold cross validation
with 10 folds was used in the training phase.We optimisedmodel
hyperparameters using a randomized grid search. The neural
network model developed was a simple feed-forward multi-
layered perceptron with two densely connected hidden layers of
15 neurons with a dropout layer with a dropout rate of 0.1 after
each hidden layer. We made use of a rectified linear unit (ReLU)
activation function in the hidden layers and a sigmoid activation
function in the output layer. We used a batch size of 80 and 100
epochs. Cross validation was then undertaken prior to training
the model on the training data.

Model Performance Evaluation
For the results on the test set we plotted the ROC curve,
PRC curve, calibration curve and decision curve and calculated
the AUROC, AUPRC, mean squared error (MSE), slope and
intercept of the calibration curve and the HL statistic (see
Figure 1). This was done for the ANN models and LR model.
PIM3 was also assessed over the whole data set.

RESULTS

Adescriptive analysis of the data collected is presented inTable 2.
There was significant imbalance between the majority class
(survivors) and the minority class (non-survivors). There were
1,793 survivors and 226 (10.81%) non-survivors in the data set.
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FIGURE 1 | Predictive performance of the ANN, LR, recalibrated PIM3 and original PIM3 models. (A) The ROC curve. (B) The precision-recall curve. (C) The

calibration cure. (D) The decision curve. The area under the curve in A and B and the slope of the calibration curve in C are shown in the legend. PIM3 performance

metrics were calculated across the whole data set, while the ANN and LR performance metrics were calculated on the test set.

The mean age of survivors was 43.16 months (standard deviation
49.98) and 36.74 (standard deviation 46.67) in non-survivors
(p-value 0.063). There were 159 mortalities in the training data
and 67 in the test data. There were 334 planned admissions and
1,755 unplanned admissions in the data set. Surgical procedures
preceded admission to the PICU in 344 cases. This included 10
bypass cardiac surgeries, 10 non-bypass cardiac surgeries and 324
non-cardiac procedures.

Logistic Regression and Recalibrated PIM3
The tables of coefficients of the logistic regression and
recalibrated PIM3 model are presented in Tables 3 and
4, respectively.

ANN Model
After the selection of hyperparameters, cross validation was
undertaken to evaluate model performance on the training data.
The cross-validation showed satisfactory discrimination (mean
AUROC 0.82, mean AUPRC 0.48) and calibration over 10 folds.
The results obtained during the cross-validation phase are shown
in Table 5.

Main Outcomes
The plots of performance of the three developed models and
PIM3 are shown in Figure 1. The test set AUROC for the ANN
models was 0.89 (95% CI = 0.87–0.91), 0.87 (95% CI = 0.85–
0.89) for the LR model and 0.86 (95% CI = 0.84–0.88) for the
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TABLE 2 | Descriptive analysis.

Variable Total Alive Dead P-value

Age of the respondents; mean (SD) 2,086 43.16 (49.98) 36.74 (46.67) 0.0627

Absolute value of base excess (mmol/l): mean (SD) 2,089 7.07 (6.71) 11.53 (8.68) <0.0001

SBP (mmHg): Mean (SD) 2,062 101.21 (23.85) 88.14 (27.94) <0.0001

Pupils fixed to light: n (%) <0.0001

No 2,040 1,841 (99.2) 199 (85.4)

Yes 49 15 (0.8) 34 (14.6)

Elective admission: n (%) <0.0001

No 1,755 1,526 (82.2) 229 (98.3)

Yes 334 330 (17.8) 4 (1.7)

Mechanical ventilation in first hour of admission: n (%) <0.0001

No 1,363 1289 (69.5) 74 (31.8)

Yes 726 567 (30.5 159 (68.2

(SBP)2/1000: mean (SD) 2,087 10.67 (4.93) 8.4 (5.01) <0.0001

FiO2 as a decimal: mean (SD) 2,071 0.42 (0.24) 0.63 (0.27) <0.0001

PaO2 (mmHg): mean (SD) 2,058 93.55 (48.85) 88.18 (65.59) 0.132

100*FiO2/PaO2: mean (SD) 2,087 0.59 (0.62) 1.09 (1.07) <0.0001

Bypass cardiac procedure: n (%) 1

No 2,079 1,847 (99.5) 232 (99.6)

Yes 10 9 (0.5) 1 (0.4)

Non-bypass cardiac procedure: n (%) 0.8441

No 2,079 1,825 (98.3) 228 (97.9)

Yes 10 32 (1.7) 5 (2.1)

Non-cardiac procedure: n (%) <0.0001

No 1,765 1,543 (83.1) 222 (95.3)

Yes 324 313 (16.9) 11 (4.7)

Very high risk diagnosis: n (%) <0.0001

No 1,952 1,787 (96.3) 165 (70.8)

Yes 137 69 (3.7) 68 (29.2)

High risk diagnosis: n (%) <0.0001

No 2,028 1,812 (97.6) 216 (92.7)

Yes 61 44 (2.4) 17 (7.3)

Low risk diagnosis: n (%) <0.0001

No 1,838 1,611 (86.8) 227 (97.4)

Yes 251 245 (13.2) 6 (2.6)

SD, Standard deviation; SBP, Systolic blood pressure; FiO2, Fraction of inspired oxygen; PaO2, Partial pressure of oxygen in arterial blood.

recalibrated PIM3model. AUPRCwas higher for the ANN at 0.60
(95%CI = 0.57–0.64) compared to LR which had an AUPRC of
0.53 (95% CI = 0.50–0.57) and recalibrated PIM3 which had an
AUPRC of 0.58(95% CI = 0.55–0.62). The mean squared error
for both the ANN and LR models was 0.07. The AUPRC baseline
for a random classifier is 0.1. The mean squared error was
0.06 for the recalibrated PIM3 model. The LR and recalibrated
PIM3 models were weakly calibrated in terms of the hierarchy
proposed by Van Calster et al. (34). The slope and intercept of
the flexible calibration curve of the LR model were 1.09 (95%
CI 0.66–1.51) and 0.05, respectively. The slope and intercept
of the recalibrated PIM3 model was 1.01 (95% CI 0.72–1.31)
and 0.01, respectively. The ANN was moderately calibrated. The
slope and intercept of the flexible calibration curve of the ANN
model were 1.12 (95% CI =1.002–1.23) and 0.01 respectively.

The flexible calibration curve of the ANN model, however, is
consistently close to the diagonal. The HL p-value the ANN, LR
and recalibrated PIM3 models was not significant at 0.34, 0.49
and 0.18, respectively. We evaluated the performance of PIM3
over the data set (an external validation). The AUROC for PIM3
was 0.84, the AUPRC was 0.46, the slope of the calibration curve
was 0.64 (95%CI = 0.34–0.97) with an intercept of 0.16. PIM3
tends to underestimate risk in the lower probability range, and
overestimate risk in the higher probability range. The HL p-value
from PIM3 across the data set was<0.0001. In lay terms, all three
models demonstrate ability to discriminate between survivors
and non-survivors with a very modest advantage in favor of the
ANN model but the small number of non-survivors compared
to survivors makes the AUROC overly optimistic. The AUPRC
better evaluates the performance of the models on non-survivors

Frontiers in Pediatrics | www.frontiersin.org 6 February 2022 | Volume 10 | Article 797080

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Pienaar et al. ANN Models for Mortality Prediction

TABLE 3 | Logistic regression model.

Variable Coefficients Adj. OR (95% CI) P-value

Logistic regression model

Age 0.0033

(−0.0006, 0.0071)

0.9994

(1.0071, 1.002)

0.094

Pupils fixed to light 2.2058

(1.4116, 3)

4.1024

(20.0864, 1.4993)

<0.0001

Elective admission −1.4421

(−2.4855, −0.3986)

0.0833

(0.6712, 1.7024)

0.0067

Mechanical ventilation in

first hour of admission

0.7174

(0.3524, 1.0824)

1.4225

(2.9519, 1.2046)

0.0001

Absolute value of base

excess

0.0731

(0.0516, 0.0947)

1.0529

(1.0993, 1.011)

<0.0001

SBP −0.0081

(−0.0152, −0.001)

0.9849

(0.999, 1.0036)

0.026

SBP*SBP/1000

FiO2 as decimal 1.7802

(1.1211, 2.4392)

3.0682

(11.4644, 1.3994)

<0.0001

PaO2 mmHg −0.0027

(−0.0057, 0.0003)

0.9944

(1.0003, 1.0015)

0.0737

Non–cardiac procedure −0.7213

(−1.4525, 0.0099)

0.234

(1.0099, 1.4518)

0.053

Very high risk diagnosis 1.5721

(1.11, 2.0342)

3.0343

(7.6458, 1.2657)

<0.0001

High risk diagnosis 1.1497

(0.473, 1.8263)

1.6048

(6.2109, 1.412)

0.0009

Low risk diagnosis −1.5832

(−2.462, −0.7044)

0.0853

(0.4944, 1.5653)

0.0004

OR, Odds ratio; CI, Confidence Interval; SBP, Systolic blood pressure; FiO2, Fraction of

inspired oxygen; PaO2, Partial pressure of oxygen in arterial blood.

and shows that while the models are not perfect classifiers, they
perform significantly better than a random classifier model. The
probabilities of death generated by the ANN model appear to be
more closely related to the real probability than in the case in the
LR and recalibrated PIM3 models.

DISCUSSION

In this study, we have developed an ANN model for the
prediction of mortality prior to discharge from the PICU in two
centers in a LMIC and compared it to both a logistic regression
model developed on the same data set as well as a recalibrated
version of PIM 3. This was achieved using freely usable software
without the use of specialized computer infrastructure. The
use of a simple feed forward perceptron architecture was able
to achieve an effective predictive model without the need for
advanced computer hardware, which is a relevant consideration
when developing and deploying such models in LMICs. We
have demonstrated favorable characteristics of the ANN model
compared to LR and PIM3, especially in its performance on the
positive class with higher area under the precision recall curve.

Our findings support the need to report model performance
comprehensively and transparently (35, 47). The effect of class
imbalance in binary classification models was also relevant to the
performance of the ANN model. We found the AUROC to be

TABLE 4 | Recalibrated PIM3 model.

Variable Coefficients Adj. OR (95%CI) P-value

Recalibrated PIM3 model

Pupils fixed to light 2.1819

(1.3914, 2.9724)

8.8635

(4.0207, 19.5393)

<0.0001

Elective admission −1.4844

(−2.518, −0.4508)

0.2266

(0.0806, 0.6371)

0.0049

Mechanical ventilation in

first hour of admission

0.8826

(0.5326, 1.2325)

2.4171

(1.7034, 3.4298)

<0.0001

Absolute value of base

excess

0.0728

(0.0514, 0.0941)

1.0755

(1.0528, 1.0987)

<0.0001

Systolic Blood

Pressure(SBP)

−0.006

(−0.0333, 0.0212)

0.994

(0.9672, 1.0214)

0.6636

SBP*SBP/1000 −0.0169

(−0.165, 0.1313)

0.9833

(0.8479, 1.1403)

0.8233

100*FiO2/PaO2 0.4527

(0.2592, 0.6462)

1.5725

(1.2959, 1.9082)

<0.0001

Bypass cardiac

procedure

−1.3455

(−4.3127, 1.6217)

0.2604

(0.0134, 5.0616)

0.3738

Non-bypass cardiac

procedure

−0.1055

(−1.2933, 1.0823)

0.8999

(0.2744, 2.9515)

0.8617

Non-cardiac procedure −0.7835

(−1.5114, −0.0556)

0.4568

(0.2206, 0.9459)

0.0348

Very high risk diagnosis 1.5912

(1.1336, 2.0488)

4.9096

(3.1067, 7.7589)

<0.0001

High risk diagnosis 1.1528

(0.4834, 1.8222)

3.1672

(1.6216, 6.1857)

0.0007

Low risk diagnosis −1.6566

(−2.5327, −0.7806)

0.1908

(0.0794, 0.4581)

0.0002

OR, Odds ratio; CI, Confidence Interval; SBP, Systolic blood pressure; FiO2, Fraction of

inspired oxygen; PaO2, Partial pressure of oxygen in arterial blood.

TABLE 5 | Cross validation performance.

Variable Mean value

AUROC 0.82

AUPRC 0.48

Mean squared error 0.07

Calibration slope 1.07

Calibration intercept 0.03

AUROC, Area under the receiver operating curve; AUPRC, Area under the precision

recall curve.

an optimistic measure of model performance in this study due
the degree of class imbalance in the data set (29). Despite the
similarity in the AUROC between the ANN and the developed
LR model in this study, the performance of the ANN assessed by
the precision recall curve is superior to the LR and recalibrated
PIM3 models. Assessment of calibration by means of the HL
statistic alone is not adequate as it does not provide detail
on calibration performance. We have found the hierarchy of
calibration suggested by Van Calster et al. to be an appropriate
method for assessing model calibration which provides more
insight into the performance of the model than the HL statistic
alone (34). Despite the similar slopes and intercepts for the ANN
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and LRmodels, the inspection of the calibration plot suggests that
the predictions of the ANNmodel are more closely related to true
probabilities than the LR model.

The model developed in this study is less sophisticated than
those described by Kim et al. (24) and Aczon et al. (21, 23). Kim
et al. made use of a deep learning model (convolutional neural
networks) together with a combination of static and temporal
data, extracted from electronic health records, to make real time
predictions of mortality (24). Aczon et al. have reported the
development of a recurrent neural networkmodel for continuous
prediction of PICU mortality. Their recurrent neural network
model demonstrates the ability of recurrent neural networks to
use data with many variables and time series to make robust
predictions. Using electronic health records, Aczon et al. were
able to extract 430 distinct variables and use these to develop
a highly accurate model for mortality prediction with a higher
AUROC than the Pediatric Index of Mortality 2, Pediatric Risk
of Mortality III and Pediatric Logistic Organ Dysfunction (23).
The ability to process hundreds of variables and interpret them
continuously within an automated system in real time would
certainly constitute a major advance from existing models and
has the potential to provide decision support to clinicians.
However, until such a time as the necessary infrastructure and
resources are available to investigate such sophisticatedmodels in
LMICs, there is a need to investigate the optimal use of available
data and technology as demonstrated in this study.

In LMICs there is a need to expand machine learning
and other data science research, not only in clinical research
but in scholarship in general. Whereas, previous periods of
technological advancement were linear in nature, the current
period (the Fourth Industrial Revolution) is characterized by
an accelerating (exponential) growth in the sophistication of
technology. This has raised concerns that those with means
to respond to these technologies will draw disproportionate
benefit. This could significantly exacerbate existing inequalities
(48). Ayentimi and Burgess have suggested that lack of necessary
skills and government investment in education in sub-Saharan
Africa will likely limit the ability of this region to participate
and benefit from the current technological revolution (49). The
need to prevent such widening inequality extends to all spheres
of scholarship in LMICs, including biomedical research. Where
the numbers of neonatal and child deaths remain the highest in
sub-Saharan Africa and South Asia (50), medical scholarship in
this region must also participate in efforts to prevent a widening
of this technological gap. Through the exploration of the use
of ANNs and, more broadly, machine learning in this study,
we have gained valuable experience and encountered unique
challenges in our setting that may guide the development of
further research questions.

The lack of accessible health records in our centers have
limited the scope of this exploration. This is in keeping with the
findings of Katurura and Cilliers, who identified technical, social,
and environmental barriers to the successful implementation of
electronic health records in South Africa (46). This has limited
our study to variables of PIM3. This limits the degree to which
ANNs can discover new features, non-linearity and complex
relationships that are not evident to logistic regression models.

It has also limited us to the investigation of static variables.
Furthermore, the small size of the available data set has been
a significant barrier in this process. This has both limited the
performance of the developedmodel and necessitated the need to
integrate methods to conserve data without allowing the leakage
of data from the test set to the training data. We have attempted
to overcome this using cross-validation for the hyperparameter
tuning and training phase. While our study does not investigate
novel variables, it does demonstrate that ANN models can
feasibly be developed from data from patients in our setting.
The favorable performance of the ANN model serves as a useful
proof of concept to underpin future planned prospective research
where a wider range of variables as well as methods for enhancing
data availability in LMICs can be investigated.

The collection of data during documented clinical care is a
key component of the learning healthcare system which can be
defined as:

“A learning healthcare system is one that is designed to
generate and apply the best evidence for the collaborative
healthcare choices of each patient and provider; to drive the
process of discovery as a natural outgrowth of patient care; and to
ensure innovation, quality, safety, and value in health care” (51).

The South African National Department of Health has
published its National Digital Health Strategy for South Africa
2019–2024 (https://www.health.gov.za/wp-content/uploads/
2020/11/national-digital-strategy-for-south-africa-2019-2024-
b.pdf). Intended to integrate within the planned National Health
Insurance scheme, this policy has identified priorities for digital
health in South Africa. These include the need to develop a
complete electronic health record for all patients, the digitization
of health systems and the need to develop digital health
knowledge (52). This is in line with the challenges identified by
Katurura and Cilliers (53) and will likely enhance the availability
of data for machine learning and other data driven research
if properly implemented. These priorities must go beyond
service delivery and clinical care and be integrated with research,
innovation, and discovery such as the investigation of machine
learning within this framework, if the full benefit of a learning
healthcare system is to be realized in South Africa. The findings
of our study demonstrate that machine learning research can be
meaningfully conducted in our setting and support a need to
integrate machine learning within this policy framework.

We have found Python 3 to be a feasible platform
for use by clinician researchers in this setting, who were
previously unfamiliar with programming. Python syntax is
easily understood and implemented. There are a wide range of
integrated algorithms within the available libraries which limit
the need for complex programming and calculations (54). The
availability of these powerful tools on an open-source platform
is a strong argument for the use of Python in our setting where
costs are an important factor. Combined with the ability of neural
networks to learn complex relationships from data with relatively
low-level programming.

From the finding of this study and the discussion above,
it is critical that this research be developed further and
expanded upon. External validation studies of this model are
planned both in other centers in South Africa, but also in
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other African nations. They also, however, point to priority
research that is needed to develop machine learning research and
implementation in South Africa and LMICs. Further research
is planned to collect, prepare, store and curate large, complex
clinical data sets for application in machine learning in these
settings. These data include static data with a wider range
of features, time series data, medical images and monitoring
device data. There is also a need for research into integrating
documented clinical care into research activity and promoting
the development of systems for EHR in resource limited
settings. This research requires the development of networks
of pediatric critical care providers across Africa as well as
between clinical researchers, computer scientists and engineers,
information technology infrastructure experts, biostatisticians
and policy makers.

CONCLUSION

While this study does not represent a generalized shift in the
approach to mortality prediction, it does engage with a widening
spectrum of tools and contribute to progress in this field,
particularly in LMICs. ANN models are a feasible methodology
for such modelling in our setting and can be developed with
commercially available computers and free to use software. The
ANN, LR and recalibrated PIM3 models showed good predictive
performance in terms of the AUROC. The PRC demonstrated
that models were significantly better than random classifiers but
also significantly below the level of a perfect classifier. The ANN
demonstrated an advantage in terms of the precision recall curve
and calibration. The true performance of the developed models
should be assessed comprehensively in an external validation
study. The exploration of the full potential of ANN models was
limited by lack of electronic health records and a limited data set.
The presence of more sophisticated models such as that of Aczon
et al. (21, 23) in the literature suggest that the developed model
likely does not fully explore the power of ANNs, particularly for
data with many variables and time series data and suggest that
further prospective research should be undertaken in our setting.
Despite these limitations, the performance of the ANN model in
this study is an important proof of concept, demonstrating that
ANN and other machine learning models can be developed in
LMICs with efficient use of resources. This opens a wide range
of research questions and informs the design and execution of

clinical machine learning research in South Africa and LMICs.
The key next step in the development of this research is the
establishment of a large, complex data set from South Africa
and LMIC settings to facilitate machine learning research in
this context.
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